The 9th Homework April 29, 2025

1. Suppose \mathcal{M} is an \mathcal{L}_A -structure. Let $A^* = A \cup \{c_m \mid m \in M\}$. Identify \mathcal{M} as an \mathcal{L}_{A^*} -structure. Show that for any \mathcal{N} , if $\mathcal{N} \models \operatorname{Th}_{\mathcal{L}_{A^*}(\mathcal{M})}$, then $\mathcal{M} \preccurlyeq \mathcal{N}$.

<u>SOLUTION</u>: Suppose $\mathcal{N} \models \operatorname{Th}_{\mathcal{L}_{A^*}(\mathcal{M})}$, consider the map $f : \mathcal{M} \longrightarrow \mathcal{N}$ s.t. $f(m) = (c_m)^{\mathcal{N}}$. Then for all $\mathcal{N} \models \operatorname{Th}_{\mathcal{L}_{A^*}(\mathcal{M})}$, for all $\varphi \in \mathcal{L}_A$ and for all $m_1 \dots m_k \in \mathcal{M}$

$$\mathcal{M} \vDash \varphi[m_1 \dots m_k] \Leftrightarrow \mathcal{M} \vDash \varphi(c_{m_1} \dots c_{m_k})$$
$$\Leftrightarrow \mathcal{N} \vDash \varphi(c_{m_1} \dots c_{m_k})$$
$$\Leftrightarrow \mathcal{N} \vDash \varphi[f(m_1) \dots f(m_k)]$$

Theorefore $\mathcal{M}\preccurlyeq\mathcal{N}$

2. Suppose that \mathcal{M} is an infinite $\mathcal{L}_{\mathcal{A}}$ -structure. Show that there is an \mathcal{M}_1 such that \mathcal{M} and \mathcal{M}_1 are elementarily equivalent and \mathcal{M}_1 has an element which is not the interpretation of any constant symbol. (Hint: Apply Compactness to $\Gamma = \text{Th}_{\mathcal{L}_{\mathcal{A}}}(\mathcal{M}) \cup \{\neg(x_1 = c) \mid c \in \mathcal{C} \cap A\}$)

<u>SOLUTION</u>: Let $\Sigma = \{\neg(x \doteq c) \mid c \in C \cap A\}$ and $\Gamma = \operatorname{Th}_{\mathcal{L}_{\mathcal{A}}}(\mathcal{M}) \cup \Sigma$. For arbitrary finite subset $\Gamma_0 \subseteq \Gamma$, suppose $\Gamma_0 \cap \Sigma \subseteq \{\neg(x \doteq c_i) \mid i \leq n\}$ for some $n \in \mathbb{N}$. Since \mathcal{M} is infinite, there is an \mathcal{M} -assignment ν sending x to some element in \mathcal{M} other than any $c_i^{\mathcal{M}}$ $(i \leq n)$, and $(\mathcal{M}, \nu) \models \Gamma_0$. So Γ_0 is satisfiable, and by compactness, Γ is also satisfiable. Therefore any model \mathcal{M}_1 satisfies Γ is elementarily equivalent to \mathcal{M} and has an element which is not the interpretation of any constant symbol.