Mathematical Logic

Xianghui Shi

School of Mathematical Science Beijing Normal University

Spring, 2025

Part I. Propositional Logic

Formal Language

Examples:

- (Digital sequence understood by computer) 0010101010000010111101000
- (Programme Language, eg. C)

while (s>10) do {s-=1};

(Propositional/Sentential Logic)

$$(\neg((p \lor q) \to p))$$

(First-Order Logic)

$$\forall \varepsilon \exists \delta \forall x (|x-a| < \delta \rightarrow |f(x) - c| < \varepsilon)$$

⑤ (Modal Logic) ¬(◊p) ↔ □(¬p) Formal languages usually

- translate a restricted class of natural language.
- a have a fix set of atomic symbols and formation rules.
- are precise and unambiguous.

Propositional logic formalizes certain type of assertions in natural language.

Definition 1.1

An **assertion** is a sentence that is either true or false.

Language for Propositional Logic

Example 1.1

Which are assertions?

- **1** 2+3=4.
- ② 你吃了饭吗?
- The earth is round.
- 明天会下雨。
- ⑤ 这个活动太精彩了!
- \bigcirc 2 is a prime number.

More complicated ones:

Example 1.2

- 明天不会下雨。
- ② 明天下雨或者刮大风。
- ③ 明天下雨而且刮大风。
- ④ 如果明天下雨,明天就会刮大风。
- ⑤ 明天下雨当且仅当明天刮大风。

Let $p \equiv$ "明天下雨", $q \equiv$ "明天刮大风":

- ¬p 明天不会下雨。
 p∨q 明天下雨或者刮大风。
 p∧q 明天下雨而且刮大风。
- $p \rightarrow q$ **如果**明天下雨,明天就会刮大风。
- $p \leftrightarrow q$ 明天下雨当且仅当明天刮大风。

The following 3 types of elements are extracted from our natural language:

- **1** parenthesis (括号): (,).
- ❷ propositional connectives (命题连接词):

 \rightarrow

Sproposition symbols (命题符号):

 $A_1, A_2, \cdots, A_n, \cdots$

not

if \cdots , then \cdots

\mathcal{L}_0 -Formulas

Definition 1.2

The **propositional language** \mathcal{L}_0 is the smallest set L such that L is a set of finite sequences of symbols in

$$S_0 = \{(,),\neg, \rightarrow\} \cup \{A_n \mid n \in \mathbb{N}\}.$$

and such that

1
$$\langle A_n \rangle \in L$$
, for each $n \in \mathbb{N}$.

2 If
$$s \in L$$
, then $(\neg s) \in L$.

3 If
$$s, t \in L$$
, then $(s \rightarrow t) \in L$.

 $^{a}\langle A\rangle$ denotes the length-1 sequence that consists of only one symbol A.

\mathcal{L}_0 -Formulas

Definition 1.2

The **propositional language** \mathcal{L}_0 is the smallest set L such that L is a set of finite sequences of symbols in

$$S_0 = \{(,),\neg, \rightarrow\} \cup \{A_n \mid n \in \mathbb{N}\}.$$

and such that

•
$$\langle A_n \rangle \in L$$
, for each $n \in \mathbb{N}$.

2 If
$$s \in L$$
, then $(\neg s) \in L$.

3 If
$$s, t \in L$$
, then $(s \rightarrow t) \in L$.

 $^{a}\langle A \rangle$ denotes the length-1 sequence that consists of only one symbol A.

The existence of the "smallest" such L needs some explanation. To see that \mathcal{L}_0 is well defined, we give an equivalent definition of \mathcal{L}_0 .

\mathcal{L}_0 is well defined

Let (*) denote the three conditions in the previous definition. Let $(S_0)^{<\omega} =_{def} \bigcup_{n \in \mathbb{Z}^+} (S_0)^n$, the set of all finite sequences of symbols in S_0 .

Theorem 1.1

Let $\mathcal{L}_0^* = \bigcap \{ L \subseteq (S_0)^{<\omega} \mid L \text{ satisfies } (*) \}$. Then $\mathcal{L}_0 = \mathcal{L}_0^*$.

\mathcal{L}_0 is well defined

Let (*) denote the three conditions in the previous definition. Let $(S_0)^{<\omega} =_{def} \bigcup_{n \in \mathbb{Z}^+} (S_0)^n$, the set of all finite sequences of symbols in S_0 .

Theorem 1.1

Let
$$\mathcal{L}_0^* = \bigcap \{ L \subseteq (S_0)^{<\omega} \mid L \text{ satisfies } (*) \}$$
. Then $\mathcal{L}_0 = \mathcal{L}_0^*$

Proof.

• Let
$$\Lambda = \{L \subseteq (S_0)^{<\omega} \mid L \text{ satisfies } (*)\}.$$

- Then $\Lambda \neq \emptyset$, as $(S_0)^{<\omega} \in \Lambda$. Thus \mathcal{L}_0^* is well defined.
- \mathcal{L}_0^* satisfies (*): Check 1, 2, 3. Therefore $\mathcal{L}_0^* \supseteq \mathcal{L}_0$.
- By definition, $\mathcal{L}_0^* \subseteq L$, for all $L \in \Lambda$, in particular $\mathcal{L}_0^* \subseteq \mathcal{L}_0$. Therefore $\mathcal{L}_0^* = \mathcal{L}_0$.

Well-formed formula

Definition 1.3

A finite sequence of elements in S_0 is called **well-formed formulas** (or simply **formula** or **wff**) if it can be built-up from $\{A_n \mid n \in \mathbb{N}\}$ by applying the following *formula-building operations* **finitely** many times:

$$\mathcal{E}_{\neg}(s) = (\neg s),$$

$$\mathcal{E}_{\rightarrow}(s,t) = (s \to t),$$

Theorem 1.2

 $\varphi \in \mathcal{L}_0 \Leftrightarrow \varphi$ is a wff.

Theorem 1.2

 $\varphi \in \mathcal{L}_0 \Leftrightarrow \varphi$ is a wff.

Proof.

• For " \Rightarrow ", verify that wff satisfies (*). So $\mathcal{L}_0 \subseteq$ wff.

Theorem 1.2

 $\varphi \in \mathcal{L}_0 \Leftrightarrow \varphi$ is a wff.

Proof.

- For " \Rightarrow ", verify that wff satisfies (*). So $\mathcal{L}_0 \subseteq$ wff.
- For " ⇐ ", prove that (by induction on the least number of construction steps of φ ∈ wff)
 - \mathcal{L}_0 contains all $\langle A_n \rangle$'s, and
 - \mathcal{L}_0 is closed under the two wff-operators: \mathcal{E}_{\neg} , $\mathcal{E}_{\rightarrow}$.

Corollary 1.3 (Readability)

Suppose $\varphi \in \mathcal{L}_0$. Then exactly one of the following applies.

- **1** There is an n such that $\varphi = \langle A_n \rangle$.
- 2 There is a $\psi \in \mathcal{L}_0$ such that $\varphi = (\neg \psi)$.
- So There are ψ_1 and ψ_2 in \mathcal{L}_0 such that $\varphi = (\psi_1 \rightarrow \psi_2)$.

Corollary 1.3 (Readability)

Suppose $\varphi \in \mathcal{L}_0$. Then exactly one of the following applies.

- **1** There is an n such that $\varphi = \langle A_n \rangle$.
- 2 There is a $\psi \in \mathcal{L}_0$ such that $\varphi = (\neg \psi)$.
- So There are ψ_1 and ψ_2 in \mathcal{L}_0 such that $\varphi = (\psi_1 \rightarrow \psi_2)$.

Proof.

As $\mathcal{L}_0 = \mathsf{wff}$, we have the readability of $\varphi \in \mathcal{L}_0$.

Corollary 1.3 (Readability)

Suppose $\varphi \in \mathcal{L}_0$. Then exactly one of the following applies.

- There is an n such that $\varphi = \langle A_n \rangle$.
- 2 There is a $\psi \in \mathcal{L}_0$ such that $\varphi = (\neg \psi)$.
- So There are ψ_1 and ψ_2 in \mathcal{L}_0 such that $\varphi = (\psi_1 \rightarrow \psi_2)$.

Proof.

As $\mathcal{L}_0 = \mathsf{wff}$, we have the readability of $\varphi \in \mathcal{L}_0$.

For the "exact"-ness, it suffices to verify that the three cases are mutually exclusive.

- Case 1 consists of only one symbol
- Case 2 starts with " $(\neg$ "
- Case 3 starts with "((" or " (A_n) " for some A_n .

However,

• it remains unclearly that whether the choice of ψ_1 and ψ_2 is unique.

However,

• it remains unclearly that whether the choice of ψ_1 and ψ_2 is unique.

The following definition of *subformula* is natural and often used in practice, however, it's not well defined unless the Uniqueness of Readability (to be discussed later) is proved.

However,

• it remains unclearly that whether the choice of ψ_1 and ψ_2 is unique.

The following definition of *subformula* is natural and often used in practice, however, it's not well defined unless the Uniqueness of Readability (to be discussed later) is proved.

Definition 1.4 (Subformula, an inductive definition)

The set $S(\varphi)$ of all subformulas of a given $\varphi \in \mathcal{L}_0$ is defined inductively as follows:

$$S(\langle A_n \rangle) = \{\langle A_n \rangle\}, \quad \text{for } n \in \mathbb{N}$$

$$S((\neg \alpha)) = S(\alpha) \cup \{(\neg \alpha)\}$$

$$S((\alpha \to \beta)) = S(\alpha) \cup S(\beta) \cup \{(\alpha \to \beta)\} \quad (\star)$$

For the proof of Unique Readability, we use a bit-by-bit definition of subformulas.

Definition 1.5					
Suppose s,t are finite sequences, $arphi,\psi$ are formulas.					
• t is a block-subsequence of s	t is a block-subsequence of $s \qquad \cdots [\cdots] \cdots$				
2 t is a (proper) initial segment of	$[\cdots]\cdots$				
3 an occurrence of s in φ \cdots $[-s-]$ \cdot					
	block-subsequence	+ formula			

For the proof of Unique Readability, we use a bit-by-bit definition of subformulas.

Definition 1.5Suppose s, t are finite sequences, φ, ψ are formulas.1 t is a block-subsequence of s $\cdots [\cdots] \cdots$ 2 t is a (proper) initial segment of s $[\cdots] \cdots$ 3 an occurrence of s in φ $\cdots [-s-] \cdots$ ψ is a subformula of φ block-subsequence + formula

Question

Let s be a finite sequence of length n. How many block-subsequence of s are there?

\mathcal{L}_{Ω} -formulas

\mathcal{L}_{Ω} -Formulas

Unique Readability

Theorem 1.4 (Unique Readability)

Suppose $\varphi \in \mathcal{L}_0$. Then exactly one of the following applies.

1 There is an
$$n$$
 such that $arphi=A_n$.

- There is a $\psi \in \mathcal{L}_0$ such that $\varphi = (\neg \psi)$. 2
- **3** There are ψ_1 and ψ_2 in \mathcal{L}_0 such that $\varphi = (\psi_1 \rightarrow \psi_2)$.

Further, in cases (2) and (3), the subformulas ψ , ψ_1 and ψ_2 are unique, respectively.

Remark

The Unique Readability enables us to prove by induction on the construction of formulas.

\mathcal{L}_{Ω} -formulas

\mathcal{L}_{Ω} -Formulas

Unique Readability

Theorem 1.4 (Unique Readability)

Suppose $\varphi \in \mathcal{L}_0$. Then exactly one of the following applies.

1 There is an
$$n$$
 such that $\varphi = A_n$.

- There is a $\psi \in \mathcal{L}_0$ such that $\varphi = (\neg \psi)$. 2
- **3** There are ψ_1 and ψ_2 in \mathcal{L}_0 such that $\varphi = (\psi_1 \rightarrow \psi_2)$.

Further, in cases (2) and (3), the subformulas ψ , ψ_1 and ψ_2 are unique, respectively.

Remark

The Unique Readability enables us to prove by induction on the construction of formulas.

The uniqueness of case 1 and 2 are self-clear.

\mathcal{L}_{0} -formulas

\mathcal{L}_{Ω} -Formulas

Unique Readability

Theorem 1.4 (Unique Readability)

Suppose $\varphi \in \mathcal{L}_0$. Then exactly one of the following applies.

1 There is an
$$n$$
 such that $\varphi = A_n$.

- **2** There is a $\psi \in \mathcal{L}_0$ such that $\varphi = (\neg \psi)$.
- **3** There are ψ_1 and ψ_2 in \mathcal{L}_0 such that $\varphi = (\psi_1 \rightarrow \psi_2)$.

Further, in cases (2) and (3), the subformulas ψ , ψ_1 and ψ_2 are unique, respectively.

Remark

The Unique Readability enables us to prove by induction on the construction of formulas.

The uniqueness of case 1 and 2 are self-clear. To prove the uniqueness of ψ_1 and ψ_2 in case 3, we need

If $\varphi \in \mathcal{L}_0$, then no proper initial segment of φ is in \mathcal{L}_0 .

If $\varphi \in \mathcal{L}_0$, then no proper initial segment of φ is in \mathcal{L}_0 .

Proof.

Prove by induction on $|\varphi|$, the length of φ . Suppose $s \subsetneq_{init} \varphi$.

• $|\varphi| = 1$. Then $s = \emptyset$. Vacuously true: as $\emptyset \notin \mathcal{L}_0$.

If $\varphi \in \mathcal{L}_0$, then no proper initial segment of φ is in \mathcal{L}_0 .

Proof.

- $|\varphi| = 1$. Then $s = \emptyset$. Vacuously true: as $\emptyset \notin \mathcal{L}_0$.
- $|\varphi| > 1$. Assume that the statement is true for all $\varphi' \in \mathcal{L}_0$ of length $< |\varphi|$. By Readability, φ is $(\neg \psi)$ or $(\psi_0 \rightarrow \psi_1)$.

If $\varphi \in \mathcal{L}_0$, then no proper initial segment of φ is in \mathcal{L}_0 .

Proof.

- $|\varphi| = 1$. Then $s = \emptyset$. Vacuously true: as $\emptyset \notin \mathcal{L}_0$.
- $|\varphi| > 1$. Assume that the statement is true for all $\varphi' \in \mathcal{L}_0$ of length $< |\varphi|$. By Readability, φ is $(\neg \psi)$ or $(\psi_0 \rightarrow \psi_1)$.
 - $\varphi \equiv (\neg \psi)$, if $s \in \mathcal{L}_0$, then it must be $s \equiv (\neg \theta)$, some $\theta \in \mathcal{L}_0$. But then $\theta \subsetneq_{init} \psi$ and $|\psi| < |\varphi|$. Contradiction!

If $\varphi \in \mathcal{L}_0$, then no proper initial segment of φ is in \mathcal{L}_0 .

Proof.

- $|\varphi| = 1$. Then $s = \emptyset$. Vacuously true: as $\emptyset \notin \mathcal{L}_0$.
- $|\varphi| > 1$. Assume that the statement is true for all $\varphi' \in \mathcal{L}_0$ of length $< |\varphi|$. By Readability, φ is $(\neg \psi)$ or $(\psi_0 \rightarrow \psi_1)$.
 - $\varphi \equiv (\neg \psi)$, if $s \in \mathcal{L}_0$, then it must be $s \equiv (\neg \theta)$, some $\theta \in \mathcal{L}_0$. But then $\theta \subsetneq_{\text{init}} \psi$ and $|\psi| < |\varphi|$. Contradiction!
 - $\varphi \equiv (\psi_1 \rightarrow \psi_2)$, if $s \in \mathcal{L}_0$, it must be that $s \equiv (\theta_1 \rightarrow \theta_2)$, for some $\theta_1, \theta_2 \in \mathcal{L}_0$.

If $\varphi \in \mathcal{L}_0$, then no proper initial segment of φ is in \mathcal{L}_0 .

Proof.

- $|\varphi| = 1$. Then $s = \emptyset$. Vacuously true: as $\emptyset \notin \mathcal{L}_0$.
- $|\varphi| > 1$. Assume that the statement is true for all $\varphi' \in \mathcal{L}_0$ of length $< |\varphi|$. By Readability, φ is $(\neg \psi)$ or $(\psi_0 \rightarrow \psi_1)$.
 - $\varphi \equiv (\neg \psi)$, if $s \in \mathcal{L}_0$, then it must be $s \equiv (\neg \theta)$, some $\theta \in \mathcal{L}_0$. But then $\theta \subsetneq_{init} \psi$ and $|\psi| < |\varphi|$. Contradiction!
 - $\varphi \equiv (\psi_1 \rightarrow \psi_2)$, if $s \in \mathcal{L}_0$, it must be that $s \equiv (\theta_1 \rightarrow \theta_2)$, for some $\theta_1, \theta_2 \in \mathcal{L}_0$.
 - $\psi_1 \neq \theta_1$, one of $\{\psi_1, \theta_1\}$ is a proper initial segment of the other. Contradiction!
 - $\psi_1 = \theta_1$, one of $\{\psi_2, \theta_2\}$ is a proper initial segment of the other. Contradiction!

Question

Fix a 1-1 enumeration of S_0 . Give an algorithm to enumerate

(S₀)^{< ω} := $\bigcup_{n \in \mathbb{N}} (S_0)^n$, the set of finite sequences of members in S_0 (\mathcal{L}_0 .

Question

Fix a 1-1 enumeration of S_0 . Give an algorithm to enumerate

• $(S_0)^{<\omega} := \bigcup_{n \in \mathbb{N}} (S_0)^n$, the set of finite sequences of members in S_0 • \mathcal{L}_0 .

Exercise 1.1

- For which natural numbers n are there elements of L₀ of length n? Provide detailed argument. (Hint: n ≠ 2,3,6)
- 2 Show that a sequence φ is an element of \mathcal{L}_0 if and only if there is a finite sequence of sequences $\langle \varphi_1, ..., \varphi_n \rangle$ such that $\varphi_n = \varphi$, and for each $i \leq n$,
 - either there is an m such that $\varphi_i = \langle A_m \rangle$,
 - or there is a j < i such that $\varphi_i = (\neg \varphi_j)$,
 - or there are $j_1, j_2 < i$ such that $\varphi_i = (\varphi_{j_1} \rightarrow \varphi_{j_2})$.

Though parentheses are helpful for human eyes, it is possible to drop parentheses without loss of clarity. Let $S_0^* = S_0 - \{(,)\}$.

Definition 1.6

Let \mathcal{P}_0 be the smallest set $P \subseteq (S_0^*)^{<\omega}$ such that

- For each $n, A_n \in P$.
- 2 If ψ_1 and ψ_2 belong to P, then so do $\neg \psi_1$ and $\rightarrow \psi_1 \psi_2$.

Theorem 1.5

For any
$$s \in (S_0^*)^{<\omega}$$
, $s \in \mathcal{P}_0 \Leftrightarrow s \in \mathcal{P}_0$ -wff.

Definition 1.7

A finite sequence of elements in S_0 is called \mathcal{P}_0 -wff if it can be built-up from $\{A_n \mid n \in \mathbb{N}\}$ by applying the following formula-building operations finitely many times:

 $\mathcal{D}_{\neg}(s) = \neg s,$ $\mathcal{D}_{\rightarrow}(s,t) = \rightarrow s t.$

$$\rightarrow \neg \rightarrow A_1 \neg A_4 \rightarrow \neg A_3 A_2.$$

$$\to \neg \to A_1 \,\neg A_4 \to \neg A_3 \,A_2.$$

It is our early example: $((\neg(A_1 \rightarrow (\neg A_4))) \rightarrow ((\neg A_3) \rightarrow A_2)).$

$$\rightarrow \neg \rightarrow A_1 \neg A_4 \rightarrow \neg A_3 A_2.$$

It is our early example: $((\neg(A_1 \rightarrow (\neg A_4))) \rightarrow ((\neg A_3) \rightarrow A_2)).$

Exercise 1.2

State and prove the unique readability theorem for \mathcal{P}_0 .

$$\rightarrow \neg \rightarrow A_1 \neg A_4 \rightarrow \neg A_3 A_2.$$

It is our early example: $((\neg(A_1 \rightarrow (\neg A_4))) \rightarrow ((\neg A_3) \rightarrow A_2)).$

Exercise 1.2

State and prove the unique readability theorem for \mathcal{P}_0 .

Question

Try to write the Reverse Polish version of the above formula.

Polish Notation and Reverse Polish Notation

Disadvantage: hard to decode by human Advantage: processed faster by computer

Polish Notation and Reverse Polish Notation

Disadvantage: hard to decode by human Advantage: processed faster by computer

Reading assignment

Find out more about Polish and reverse Polish notations, as well as SVO, SOV, VSO, etc. S = Subject, V = Verb, O = Object

Word order

Word order	English equivalent	Proportion of languages		Example languages
SOV	"Cows grass eat."	45%	_	Ancient Greek, Bengali, Burmese, Hindi/Urdu, Japanese, Korean, Latin, Persian, Sanskrit, Tamil, Telugu, Turkish, etc
svo	"Cows eat grass."	42%		Chinese, Dutch, English, French, German, Hausa, Italian, Malay, Portuguese, Russian, Spanish, Swahili, Thai, Vietnamese, etc
VSO	"Eat cows grass."	9%		Biblical Hebrew, Classical Arabic, Filipino, Irish, Māori, Tuareg-Berber, Welsh
VOS	"Eat grass cows."	3%	1	Car, Fijian, Malagasy, Q'eqchi', Terêna
OVS	"Grass eat cows."	1%		Hixkaryana, Urarina
OSV	"Grass cows eat."	0%		Tobati, Warao
Frequency distribution of word order in languages surveyed by Russell S. Tomlin in the 1980s				

Priority of operators

To establish a more compact notation,

- The outermost parentheses are omitted.
- **2** The priority of operators are ordered as: \neg is higher than \rightarrow . ¹ e.g.

$$B \to \neg A$$
 is $(B \to (\neg A))$

When connectives of the same priority are repeated, grouping is to the right:

$$A \to B \to C$$
 is $(A \to (B \to C))$

¹When \lor , \land and \leftrightarrow are considered:

$$\neg \qquad (\lor,\land) \qquad (\to, \leftrightarrow).$$

Other connectives \lor , \land , \leftrightarrow are treated as abbreviations of formulas (involving $\{\neg, \rightarrow\}$ only) as follows:

$$\begin{array}{ll} p \lor q & \text{iff} & \neg p \to q \\ p \land q & \text{iff} & \neg (p \to \neg q) \\ p \leftrightarrow q & \text{iff} & (p \to q) \land (q \to p) \end{array}$$

This treatment will be justified by the next section.