The Sixth Homework

April 28, 2025

- 1. 1) Consider a fixed structure \mathcal{M} . Show that $\{\mathcal{N} \mid \mathcal{N} \equiv \mathcal{M}\}$ is an EC_{Δ} . (Hint: show that it is $\mathfrak{M}(\mathrm{Th}(\mathcal{M}))$.)
 - 2) A class \mathfrak{A} of structures is **elementarily closed** if

$$\mathcal{M} \in \mathfrak{A} \land \mathcal{N} \equiv \mathcal{M} \Rightarrow \mathcal{N} \in \mathfrak{A}.$$

Show that any such class is a union of EC_{Δ} classes.

3) Conversely, show that any class that is the union of EC_{Δ} classes is elementarily closed.

<u>SOLUTION</u>: Fix a language $\mathcal{L}_{\mathcal{A}}$,

- (a) for any structure \mathcal{M} , we define the **theory of** \mathcal{M} , written $\operatorname{Th}(\mathcal{M})$ to be the set of all sentences true in \mathcal{M} , i.e., $\operatorname{Th}(\mathcal{M}) = \{\varphi \in \mathcal{L}_{\mathcal{A}} \mid \varphi \text{ is a sentence and } \mathcal{M} \vDash \varphi\};$
- (b) for any set of Σ of sentences, $\mathfrak{M}(\Sigma)$ denotes the class of all models of Σ , i.e., $\mathfrak{M}(\Sigma) = \{\mathcal{M} \mid \mathcal{M} \models \sigma \in \Sigma, \text{ for every } \sigma \in \Sigma\}.$

Now we give the solution:

- 1) We show that the set $\{\mathcal{N} \mid \mathcal{N} \equiv \mathcal{M}\}$ is the set $\{\mathcal{N} \mid \mathcal{N} \vDash \operatorname{Th}(\mathcal{M})\}$ and the conclusion follows from the latter is an EC_{Δ} .
 - $\mathcal{N} \equiv \mathcal{M} \Leftrightarrow \text{ for any } \mathcal{L}_{\mathcal{A}}\text{-sentence } \varphi, \mathcal{M} \vDash \varphi \text{ iff } \mathcal{N} \vDash \varphi$
 - $\Leftrightarrow \text{ for any } \mathcal{L}_{\mathcal{A}}\text{-sentence } \varphi, \mathcal{M} \vDash \varphi \text{ implies } \mathcal{N} \vDash \varphi \text{ and } \mathcal{M} \nvDash \varphi \text{ implies } \mathcal{N} \nvDash \varphi$
 - \Leftrightarrow for any $\mathcal{L}_{\mathcal{A}}$ -sentence $\varphi, \mathcal{M} \vDash \varphi$ implies $\mathcal{N} \vDash \varphi$ and $\mathcal{M} \vDash (\neg \varphi)$ implies $\mathcal{N} \vDash (\neg \varphi)$
 - $\Leftrightarrow \text{ for any } \varphi \in \mathrm{Th}(\mathcal{M}), \mathcal{N} \vDash \varphi$
 - $\Leftrightarrow \mathcal{N} \in \mathfrak{M}(\mathrm{Th}(\mathcal{M})).$
- 2) Since \mathfrak{A} is elementarily closed, then for each $\mathcal{M} \in \mathfrak{A}$, $\{\mathcal{N} \mid \mathcal{N} \equiv \mathcal{M}\} \subseteq \mathfrak{A}$, i.e., $\mathfrak{M}(\mathrm{Th}(\mathcal{M})) \subseteq \mathfrak{A}$. Thus $\mathfrak{A} \subseteq \bigcup_{\mathcal{M} \in \mathfrak{A}} \mathfrak{M}(\mathrm{Th}(\mathcal{M})) \subseteq \mathfrak{A}$ and \mathfrak{A} is an union of EC_{Δ} classes.
- 3) Suppose that \mathfrak{A} is an union of EC_{Δ} classes, for any $\mathcal{M} \in \mathfrak{A}$, we can pick a set Σ of $\mathcal{L}_{\mathcal{A}}$ sentences, such that $\mathcal{M} \in \mathfrak{M}(\Sigma) \subseteq \mathfrak{A}$. For any \mathcal{N} such that $\mathcal{N} \equiv \mathcal{M}$, we have $\mathcal{N} \vDash \Sigma$ and
 thus $\mathcal{N} \in \mathfrak{M}(\Sigma)$, so $\mathcal{N} \in \mathfrak{A}$.
- 2. Suppose that A is finite and that M is a finite \mathcal{L}_A -structure. Prove that there is an \mathcal{L}_A -sentence φ such that for every \mathcal{L}_A -structure N, if $N \vDash \varphi$ then $N \cong M$.

<u>SOLUTION</u>: Let \mathfrak{C} , \mathfrak{F} and \mathfrak{P} be the set of constant, function and predicate symbols in A. These set is finite since A is finite. Suppose $M = \{a_1, \ldots, a_n\}$ and I be the interpretation of symbols in M. Now we define a series of formula as follow:

- (a) let $\varphi_n \equiv \bigwedge_{1 \leq i < j \leq n} (\neg (x_i = x_j));$
- (b) let $\psi_n = (\forall x_{n+1})(\bigvee_{i=1}^n (x_i = x_{n+1}));$
- (c) for each constant symbol $c \in \mathfrak{C}$, if $I(c) = a_i$, let $\varphi_c \equiv (x_i = c)$;
- (d) for each function symbol $F \in \mathfrak{F}$, written $m = \pi(F)$, let

$$\varphi_F = \bigwedge_{((x_{i_1}, \dots, x_{i_m}), x_{i_0}) \in I(F)} F(x_{i_1}, \dots, x_{i_m}) = x_{i_0};$$

(e) for each predicate symbol P in \mathfrak{P} , written $m = \pi(P)$, let

$$\varphi_P = \bigwedge_{(x_{i_1},\dots,x_{i_m})\in I(P)} P(x_{i_1},\dots,x_{i_m}).$$

Finally, we define $\varphi \equiv (\exists x_1) \dots (\exists x_n) (\varphi_n \land \psi_n \land (\bigwedge_{c \in \mathfrak{C}} \varphi_c) \land (\bigwedge_{F \in \mathfrak{F}} \varphi_F) \land (\bigwedge_{P \in \mathfrak{F}} \varphi_P))$, it is obvious that φ is a sentence.

If $N \vDash \varphi$, then by φ_n and ψ_n , we can know that there are exactly *n* elements in *N*. Assume that $N = \{b_1, \ldots, b_n\}$, ν and μ are respectively assignment of *M* and *N* such that for each $1 \le i \le n$, $\nu(x_i) = a_i$, $\mu(x_i) = b_i$. Let $e : M \to N, a_i \mapsto b_i$ is a bijection. For any constant symbol $c \in \mathfrak{C}$ such that $I(c) = a_i$, since $N \vDash \varphi$, then $b_i = c^N$ and $e(c^M) = e(I(c)) = e(a_i) = b_i = c^N$. Similarly, we can verify the other conditions of homomorphisms between structures [FL03 Definition 4.1]. Thus $N \cong M$.

- 3. Fix $A = \{P\}$, where P is a binary function symbol. For each of the following pairs of \mathcal{L}_A -structures, show that they are not elementarily equivalent, by giving a sentence true in one and false in the others.
 - 1) $(\mathbb{R}; \times)$ and $(\mathbb{R}^*; \times^*)$, where \times is the usual multiplication operation on the real numbers, \mathbb{R}^* is the set of the non-zero reals, and \times^* is \times restricted to \mathbb{R}^* .
 - 2) $(\mathbb{N}; +)$ and $(\mathbb{Z}^+; +^*)$, where $+^*$ is + restricted to the set \mathbb{Z}^* of positive integers.
 - 3) For each of the above structures, give a sentence true in that structure and false in the other.

SOLUTION:

- 1) Let φ_1 be the sentence $\exists x \forall y (x \times \hat{y} = x)$. Then $\mathbb{R} \vDash \varphi_1$ and $\mathbb{R}^* \nvDash \varphi_1$.
- 2) Let φ_2 be the sentence $\exists x \forall y (x + \hat{y} = y)$. Then $\mathbb{N} \models \varphi_2$ and $\mathbb{Z}^+ \not\models \varphi_2$.
- 3) $\mathbb{R}^* \models \neg \varphi_1$ and $\mathbb{R} \not\models \neg \varphi_1$. $\mathbb{Z}^+ \models \neg \varphi_2$ and $\mathbb{N} \not\models \neg \varphi_2$.
- 4. Let $A = \emptyset$ and \mathcal{N} be the $\mathcal{L}_{\mathcal{A}}$ -structure whose universe is \mathbb{N} . Show that for every infinite $S \subseteq \mathbb{N}$, the $\mathcal{L}_{\mathcal{A}}$ -structure with S being its universe is an elementary substructure of \mathcal{N} .

<u>SOLUTION</u>: we write the $\mathcal{L}_{\mathcal{A}}$ -structure with S being its universe as \mathcal{S} .

1) S is a substructure of \mathcal{N} ($S \subseteq \mathcal{N}$): since $A = \emptyset$, it follows from $S \subseteq N$.

- 2) S is an elementary substructure of \mathcal{N} ($S \preccurlyeq \mathcal{N}$): we show that for all $\mathcal{L}_{\mathcal{A}}$ -formulas φ , and for all S-assignment ν , (S, ν) $\vDash \varphi \Leftrightarrow (\mathcal{N}, \nu) \vDash \varphi$ by induction on the length of φ . There are no formulas of length 1, and so the conclusion is trivially true for all length 1 formulas. By Readability for Formulas, we analyze φ by considering the following various cases:
 - i. If φ is atomic and $\varphi \equiv (x_i = x_j), i, j \in \mathbb{N}$, then

$$(\mathcal{S},\nu)\vDash\varphi\Leftrightarrow\nu(x_i)=\nu(x_j)\in S\Leftrightarrow(\mathcal{N},\nu)\vDash x_i=x_j.$$

ii. If there is θ such that $\varphi \equiv (\neg \theta)$, then

$$(\mathcal{S},\nu)\vDash\varphi\Leftrightarrow(\mathcal{S},\nu)\not\vDash\theta\Leftrightarrow(\mathcal{N},\nu)\not\vDash\theta\Leftrightarrow(\mathcal{N},\nu)\vDash\varphi$$

iii. If there are ψ_1 and ψ_2 such that $\varphi \equiv (\psi_1 \rightarrow \psi_2)$, then

$$(\mathcal{S},\nu) \vDash \varphi \Leftrightarrow \text{ either } (\mathcal{S},\nu) \nvDash \psi_1 \text{ or } (\mathcal{S},\nu) \vDash \psi_2$$
$$\Leftrightarrow \text{ either } (\mathcal{N},\nu) \nvDash \psi_1 \text{ or } (\mathcal{N},\nu) \vDash \psi_2$$
$$\Leftrightarrow (\mathcal{N},\nu) \vDash \varphi.$$

iv. If there are ψ and x_i such that $\varphi \equiv (\forall x_i \psi)$ then

$$\begin{split} (\mathcal{S},\nu)\vDash\varphi\Leftrightarrow \mbox{ for all }\mathcal{S}\mbox{-assignment }\mu,\mbox{ if }\nu\sim_{\varphi}\mu,\mbox{ then }(\mathcal{S},\mu)\vDash\psi\\ \Leftrightarrow \mbox{ for all }\mathcal{S}\mbox{-assignment }\mu,\mbox{ if }\nu\sim_{\varphi}\mu,\mbox{ then }(\mathcal{N},\mu)\vDash\psi\\ (\mathcal{N},\nu)\vDash\varphi. \end{split}$$

5. Let $\mathcal{N} = (\mathbb{N}, 0, 1, +, \times)$. Show that if $\mathcal{M} \subseteq \mathcal{N}$, then $\mathcal{M} = \mathcal{N}$.

SOLUTION: If $\mathcal{M} \subseteq \mathcal{N}$, then $M \subseteq \mathbb{N}$ and $0^{\mathcal{M}} = 0^{\mathcal{N}}, 1^{\mathcal{M}} = 1^{\mathcal{N}}, +^{\mathcal{M}} = +^{\mathcal{N}} \upharpoonright M^2, \times^{\mathcal{M}} = \times^{\mathcal{N}} \upharpoonright M^2$. If $n \in \mathcal{M}$, then $n + 1 \in \mathcal{M}$, thus by induction, $M = \mathbb{N}$. Therefore $+^{\mathcal{M}} = +^{\mathcal{N}}, \times^{\mathcal{M}} = \times^{\mathcal{N}}$ and $\mathcal{M} = \mathcal{N}$.

- 6. Let $A = \{P\}$ where P is an unary predicate symbol. Let $\mathcal{M} = (M, I)$ be the finite $\mathcal{L}_{\mathcal{A}}$ -structure with $M = \{a, b, c, d, e\}$ and $I(P) = \{a, b\}$.
 - Which subsets of M are definable in M without parameters.
 - Which subsets of M are definable in M with parameters.

SOLUTION:

1) Note that $f: M \to M$ is an automorphism iff $f(\{a, b\}) = \{a, b\}$ and $f(\{c, d, e\}) = \{c, d, e\}$. The definable subsets without parameters are as follows

For other subset X, there must be some automorphism f s.t. $f(X) \neq X$.

2) Every subset of M are definable in M with parameters since M is finite, for example,

$$\{a, c, e\} = \{x \in M \mid \mathcal{M} \vDash (x = a \lor x = c \lor x = e)\}.$$

7. Prove the second claim of Example 4.6.

Example 4.6. Suppose that $A = \emptyset$ and $\mathcal{M} = (M, \emptyset)$ is an $\mathcal{L}_{\mathcal{A}}$ -structure. Note that any bijection $e : M \to M$ defines an automorphism of \mathcal{M} . The following claims follow from the Definability Theorem. Suppose that $D \subseteq M$, then

- 1) D is definable in M without parameters iff $D = \emptyset$ or D = M.
- 2) D is definable in M from parameters iff D is finite or $M \setminus D$ is finite.

SOLUTION:

1) Since $\emptyset = \{x \in M \mid \mathcal{M} \models \neg(x \doteq x)\}$ and $M = \{x \in M \mid \mathcal{M} \models (x \doteq x)\}$, D is definable in M without parameters. For any m_i and m_j in M, we can define a bijection $e : M \to M$ as follow

$$e(x) = \begin{cases} m_j & \text{if } x = m_i; \\ m_i & \text{if } x = m_j; \\ x & \text{otherwise.} \end{cases}$$

Thus for any nonempty proper subset D, we can find a bijection (i.e. an automorphism of \mathcal{M}) and it doesn't fix D. By [FL04 Theorem 4.6], we can know D isn't definable in M without parameters.

2) For any finite set $D = \{d_1, \ldots, d_n\}$, we have $D = \{x \in M \mid \mathcal{M} \vDash (x \doteq d_1) \lor \cdots \lor (x \doteq d_n)\}$ and $M \setminus D = \{x \in M \vDash \mathcal{M} \vDash (\neg(x \doteq d_1)) \land \cdots \land (\neg(x \doteq d_n))\}$, thus any finite set and its complementary set is definable in M from parameters. Converse, assume that D is definable in M from parameters, i.e., there exists a $\mathcal{L}_{\mathcal{A}}$ -formula $\varphi(\bar{x}, \bar{y})$ and $\bar{b} \in M^k$ such that D = $\{x \in M \mid \mathcal{M} \vDash \varphi[x, \bar{b}]\}$, and both D and $M \setminus D$ are infinite set, then we can find $m_i \in D$, $m_j \in M \setminus D$ (with $m, n \notin \bar{b}$)¹ and a bijection $e : M \to M$ as in 1). Then e fixes \bar{b} but doesn't fix D, contradict to [FL04 Theorem 4.6].

¹here we see \bar{b} as a subset of M irregularly.