The Ninth Homework

April 28, 2025

1. Consider the structure $\mathcal{R} = (\mathbb{R}, +, \times, <, 0, 1)$.Let \mathcal{N} be the substructure of \mathcal{R} given by the set of all $r \in \mathbb{R}$ such that the set $A_r = \{r\}$ is definable in \mathcal{R} without parameters. Show that $\mathcal{N} \leqslant \mathcal{R}$.

SOLUTION:
$$\forall \varphi (x_1 \cdots x_n) \in S$$
, $\forall r_1 \cdots r_n \in \mathcal{R}$. Since $\{r_1\} \dots [r_1\}$ definable. $\exists \psi_1 \dots \psi_n$ s.t $\forall b \in \mathbb{R}$ $\mathcal{R} \vDash \psi_i(b) \Leftrightarrow b = r_i \Leftrightarrow \mathcal{N} = \psi_i(b)$ so $\mathcal{N} \vDash \varphi (r_1 \dots r_n) \Leftrightarrow \mathcal{N} \vDash \exists x_1 \dots x_n \quad \varphi (x_1 \cdots x_1) \land \psi_1 (x_1) \land \psi_n (x_n) \Leftrightarrow \mathcal{R} \vDash \exists x_1 \dots x_n \quad \varphi (x_1 \cdots x_1) \land \psi_1 (x_1) \land \psi_n (x_n) \Leftrightarrow \mathcal{R} \vDash \varphi (r_1 \dots r_n)$

2. Prove Theorem 5.3.

Theorem 5.3 (Soundness, version II). Suppose that $\Gamma \subseteq \mathcal{L}$, $\varphi \in \mathcal{L}$ and that $\Gamma \vdash \varphi$. Then for any (\mathcal{M}, ν) , if $(\mathcal{M}, \nu) \models \Gamma$, then $(\mathcal{M}, \nu) \models \varphi$.

SOLUTION: See the textbook [P79-Theorem 5.14].

3. Prove Corrollary 5.4.

Theorem 5.4 (Soundness, version I). Suppose $\Gamma \subseteq \mathcal{L}$. If Γ is satisfiable, then Γ is consistent.

SOLUTION: See the textbook [P81-Corollary 5.15].

 $^{^{1}(\}mathcal{M},\nu) \vDash \Gamma$ abbreviates " $(\mathcal{M},\nu) \vDash \gamma$, for every $\gamma \in \Gamma$ ".