The Eighth Homework

April 28, 2025

1. Show that for every pair of \mathcal{L} formulas φ and ψ , $\{\varphi, (\neg \varphi)\} \vdash \psi$.

 $\underline{\text{Solution}}: \quad \text{Since } (\varphi \to (\neg \varphi \to \psi)) \text{ is a logical axiom},$

$$\langle (\varphi \to (\neg \varphi \to \psi)), \varphi, (\neg \varphi \to \psi), \neg \varphi, \psi \rangle$$

witnesses that $\{\varphi, (\neg \varphi)\} \vdash \psi$.

2. Suppose that $\Gamma \cup \{(\neg \varphi)\}$ is not consistent. Show that $\Gamma \vdash \varphi$.

SOLUTION:

Method 1: With Completeness. If there is a model of Γ also satisfies $(\neg \varphi)$, then $\Gamma \cup \{(\neg \varphi)\}$ is consistent. So every model of Γ satisfies φ , and thus $\Gamma \vdash \varphi$.

Method 2: Without Completeness. By the definition of consistent, there is a formula ψ such that $\Gamma \cup \{(\neg \varphi)\} \vdash \{\psi, (\neg \psi)\}$, by Question 1, we can derive that $\Gamma \cup \{(\neg \varphi)\} \vdash \varphi$. By deduction, $\Gamma \vdash ((\neg \varphi) \rightarrow \varphi)$. Assume that *s* is a Γ -proof of $((\neg \varphi) \rightarrow \varphi)$, then $s^{\frown} \langle (((\neg \varphi) \rightarrow \varphi) \rightarrow \varphi), \varphi \rangle$ witnesses that $\Gamma \vdash \varphi$.