The Sixth Homework
April 28, 2025

1. 1) Consider a fixed structure M. Show that {N | N'= M} is an ECA. (Hint: show that it is
M(Th(M)).)

2) A class 2 of structures is elementarily closed if
MeANN =M= N e

Show that any such class is a union of ECa classes.

3) Conversely, show that any class that is the union of ECA classes is elementarily closed.

SorLuTioN: Fix a language £ 4,

(a) for any structure M, we define the theory of M, written Th(M) to be the set of all sentences
true in M, i.e., Th(M) = {p € L 4 | ¢ is a sentence and M F ¢};

(b) for any set of 3 of sentences, 91(X) denotes the class of all models of ¥, i.e., M(X) = {M | M E
o €3, for every o € X}

Now we give the solution:

1) We show that the set {N | V' = M} is the set {N | N'F Th(M)} and the conclusion follows

from the latter is an ECa.

N =M <& for any L 4-sentence o, M E ¢ iff N E ¢
& for any L 4-sentence ¢, M E ¢ implies N F ¢ and M ¥ ¢ implies N F ¢
& for any L 4-sentence ¢, M E ¢ implies N F ¢ and M F (=) implies N E (=)
< for any p € Th(M),N E ¢
< N e M(Th(M)).

2) Since 2 is elementarily closed, then for each M € 2, {N | N = M} C 2, i.e., M(Th(M)) C 2.
Thus 2A C (J \geq M(Th(M)) C 2 and A is an union of EC classes.

3) Suppose that 2 is an union of ECa classes, for any M € 2, we can pick a set ¥ of £4-
sentences, such that M € M(X) C 2. For any N such that N' = M, we have N F ¥ and
thus N € M(X), so N € 2. [ |

2. Suppose that A is finite and that M is a finite £ 4-structure. Prove that there is an £ 4-sentence
@ such that for every L 4-structure N, if N E ¢ then N = M.

SoLUTION: Let €, § and B be the set of constant, function and predicate symbols in A. These
set is finite since A is finite. Suppose M = {ay,...,a,} and I be the interpretation of symbols in

M. Now we define a series of formula as follow:



a) let ¢, = /\1gi<jgn(ﬁ(xi£xj))§
b) let t, = (Vanrl)(\/?:l(‘riﬁanrl));
(c) for each constant symbol ¢ € €, if I(c) = a;, let . = (z;=c);

(d) for each function symbol F € §, written m = 7(F), let

(a)
(b)
)
)

or = A F(@iy, @i, ) 50505
((@ig 5o sTipy )sTig ) EL(F)

(e) for each predicate symbol P in 3, written m = 7 (P), let

Yp = /\ P(xila"'axim)'
(Tiq seeesTiny, )EI(P)

Finally, we define ¢ = (3z1) ... (325)(n AUn A (Ao Pe) A Apeg #P) AN(Apeg ©P)), it is obvious
that ¢ is a sentence.

If N F ¢, then by ¢,, and 1, we can know that there are exactly n elements in N. Assume that
N = {b1,...,bn}, v and p are respectively assignment of M and N such that for each 1 < i < mn,
v(z;) = a; , u(x;) = b;. Let e : M — N, a; — b; is a bijection. For any constant symbol ¢ € € such
that I(c) = a;, since N F ¢, then b; = ¢V and e(cM) = e(I(c)) = e(a;) = b; = V. Similarly, we
can verify the other conditions of homomorphisms between structures [FLO3 Definition 4.1]. Thus
N =M. |

. Fix A = { P}, where P is a binary function symbol. For each of the following pairs of £ 4-structures,
show that they are not elementarily equivalent, by giving a sentence true in one and false in the

others.

1) (R;x) and (R*; x*), where x is the usual multiplication operation on the real numbers, R*

is the set of the non-zero reals, and x* is x restricted to R*.
2) (N;+) and (Z*;+*), where +* is + restricted to the set Z* of positive integers.

3) For each of the above structures, give a sentence true in that structure and false in the other.

SOLUTION:

1) Let ¢; be the sentence J2Vy(zxy=xz). Then R F ¢; and R* I ;.
2) Let ¢ be the sentence 3oVy(x+y=y). Then N E ¢y and Z1 .
3) R*E =1 and R & —p1. ZT E =y and N F —po. |

. Let A = @ and NV be the L£_4-structure whose universe is N. Show that for every infinite S C N,
the £ 4-structure with S being its universe is an elementary substructure of A/.

SOLUTION: we write the £ 4-structure with S being its universe as S.

1) S is a substructure of N (§ C N): since A = &, it follows from S C N.



2) S is an elementary substructure of N' (§ < N): we show that for all £4-formulas ¢, and
for all S-assignment v, (S,v) E ¢ < (N,v) E ¢ by induction on the length of ¢. There are
no formulas of length 1, and so the conclusion is trivially true for all length 1 formulas. By

Readability for Formulas, we analyze ¢ by considering the following various cases:
i. If ¢ is atomic and ¢ = (z;=2;), 4,j € N, then
(S,v)Epev(y)=v(r;) eSS e N,v)Ea =z,
ii. If there is 6 such that ¢ = (—6), then
SvEpe (S,VFis N, v)HFle (N v)Ep
iii. If there are ¢; and 5 such that ¢ = (¢y — 2), then
(S,v) F o< either (S,v) # ¢y or (S,v) E s
& either (NV,v) H ¢y or (N,v) E 1y
& (N, v) E o
iv. If there are ¢ and z; such that ¢ = (Va;4)) then
(S,v) E & for all S-assignment p, if v ~, p, then (S, p) F o
& for all S-assignment p, if v ~, p1, then (N, p) E 4
(N, v) E o |

5. Let N = (N,0,1,+, x). Show that if M C N, then M = N.

SoLuTION: If M C N, then M C N and 0M = 0V 1M = 1V M = LN 2 M = 5N M2,
If n € M, then n +1 € M, thus by induction, M = N. Therefore +M = +N, xM = xV and
M=N. [ |

6. Let A = {P} where P is an unary predicate symbol. Let M = (M, I) be the finite £ 4-structure
with M = {a,b,c,d,e} and I(P) = {a,b}.
e Which subsets of M are definable in M without parameters.
e Which subsets of M are definable in M with parameters.

SOLUTION:

1) Note that f : M — M is an automorphism iff f({a,b}) = {a,b} and f({c,d,e}) = {c,d,e}.
The definable subsets without parameters are as follows
g={zreM|ME -(z=x)}
{a,b} ={z e M | ME P(z)}
{¢,d,e} ={x e M | ME (-P(z))}
M={zeM|ME (x=z)}.

For other subset X, there must be some automorphism f s.t. f(X) # X.



2) Every subset of M are definable in M with parameters since M is finite, for example,

{a,c,e} ={z e M| ME (z=aV z=cV z=e)}. [ |

7. Prove the second claim of Example 4.6.

Ezample 4.6. Suppose that A = &g and M = (M, ) is an L g-structure. Note that any
bijection e : M — M defines an automorphism of M. The following claims follow from the
Definability Theorem. Suppose that D C M, then

1) D is definable in M without parameters iff D = & or D = M.
2) D is definable in M from parameters iff D is finite or M \ D is finite.

SOLUTION:

1) Since @ ={z € M | M E =(z=x)} and M = {z € M | M E (z=x)}, D is definable in M

without parameters. For any m; and m; in M, we can define a bijection e : M — M as follow

my; if © = my;
e(x) =< my; if x = my;

T otherwise.

Thus for any nonempty proper subset D, we can find a bijection (i.e. an automorphism of M)
and it doesn’t fix D. By [FL0O4 Theorem 4.6], we can know D isn’t definable in M without

parameters.

2) For any finite set D = {dy,...,d,}, we have D = {z € M | M E (z=dy) V --- V (z=d,)}
and M\ D ={z € M FME (-(z=d1)) A+ AN (=(z=d,))}, thus any finite set and its
complementary set is definable in M from parameters. Converse, assume that D is definable
in M from parameters, i.e., there exists a £4-formula (z,7) and b € M* such that D =
{x € M | M E ¢[z,b]}, and both D and M \ D are infinite set, then we can find m; € D,
mj € M\ D (with m,n ¢ b)! and a bijection e : M — M as in 1). Then e fixes b but doesn’t
fix D, contradict to [FL04 Theorem 4.6]. |

There we see b as a subset of M irregularly.



