The First Homework

March 24, 2025

1. For which natural numbers n are there elements of \mathcal{L}_0 of length n? Provide detailed argument.

<u>SOLUTION</u>: Exactly, for all $n \in \mathbb{N}^+ \setminus \{2, 3, 6\}$, there are elements of \mathcal{L}_0 of length n. We discuss the problem in three steps.

- (a) $|\varphi|$ can't be 2, 3 and 6.
 - Assume there exists $\varphi \in \mathcal{L}_0$ such that $|\varphi| = 2$, then φ is not the form $\langle A_n \rangle$. By Unique Readability Theorem, either there is $\psi \in \mathcal{L}_0$ such that $\varphi = (\neg \psi)$, which means $|\varphi| \ge 4$, or there are ψ_1 and ψ_2 in \mathcal{L}_0 such that $\varphi = (\psi_1 \to \psi_2)$, which means $|\varphi| \ge 5$, a contradiction.
 - The same discussion follows for $|\varphi| = 3$.
 - Assume there exist $\varphi \in \mathcal{L}_0$ such that $|\varphi| = 6$. Also according to Unique Readability Theorem, either there is $\psi \in \mathcal{L}_0$ such that $\varphi = (\neg \psi)$, which means $|\psi| = 3$, or there are ψ_1 and ψ_2 in \mathcal{L}_0 such that $\varphi = (\psi_1 \rightarrow \psi_2)$, which means $|\psi_1| + |\psi_2| = 3$, both are impossible.
- (b) Give examples for the case $|\varphi|$ is 1, 4 and 5.
 - let $\varphi = \langle A_1 \rangle$, then $|\varphi| = 1$.
 - let $\varphi = (\neg A_1)$, then $|\varphi| = 4$.
 - let $\varphi = (A_1 \to A_2)$, then $|\varphi| = 5$.
- (c) Prove $|\varphi|$ can be any natural numbers of length ≥ 7 , i.e. length in set

$$\{ 3k + i \mid k \in \mathbb{N}, k \ge 2, i = 1, 2, 3 \}.$$

Prove by indcution on k:

- Base case (k = 2): pick $\psi \in \mathcal{L}_0$ with $|\psi| = 4$ (or 5) and let $\varphi = (\neg \psi)$ for i = 1 (or 2), pick $\psi_1, \psi_2 \in \mathcal{L}_0$ with $|\psi_1| = 1, |\psi_2| = 5$ and let $\varphi = (\psi_1 \to \psi_2)$ for i = 3.
- Inductive Step: assume the conclusion holds for some k ∈ N with k ≥ 2, i.e., for any i = 1, 2, 3, there is φ' ∈ L₀ such that |φ'| = 3k + i, then let φ = (¬φ') and it witness the conclusion holds for k + 1 since |φ| = 3k + i + 3 = 3(k + 1) + i.
- 2. Show that a sequence φ is an element of \mathcal{L}_0 if and only if there is a finite sequence of sequences $\langle \varphi_1, \ldots, \varphi_n \rangle$ such that $\varphi_n = \varphi$, and for each $i \leq n$,
 - either there is an *m* such that $\varphi_1 = \langle A_m \rangle$,
 - or there is a j < i such that $\varphi_i = (\neg \varphi_j)$,

• or there are $j_1, j_2 < i$ such that $\varphi_i = (\varphi_{j_1} \to \varphi_{j_2})$.

SOLUTION:

- " \Rightarrow ": Build the corresponding finite sequence by induction on the construction of formulas via the Unique Readability. That is to say, for arbitrary $\varphi \in \mathcal{L}_0$, suppose conclusion holds for its all proper subformulas.
 - If $\varphi = \langle A_n \rangle$ for some $n \in \mathbb{N}$, the sequence $\langle \varphi \rangle$ work.
 - If there is $\psi \in \mathcal{L}_0$ such that $\varphi = (\neg \psi)$, let $\langle \psi_1, \ldots, \psi_k \rangle$ be the sequence which corresponds to ψ , then $\langle \psi_1, \ldots, \psi_k, \varphi \rangle$ works for φ .
 - If there are ψ_1 and ψ_2 in \mathcal{L}_0 such that $\varphi = (\psi_1 \to \psi_2)$, let $\langle \psi_{i,1}, \ldots, \psi_{i,k_i} \rangle$ be the sequence which corresponds to ψ_i , i = 0, 1, respectively. Then $\langle \psi_{1,1}, \ldots, \psi_{1,k_1}, \psi_{2,1}, \ldots, \psi_{2,k_2}, \varphi \rangle$ works for φ .
- " \Leftarrow ": Assume the sequence $\langle \varphi_1, \ldots, \varphi_n \rangle$, in face, we can show that $\varphi_i \in \mathcal{L}_0$ for each $i \leq n$ by inducton.
 - Base Case (i = 1): by the property of $\langle \varphi_1, \ldots, \varphi_n \rangle$, there is an *m* such that $\varphi_1 = \langle A_m \rangle$, so $\varphi_1 \in \mathcal{L}_0$.
 - Inductive Step: Assume $\varphi_i \in \mathcal{L}_0$ for some $1 \leq k < n$, consider φ_{k+1} ,
 - \diamond there is an *l* such that $\varphi_{k+1} = \langle A_l \rangle$, same as base case.
 - ♦ there is a j < k+1 such that $\varphi_{k+1} = (\neg \varphi_j), \varphi_{k+1} \in \mathcal{L}_0$ by definition of \mathcal{L}_0 , completely similar for the case of there are $j_1, j_2 < k+1$ such that $\varphi_{k+1} = (\varphi_{j_1} \to \varphi_{j_2})$.