The Third Homework

March 24, 2025

- 1. Find out which of the following formulas is a tautology without using Truth table.
 - 1). $(((A_1 \to A_1) \to A_2) \to A_2).$
 - 2). $((((A_1 \to A_2) \to A_2) \to A_2) \to A_2))$.

SOLUTION:

- For 1),
 - (a) By Δ_0 -I axioms, we have $\emptyset \vdash (A_1 \to A_1)$;
 - (b) By (a) and Inference, we have $\{((A_1 \to A_1) \to A_2)\} \vdash A_2;$
 - (c) By (b) and Deduction, we have $\emptyset \vdash (((A_1 \to A_1) \to A_2) \to A_2);$
 - (d) By (c) and Soundness theorem (Version II), we have $\emptyset \vDash (((A_1 \to A_1) \to A_2) \to A_2)$, so it is a tautology.
- For 2),
 - (a) By Δ_0 -IV axioms, we have $\emptyset \vdash \neg A_1 \to (A_1 \to A_2)$;
 - (b) By (a) and Inference, we have $\{\neg A_1\} \vdash A_1 \rightarrow A_2$;
 - (c) Let $\varphi_1 = (A_1 \to A_2)$, by Δ_0 -IV axioms, we have $\emptyset \vdash \varphi_1 \to (\neg A_2 \to \neg(\varphi_1 \to A_2))$;
 - (d) By (b), (c) and Inference, we have $\{\neg A_1, \neg A_2\} \vdash \neg(\varphi_1 \rightarrow A_2);$
 - (e) Let $\varphi_2 = (\varphi_1 \to A_2)$, by Δ_0 -IV axioms, we have $\emptyset \vdash \neg \varphi_2 \to (\varphi_2 \to A_2)$;
 - (f) By (d), (e) and Inference, we have $\{\neg A_1, \neg A_2\} \vdash \varphi_2 \rightarrow A_2$;
 - (g) Let $\varphi_3 = (\varphi_2 \to A_2)$, by Δ_0 -IV axioms, we have $\varnothing \vdash \varphi_3 \to (\neg A_2 \to \neg(\varphi_3 \to A_2))$;
 - (h) By (f), (g) and Inference, we have $\{\neg A_1, \neg A_2\} \vdash \neg(\varphi_3 \rightarrow A_2)$, i.e,

$$\{\neg A_1, \neg A_2\} \vdash \neg((((A_1 \to A_2) \to A_2) \to A_2) \to A_2)$$

(i) By Soundness theorem (Version II), we have

$$\{\neg A_1, \neg A_2\} \vDash \neg((((A_1 \rightarrow A_2) \rightarrow A_2) \rightarrow A_2) \rightarrow A_2)$$

This implies original formula isn't a tautology.

2. For $\Gamma \subseteq \mathcal{L}_0$ and ψ in \mathcal{L}_0 , show that

$$\Gamma \cup \{\varphi\} \vDash \psi \qquad \text{if and only if} \qquad \Gamma \vDash (\varphi \to \psi).$$

SOLUTION:

Method 1: By Soundness theorem (Version II) and Completeness theorem (Version II), it is equivalent to show that

$$\Gamma \cup \{\varphi\} \vdash \psi$$
 if and only if $\Gamma \vdash (\varphi \to \psi)$.

For " \Leftarrow ", it follows from Inference. For " \Rightarrow ", it follows from Deduction.

Method 2: For " \Rightarrow ", Suppose not, there exists a truth assignment ν such that $\nu \models \Gamma \cup \{\varphi\}$ and $\nu \not\models \varphi \rightarrow \psi$. Then $\nu \models \varphi$ and $\nu \not\models \psi$, contradict to the condition. For " \Leftarrow ", Suppose that ν is any truth assignment such that $\nu \models \Gamma \cup \{\varphi\}$, then $\nu \models \varphi \rightarrow \psi$ by the condition. If $\nu \not\models \psi$, then contradict to the definition of ν .

3. Two physicists, A and B, and a logician C, are wearing hats, which they know are either black or white but not all white. A can see the hats of B and C; B can see the hats of A and C; C is blind. Each is asked in turn if they know the color of their own hat. The answers are: A: "No", B: "No", C: "Yes". What color is C's hat and how does C know.

SOLUTION: C's hat is black.

We use 0 for the white hat and 1 for the black hat. Then the table below shows all the possibilities for the color of three people's hats.

case	A	В	C	
1	0	0	0	×
2	0	0	1	
3	0	1	0	×
4	0	1	1	
5	1	0	0	X
6	1	0	1	
7	1	1	0	×
8	1	1	1	

- Since not all hats are white. so case 1 doesn't hold.
- Since A don't know the color of his own hat, so at least one of B and C has the white hat, then case 5 doesn't hold.
- Since B don't know the color of his own hat, so C's hat can't be white (or else B's hat must be black). Thus case 3 and case 7 don't hold.
- Now C can deduce that its hat is black.

-

4. Use Compactness to show that every partial order \prec_0 on a set X can be extended to a total order \prec on X.

<u>SOLUTION</u>: Assign p_{ab} for each $(a, b) \in X \times X$. Consider a Σ_X such that:

- 1) p_{ab} , for $a, b \in X$ and $a \prec_0 b$.
- 2) $p_{ab} \rightarrow \neg p_{ba}$, for $a, b \in X$.
- 3) $p_{ab} \wedge p_{bc} \rightarrow p_{ac}$, for $a, b, c \in X$.
- 4) $p_{ab} \vee p_{ba}$, for $a, b \in X$ and $a \neq b$.

If an assignment $\nu \models \Sigma_X$, then the set $\{(a,b) \mid \nu(p_{ab}) = T\}$ is a total order on X which is an extension of \prec_0 .

Therefore it is enough to show that Σ_X is satisfiable. By Compactness, it is enough to show that every finite $\Sigma \subset \Sigma_X$ is satisfiable.

Let $K = \{a \in X \mid \text{there exists } b \text{ s.t. } p_{ab} \text{ or } p_{ba} \in \Sigma\}$, it is a finite set since Σ is finite. Let $\Sigma_K = \Sigma_X \upharpoonright K$, i.e., all formulas in 1) – 4) where $a, b, c \in K$. Since $\Sigma \subset \Sigma_K$, it is enough to show that Σ_K is satisfiable.

Claim. The above Σ_K is satisfiable.

Induction on |K|. The case |K| = 1 is trivial. Suppose the claim holds for all K' of size $\langle |K|$, and now consider K.

Pick $u \in K$. Let $K_1 = \{v \in K \mid \Sigma_K \vdash p_{vu}\}, K_4 = \{v \in K \vdash \Sigma_k \vdash p_{uv}\}, K_3 = \{u\}$ and $K_2 = k \setminus (K_1 \cup K_3 \cup K_4)$. Since $\neg p_{uu} \in \Sigma_K, |K_i| < |K|, i = 1, 2, 3, 4$. So $\Sigma_{K_i}, i = 1, 2, 3, 4$, are satisfiable. Suppose $v_i \models \Sigma_{K_i}, i = 1, 2, 3, 4$. Define ν as follows:

- for i = 1, 2, 3, 4, set $\nu(p_{ab}) = v_i(p_{ab})$ if $a, b \in K_i$;
- set $\nu(p_{ab}) = 1$ if $a \in K_i$, $b \in K_j$ and i < j;
- set $\nu(p_{ab}) = 0$ if $a \in K_i, b \in k_j$ and i > j.

It is easy to verify $v \vDash \Sigma_K$.