Equivalent versions of three theorems in the first order logic

Soundness (可靠性定理):

Theorem 0.1. The following two statements are equivalent:

- (1) For any set of formula Γ , if $\Gamma \vdash \varphi$, then $\Gamma \models \varphi$.
- (2) Any satisfiable set of formulas is consistent.

Proof. (1) \Rightarrow (2). Let Γ be a set of formulas satisfied by a model \mathcal{M} and an assignment $s: V \to |\mathcal{M}|$. We want to show that Γ is consistent. Suppose NOT. Then there is a formula φ such that

$$\Gamma \vdash \varphi \quad \text{and} \quad \Gamma \vdash \neg \varphi$$

By (1), we have

 $\Gamma \models \varphi \text{ and } \Gamma \models \neg \varphi.$

Hence,

$$(\mathcal{M}, s) \models \varphi$$
 and $(\mathcal{M}, s) \models \neg \varphi$.

But this is impossible! Hence Γ must be consistent.

 $(2) \Rightarrow (1)$. Suppose $\Gamma \vdash \varphi$, we want to show that $\Gamma \models \varphi$. We prove by contradiction. Suppose there exist a model \mathcal{M} and an assignment $s: V \to |\mathcal{M}|$ such that

- $(\mathcal{M}, s) \models \gamma$, for every $\gamma \in \Gamma$; and
- $(\mathcal{M}, s) \nvDash \varphi$, i.e., $(\mathcal{M}, s) \vDash \neg \varphi$.

This means that (\mathcal{M}, s) witnesses that $\Gamma \cup \{\neg\varphi\}$ is satisfiable. By (2), $\Gamma \cup \{\neg\varphi\}$ is consistent. But this contradicts the assumption $\Gamma \vdash \varphi$. So it must be that $\Gamma \models \varphi$.

Completeness (完全性定理):

Theorem 0.2. The following two statements are equivalent:

- (1) For any set of formula Γ , if $\Gamma \models \varphi$, then $\Gamma \vdash \varphi$.
- (2) Any consistent set of formulas is satisfiable.

Proof. (1) \Rightarrow (2). Let Γ be a consistent set of formulas. Note that $\Gamma \models \varphi$ means that for any model \mathcal{M} and any assignment $s: V \to |\mathcal{M}|$, if (\mathcal{M}, s) satisfies every formula in Γ , then (\mathcal{M}, s) satisfies φ as well. If Γ is unsatisfiable, since Γ is satisfied by no models and assignments, $\Gamma \models \varphi$ holds vacuously for any formula φ , in particular for $\varphi \equiv \neg (x = x)$. But then by (1), $\Gamma \vdash \neg (x = x)$, contradicting the assumption that Γ is consistent.

 $(2) \Rightarrow (1)$. Suppose $\Gamma \vDash \varphi$ and $\Gamma \nvDash \varphi$. Then $\Gamma \cup \{\neg\varphi\}$ is consistent. By $(2), \Gamma \cup \{\neg\varphi\}$ is satisfied by some model \mathcal{M} and some assignment $s: V \to |\mathcal{M}|$. In particular, $(\mathcal{M}, s) \models \neg\varphi$. But from $\Gamma \models \varphi$, we have $(\mathcal{M}, s) \models \varphi$. Contradiction! So if $\Gamma \models \varphi$, it must be that $\Gamma \vdash \varphi$. \Box

Compactness (紧致性定理):

Theorem 0.3. The following two statements are equivalent:

- (1) For any set of formula Γ , if $\Gamma \models \varphi$, then for some finite $\Gamma_0 \subseteq \Gamma$ we have $\Gamma_0 \models \varphi$.
- (2) For any set of formula Γ , if every finite subset Γ_0 of Γ is satisfiable, then Γ is satisfiable.

Proof. (1) \Rightarrow (2). Suppose that every finite $\Gamma_0 \subseteq \Gamma$ is satisfiable. Consider the formula $\varphi \equiv \neg (x \doteq x)$. If Γ is unsatisfiable, then $\Gamma \models \varphi$, since Γ is satisfied by no models and assignments. By (1), for for some finite $\Gamma_0 \subseteq \Gamma$, $\Gamma_0 \models \varphi$. As φ is false, there is no model and assignment that can satisfy Γ_0 , contradicting the assumption that every finite subset of Γ is satisfiable.

 $(2) \Rightarrow (1)$. Suppose $\Gamma \models \varphi$. Assume that for any finite $\Gamma_0 \subseteq \Gamma$, $\Gamma_0 \models \varphi$ fails. This means that for each Γ_0 , there exists (\mathcal{M}_0, s_0) such that

$$(\mathcal{M}_0, s) \models \gamma$$
, for every $\gamma \in \Gamma_0 \cup \{\neg \varphi\}$.

In other word, every subset of $\Gamma \cup \{\neg\varphi\}$ of the form $\Gamma_0 \cup \{\neg\varphi\}$, $\Gamma_0 \subset \Gamma$ finite, is satisfiable. It follows immediately that every finite subsets of $\Gamma \cup \{\neg\varphi\}$ is satisfiable. By (2), $\Gamma \cup \{\neg\varphi\}$ is satisfiable, contradicting that $\Gamma \models \varphi$. This proves (2) \Rightarrow (1).