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Lo-formulas Natural Language and Formal Language

Formal Language

Examples:

@ (Digital sequence understood by computer)
0010101010000010111101000
@ (Programme Language, eg. C)
while (s>10) do {s-=1};

@ (Propositional /Sentential Logic)

(—=((pva) —p))
Q (First-Order Logic)

VeddVa(|lz —a| < 6 — |f(z) — ¢| <€)

@ (Modal Logic) (O~ 2%, O~ TH)

—(0p) < O(—p)
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L-formulas Natural Language and Formal Language

Formal languages usually
@ translate a restricted class of natural language.
@ have a fix set of atomic symbols and formation rules.

© are precise and unambiguous.

Propositional logic formalizes certain type of assertions in natural
language.

Definition 1.1

An assertion is a sentence that is either true or false.
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Lo-formulas Natural Language and Formal Language

Language for Propositional Logic

Which are assertions?
Q2+3=4

Q RrL THR"D?

© The earth is round.

Q IRAT/H.

Q INEFHRMEHT

o

2 is a prime number.
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L-formulas Natural Language and Formal Language

More complicated ones:

ARRET A,

AR T KA E KRR

B R T g BLE] KRR

W RARXTH, ARE2F KK,
R TS HAL S B R H) KR,

00000
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L-formulas Natural Language and Formal Language

Let p="ARTA", q="BFARIKXN":

—p HRFET S
pVq i i 2 P N
D Aq B R T W B KR,
p—q e XA R T AR, HARELE KK,
peq PR TS B i R H) RN,
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Lo-formulas Ly-Formulas

Symbols

The following 3 types of elements are extracted from our natural
language:

@ parenthesis (&5 ) : (,).

@ propositional connectives ( %R 1% 4234 ).

- not
- If'then
© proposition symbols ( ##5F5 ):
AI,AQ,-'- 7An;"‘
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Lo-formulas Ly-Formulas

Lo-Formulas

Definition 1.2
The propositional language L is the smallest set L such that L
is a set of finite sequences of symbols in

So={(),~, =} u {4, | neN}
and such that
Q@ (A, e L, foreachneN. ?
@ If se L, then (—s) € L.
@ Ifs,teL, then (s >t)e L.

?(A) denotes the length-1 sequence that consists of only one symbol A.
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Lo-formulas Ly-Formulas

Lo-Formulas

Definition 1.2
The propositional language L is the smallest set L such that L
is a set of finite sequences of symbols in

So={(),~, =} u {4, | neN}
and such that
Q@ (A, e L, foreachneN. ?
@ If se L, then (—s) € L.
@ Ifs,teL, then (s >t)e L.

?(A) denotes the length-1 sequence that consists of only one symbol A.

The existence of the “smallest” such L needs some explanation. To
see that Ly is well defined, we give an equivalent definition of L.
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Lo-formulas Ly-Formulas

Lo is well defined

Let () denote the three conditions in the previous definition.
Let (S0)=* =det Upez+ (S0)", the set of all finite sequences of
symbols in Sp.

Let L5 =({L < (So)=¥ | L satisfies (x)}. Then Lo = L.
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Lo-formulas Ly-Formulas

Lo is well defined

Let () denote the three conditions in the previous definition.
Let (S0)=* =det Upez+ (S0)", the set of all finite sequences of
symbols in Sp.

Let L5 =({L < (So)=¥ | L satisfies (x)}. Then Lo = L.

Let A = {L < (Sp)<“ | L satisfies (x)}.

Then A # &, as (Sp)<“ € A. Thus L is well defined.

L} satisfies (x): Check 1,2,3. Therefore L5 2 Lo.

By definition, £ < L, for all L € A, in particular £ < L.
Therefore L = Ly. O

v
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Lo-formulas Ly-Formulas

Well-formed formula

Definition 1.3

A finite sequence of elements in Sy is called well-formed formulas
(or simply formula or wff) if it can be built-up from {A,, | n € N}
by applying the following formula-building operations finitely many
times:

E-(s) = (=s),
E_(s,t) = (s —>t).

.
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Lo-formulas Ly-Formulas

Readability

peLy< pisa wff
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Lo-formulas Ly-Formulas

Readability

peLy< pisa wff

e For " =", verify that wff satisfies (x). So Lo < wiff.
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Lo-formulas Ly-Formulas

Readability

peLy< pisa wff

e For " =", verify that wff satisfies (x). So Lo < wiff.
@ For " <", prove that (by induction on the least number of
construction steps of ¢ € wff)

e Ly contains all (A,)'s, and
e Ly is closed under the two wff-operators: £, £_,. [
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L-formulas L-Formulas

Corollary 1.3 (Readability)

Suppose ¢ € Ly. Then exactly one of the following applies.
@ There is an n such that ¢ = (Ay).
@ There is a 1 € Ly such that ¢ = (—1).
@ There are 11 and vy in Ly such that ¢ = (1 — 12).
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L-formulas L-Formulas

Corollary 1.3 (Readability)

Suppose ¢ € Ly. Then exactly one of the following applies.
@ There is an n such that ¢ = (Ay).
@ There is a i) € Ly such that ¢ = (—).
@ There are 11 and vy in Ly such that ¢ = (1 — 12).

.

As Ly = wff, we have the readability of ¢ € L.

€
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L-formulas L-Formulas

Corollary 1.3 (Readability)

Suppose ¢ € Ly. Then exactly one of the following applies.
@ There is an n such that ¢ = (Ay).
@ There is a i) € Ly such that ¢ = (—).
@ There are 11 and vy in Ly such that ¢ = (1 — 12).

.

As Ly = wff, we have the readability of ¢ € L.
For the “exact”-ness, it suffices to verify that the three cases are
mutually exclusive.

@ Case 1 consists of only one symbol

o Case 2 starts with “(—"

o Case 3 starts with “((" or “(A,," for some A, O

€
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Lo-formulas Ly-Formulas

Subformulas

However,

@ it remains unclearly that whether the choice of 1 and 1) is
unique.
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Lo-formulas Ly-Formulas

Subformulas

However,
@ it remains unclearly that whether the choice of 1 and 1) is
unique.

The following definition of subformula is natural and often used in
practice, however, it's not well defined unless the Uniqueness of
Readability (to be discussed later) is proved.
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Lo-formulas Ly-Formulas

Subformulas

However,

@ it remains unclearly that whether the choice of 1 and 1) is
unique.

The following definition of subformula is natural and often used in
practice, however, it's not well defined unless the Uniqueness of
Readability (to be discussed later) is proved.

Definition 1.4 (Subformula, an inductive definition)

The set S(¢) of all subformulas of a given ¢ € Ly is defined
inductively as follows:

S((An)) = {(4,)}, forneN
S((=a)) = 5(e) v {(-a)}
S((a—p)) = S(a) v S(B) v {(a — B)} 9)
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L-formulas L-Formulas

For the proof of Unique Readability, we use a bit-by-bit definition
of subformulas.

Definition 1.5
Suppose s, t are finite sequences, ¢, 1 are formulas.

@ t is a block-subsequence of s o]
@ t is a (proper) initial segment of s [(]ee

© an occurrence of s in ¢ PR A P

@ 1 is a subformula of ¢ block-subsequence + formula)
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L-formulas L-Formulas

For the proof of Unique Readability, we use a bit-by-bit definition
of subformulas.

Definition 1.5
Suppose s, t are finite sequences, ¢, 1 are formulas.

@ t is a block-subsequence of s o]
@ t is a (proper) initial segment of s [(]ee

© an occurrence of s in ¢ PR A P

@ 1 is a subformula of ¢ block-subsequence + formula)

Let s be a finite sequence of length n. How many
block-subsequence of s are there?
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Lo-formulas Ly-Formulas

Unique Readability

Theorem 1.4 (Unique Readability)

Suppose @ € Ly. Then exactly one of the following applies.

@ There is an n such that p = A,,.
@ Thereis a i) € Ly such that ¢ = (—1).
© There are 11 and g in Ly such that ¢ = (1 — 12).

Further, in cases (2) and (3), the subformulas 1, 1 and 15 are
unique, respectively.

The Unique Readability enables us to prove by induction on the
construction of formulas.
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Lo-formulas Ly-Formulas

Unique Readability

Theorem 1.4 (Unique Readability)

Suppose @ € Ly. Then exactly one of the following applies.

@ There is an n such that p = A,,.
@ Thereis a i) € Ly such that ¢ = (—1).
© There are 11 and g in Ly such that ¢ = (1 — 12).

Further, in cases (2) and (3), the subformulas 1, 1 and 15 are
unique, respectively.

The Unique Readability enables us to prove by induction on the
construction of formulas.

The uniqueness of case 1 and 2 are self-clear.

Spring, 2025 Xianghui Shi Mathematical Logic 18 / 27



Lo-formulas Ly-Formulas

Unique Readability

Theorem 1.4 (Unique Readability)

Suppose @ € Ly. Then exactly one of the following applies.

@ There is an n such that p = A,,.
@ Thereis a i) € Ly such that ¢ = (—1).
© There are 11 and g in Ly such that ¢ = (1 — 12).

Further, in cases (2) and (3), the subformulas 1, 1 and 15 are
unique, respectively.

The Unique Readability enables us to prove by induction on the
construction of formulas.

The uniqueness of case 1 and 2 are self-clear.
To prove the uniqueness of 11 and 5 in case 3, we need
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L-formulas L-Formulas

If ¢ € Ly, then no proper initial segment of  is in Ly.
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L-formulas L-Formulas

If ¢ € Ly, then no proper initial segment of  is in Ly.

Prove by induction on |p|, the length of ©. Suppose s Sinit ©.

@ || =1. Then s = @. Vacuously true: as @ ¢ L.
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L-formulas L-Formulas

If ¢ € Ly, then no proper initial segment of  is in Ly.

Prove by induction on |p|, the length of ©. Suppose s Sinit ©.

@ || =1. Then s = @. Vacuously true: as @ ¢ L.

@ || > 1. Assume that the statement is true for all ¢’ € Ly of
length < |p|. By Readability, ¢ is (—) or (g — 11).
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L-formulas L-Formulas

If ¢ € Ly, then no proper initial segment of  is in Ly.

Prove by induction on |p|, the length of ©. Suppose s Sinit ©.

@ || =1. Then s = @. Vacuously true: as @ ¢ L.
@ || > 1. Assume that the statement is true for all ¢’ € Ly of
length < |p|. By Readability, ¢ is (—) or (g — 11).
o = (=), if s€ Ly, then it must be s = (—0), some 0 € L.
But then 6 Sinit ¥ and || < |¢|. Contradiction!
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L-formulas L-Formulas

If ¢ € Ly, then no proper initial segment of  is in Ly.

Prove by induction on |p|, the length of ©. Suppose s Sinit ©.

@ || =1. Then s = @. Vacuously true: as @ ¢ L.

@ || > 1. Assume that the statement is true for all ¢’ € Ly of
length < |p|. By Readability, ¢ is (—) or (g — 11).
o = (=), if s€ Ly, then it must be s = (—0), some 0 € L.
But then 6 Sinit ¥ and || < |¢|. Contradiction!
o ¢ = (11 > 1hy), if s € Ly, it must be that s = (6; — 65), for
some 01,05 € Ly.
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L-formulas L-Formulas

If ¢ € Ly, then no proper initial segment of  is in Ly.

Prove by induction on |p|, the length of ©. Suppose s Sinit ©.

@ || =1. Then s = @. Vacuously true: as @ ¢ L.

@ || > 1. Assume that the statement is true for all ¢’ € Ly of
length < |p|. By Readability, ¢ is (—) or (g — 11).
o = (=), if s€ Ly, then it must be s = (—0), some 0 € L.
But then 6 Sinit ¥ and || < |¢|. Contradiction!
o ¢ = (11 > 1hy), if s € Ly, it must be that s = (6; — 65), for
some 01,605 € L.
@ 1 # 01, one of {11,601} is a proper initial segment of the
other. Contradiction!
@ 11 = 01, one of {12,062} is a proper initial segment of the
other. Contradiction! O
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L-formulas L-Formulas

Fix a 1-1 enumeration of Sy. Give an algorithm to enumerate
Q (So)=v:= UneN(SO)n' the set of finite sequences of members in Sy
Q L.
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L-formulas L-Formulas

Fix a 1-1 enumeration of Sy. Give an algorithm to enumerate
Q (50)=“ :=U,,en(S0)™, the set of finite sequences of members in So

Q L.

@ For which natural numbers n are there elements of L of
length n? Provide detailed argument. (Hint: n # 2,3,6)
@ Show that a sequence ¢ is an element of L if and only if
there is a finite sequence of sequences {1, ..., ¢y, ) such that
©n = @, and for each i < n,
o either there is an m such that ¢; = (A,,),
o or thereis a j < i such that p; = (—¢;),
e or there are ji, jo < @ such that p; = (¢;, —¢;,).
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Lo-formulas Polish and reverse Polish notations

Polish Notation

Though parentheses are helpful for human eyes, it is possible to
drop parentheses without loss of clarity. Let S5 = So — {(,)}.

Definition 1.6

Let Py be the smallest set P < (Sg)=“ such that
@ For each n, A, € P.
@ If 1 and vy belong to P, then so do —; and — 1.

For any s € (S3)=Y, s € Py < s € Py-wff.
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Lo-formulas Polish and reverse Polish notations

Definition 1.7
A finite sequence of elements in Sy is called Py-wfF if it can be
built-up from {A,, | n € N} by applying the following
formula-building operations finitely many times:

D-(s) = —s,
D_(s,t) = —>st.
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L-formulas Polish and reverse Polish notations

— = — A —Ay > —A3 As.

It is our early example: ((—(A; — (—Ay))) — ((—A3) — Ag)).
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L-formulas Polish and reverse Polish notations

— = — A; Ay — —A3 As.

It is our early example: ((—(A; — (—Ay))) — ((—A3) — Ag)).

State and prove the unique readability theorem for Py.
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L-formulas Polish and reverse Polish notations

— = — A —Ay > —A3 As.

It is our early example: ((—(A; — (—Ay))) — ((—A3) — Ag)).

State and prove the unique readability theorem for Py.

Try to write the Reverse Polish version of the above formula.
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L-formulas Polish and reverse Polish notations

Polish Notation and Reverse Polish Notation

Disadvantage: hard to decode by human
Advantage: processed faster by computer
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L-formulas Polish and reverse Polish notations

Polish Notation and Reverse Polish Notation

Disadvantage: hard to decode by human
Advantage: processed faster by computer

Reading assignment

Find out more about Polish and reverse Polish notations, as well as
SVO, SOV, VSO, etc. S = Subject, V = Verb, O = Object
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Word order

Lo-formulas Polish and reverse Polish notations

Word
order

Sov

SVO

VSO

VOS
ovs
osv

English
equivalent

"Cows grass eat."

"Cows eat grass."

"Eat cows grass."

"Eat grass cows."
"Grass eat cows."

"Grass cows eat."

Proportion Example

of languages languages

45%

42%

9%

3%

1%
0%

Ancient Greek, Bengali, Burmese, Hindi/Urdu,
Japanese, Korean, Latin, Persian, Sanskrit, Tamil,
Telugu, Turkish, etc

Chinese, Dutch, English, French, German, Hausa,
Italian, Malay, Portuguese, Russian, Spanish,
Swahili, Thai, Vietnamese, etc

Biblical Hebrew, Classical Arabic, Filipino, Irish,
Maori, Tuareg—Berber, Welsh

Car, Fijian, Malagasy, Q’eqchi’, Teréna
Hixkaryana, Urarina

Tobati, Warao

Frequency distribution of word order in languages surveyed by Russell S. Tomlin in the 1980s
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Lo-formulas Polish and reverse Polish notations

Priority of operators

To establish a more compact notation,
© The outermost parentheses are omitted.

@ The priority of operators are ordered as: — is higher than —.
1
e.g.

B——A is (B—(—4))

© When connectives of the same priority are repeated, grouping
is to the right:

A->B—C is (A—(B— ()

'When v, A and < are considered:

- (Va/\) (_>7<_))
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Lo-formulas Polish and reverse Polish notations

Other connectives

Other connectives v, A, <> are treated as abbreviations of
formulas (involving {—, —} only) as follows:

PVq iff —p—q
PAq iff = (p——q)
pegq iff (p—q)A(g—Dp)

This treatment will be justified by the next section.
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