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The Compactness Theorem

The Compactness Theorem

Theorem 6.1 (Compactness, Version I)
Suppose that Γ Ď L. If for every finite Γ0 Ď Γ, Γ0 is satisfiable,
then Γ is satisfiable.

Theorem 6.2 (Compactness, Version II)
Suppose that Γ Ď L and φ P L. If Γ ( φ, then there exists some
finite Γ0 Ď Γ such that Γ0 ( φ.
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The Compactness Theorem

Proof of the Compactness Theorem

Proof of Verion I.
Suppose Γ is not satisfiable, by Completeness, Γ $ ␣(x1 =̂ x1).
The deduction of ␣(x1 =̂ x1) from Γ uses only finitely many
formulas in Γ. Let Γ0 be such finite subset of Γ. Then
Γ0 $ ␣(x1 =̂ x1). By Completeness again, Γ0 is not satisfiable.
Contradiction!

Remark
The above proof of Compactness Theorem uses Gödel’s
Completeness Theorem. It can also be proved by using the method
of ultraproduct.
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The Compactness Theorem Applications of the Compactness Theorem

Theory

Definition 6.1
A theory is a set of sentences that is consistent and closed
under logical implication.

A theory T is complete iff for every sentences φ in the
language of T , either φ P T or ␣φ P T .
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The Compactness Theorem Applications of the Compactness Theorem

Definition 6.2
Suppose that T0, T1 are two theories, T0 Ď T1 and T1 is
complete, T1 is called a completion of T0.

Suppose M is a LA-structure. Then
Th(M) = tφ |M |ù φ, φ is a LA-sentenceu

is a complete theory in LA.

Spring, 2025 Xianghui Shi Mathematical Logic 7 / 32



The Compactness Theorem Applications of the Compactness Theorem

Theorem 6.3 (Overflow/Overspill)
Suppose that Γ is a theory such that for every n P N, Γ has a
model of size ě n. Then Γ has an infinite model.a

aOne can replace “model” by “Σ-model” for any Σ.

Proof.
Consider ∆ = ΓY t␣(xi =̂ xj) | i ă j, i, j P Nu.
Let ∆0 be a (any) finite subset of ∆. Pick n such that

∆0 Ď ΓY t␣(xi = xj) | i ă j ă nu

Let M0 = tmi | i ă ku be a model of Γ with k ě n.
Take ν0 : XÑM0 such that ν0(xi) = mi, i ă n. Then
(M0, ν0) |ù ∆0.
By Compactness, there are M and ν such that (M, ν) |ù ∆. This
M is necessarily an infinite model, as ran(ν) ĂM and
ν(xi) ‰ ν(xj) whenever i ‰ j.
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The Compactness Theorem Applications of the Compactness Theorem

Underflow

Corollary 6.4 (Underflow/Underspill)
Suppose Σ is a set of L-sentences. Suppose φ is an L-sentence
satisfied by all infinite Σ-models. Then there is an n P N such that
φ is satisfied by every Σ-model of size ě n.

Proof.
Assume towards a contradiction that for every n P N, Γ = t␣φu has
a Σ-model of size ě n.
Then by Overflow, Γ = t␣φu is satisfied by an infinite Σ-model M.
But then, M does not satisfy φ. Contradiction!
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The Compactness Theorem Applications of the Compactness Theorem

Elementary classes of models

Corollary 6.5
Let Σ be a set of sentences and T be a theory in LA. Suppose
that for any n P N, T has a finite Σ-model of size ě n. Then

the class of all finite Σ-models of T is not EC∆.
the class of all infinite Σ-models of T is not EC.

Proof.
Suppose NOT, i.e. M(Γ) = the class of all finite (T Y Σ)-models.
By Overflow, T Y Σ has an infinite model. But then the class of
(T Y Σ)-models contains a non-finite model.
Suppose NOT, i.e. M(tφu) = the class of all infinite
(T Y Σ)-models. By Underflow, there is an n P N such that tφu is
satisfied by every (T Y Σ)-model of size ě n. Thus M(tφu)
contains a finite (T Y Σ)-model. Contradiction!
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The Compactness Theorem Applications of the Compactness Theorem

Wellordered sets

Definition 6.3
Suppose that ă is a total ordering on a set X. Then ă is a
wellorder (a wellfounded total order) of X iff there is no infinite
ă-descending chain, i.e. no sequence xan : n P Ny s.t. an+1 ă an
for every n.

Theorem 6.6
Suppose that Γ is a theory in the language Ltău and Γ is satisfied
by an infinite total order. Then Γ is satisfied by a total order which
is not a wellorder.

This implies that the class of well orders is not EC∆.
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The Compactness Theorem Applications of the Compactness Theorem

Proof.
Consider

∆ = ΓY txj ă xi | i ă j P Nu Y Total .
Suppose ∆0 Ď ∆ is finite. Let M0 be the infinite total order
assumed in the hypothesis. Let ν0 be such that for each xi
that appears freely in ∆0, the values of ν(xi)’s fit the
configuration specified by ∆0.
Then (M0, ν0) |ù ∆0.
By Compactness, there is a pair (M, ν) |ù ∆. Then
tν(xi) | i P Nu gives an infinite ă-decreasing sequence in M,
thus M is total but not wellfounded.
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The Compactness Theorem Applications of the Compactness Theorem

Comment on Language

Our proof of Compactness (Completeness, essentially) uses Axiom
of Countable Choice. Assuming full AC, Compactness is
applicable to languages of any size, and the use of Compactness is
more flexible.

Theorem 6.7 (Upward Löwenheim-Skolem)
Suppose T Ă LA has an infinite model M. Then for every set X,
there is a model MX = (MX , IX) of T s.t. M YX ĂMX and
M ď MX , moreover, |MX | = max(|M YX|, |LA|).

Hint: Expand LA to LM = LA Y tcm | m PMu, and expand X to
X˚ = XY ttx | x P Xu (tx are new variables). Consider

Γ = ThLM
(M)Y t␣(tx = tx1) | x ‰ x1u Y ttx = cx | x PM XXu

Spring, 2025 Xianghui Shi Mathematical Logic 13 / 32



The Compactness Theorem Applications of the Compactness Theorem

Comment on Language

Our proof of Compactness (Completeness, essentially) uses Axiom
of Countable Choice. Assuming full AC, Compactness is
applicable to languages of any size, and the use of Compactness is
more flexible.

Theorem 6.7 (Upward Löwenheim-Skolem)
Suppose T Ă LA has an infinite model M. Then for every set X,
there is a model MX = (MX , IX) of T s.t. M YX ĂMX and
M ď MX , moreover, |MX | = max(|M YX|, |LA|).

Hint: Expand LA to LM = LA Y tcm | m PMu, and expand X to
X˚ = XY ttx | x P Xu (tx are new variables). Consider

Γ = ThLM
(M)Y t␣(tx = tx1) | x ‰ x1u Y ttx = cx | x PM XXu

Spring, 2025 Xianghui Shi Mathematical Logic 13 / 32



The Compactness Theorem Applications of the Compactness Theorem

The existence of nonstandard model

Exercise 6.1
1 Suppose M is an LA-structure. Let A˚ = AY tcm | m PMu.

Identify M as an LA˚-structure. Show that for any
LA˚-structure N , if N |ù ThLA˚ (M), then M ď N .

2 Suppose that M is an infinite LA-structure. Show that there
is an M1 such that M and M1 are elementarily equivalent
and M1 has an element which is not the interpretation of any
constant symbol.

Hint (for (2)): Apply Compactness to
Γ = ThLA

(M)Y t␣(x1 =̂ c) | c P C XAu.
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The Compactness Theorem Applications of the Compactness Theorem

Number Theory

Let A = t0̂, Ŝ, +̂,ˆ̈u. Peano arithmetic, (PA) has the following
list of axioms:

1 0̂ ‰̂ Ŝx

2 Ŝ(x) =̂ Ŝ(y)Ñ x =̂ y

3 x +̂ 0̂ =̂ x

4 x +̂ Ŝ(y) =̂ Ŝ(x +̂ y)

5 x ˆ̈ 0̂ =̂ 0̂

6 x ˆ̈ Ŝ(y) =̂ (x ˆ̈ y) +̂ x
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The Compactness Theorem Applications of the Compactness Theorem

And finally for each formula φ(v, x̄) P LA,
7φ. φ(0̂, x̄)^ @v (φ(v, x̄)Ñ φ(Ŝ(v), x̄))Ñ @v φ(v, x̄)

The whole list of axioms 7φ, one for each φ, is called the axiom
schema of induction.

Peano Arithmetic is often referred as the axiom system of Number
theory.
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The Compactness Theorem Applications of the Compactness Theorem

Models of Number Theory

The standard model of Number Theory is
N = (N; 0, S,+, ¨).

Complete number theory is the set Th(N ).
N is not the only model of Th(N ). (see next slide)
All other (non-isomorphic) models are called nonstandard.
N |ù PA, thus Th(N ) is a completion of PA.
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The Compactness Theorem Applications of the Compactness Theorem

Theorem 6.8
Nonstandard models of Th(N ) exists.

This is an instance of Exercise 6.1.
Proof.
Consider Γ = Th(N )Y t␣(x0 =̂ Ŝn(0)) | n P Nu. Apply
Compactness to show that Γ is consistent.
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The Compactness Theorem Applications of the Compactness Theorem

Nonstandard models of Arithmetics

We shall discuss the nonstandard models of the theory of the
following reduced structures of number theory:

NS = (N; 0, S)
NL = (N; 0, S,ă)
NA = (N; 0, S,ă,+)

NM = (N; 0, S,ă,+, ¨)
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The Compactness Theorem Applications of the Compactness Theorem

NS = (N; 0, S)

Th(NS) can be axiomatized as follows, denoted as AS ,

S1. @xŜx ‰ 0̂

S2. @x@y (Ŝx = Ŝy Ñ x = y)

S3. @y(y ‰ 0̂Ñ Dx(y = Ŝx))

S4-n. (for each n P N´ t0u). @x(Ŝnx ‰ 0).

A model of Th(NS) consists of a standard part, N, plus a
certain number of “Z-chains”. (no order!)
Any two models of Th(NS) with the same number of
“Z-chains” are isomorphic.

Question
How many countable models of Th(NS) are there?
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The Compactness Theorem Applications of the Compactness Theorem

NL = (N; 0, S,ă)

Th(NL) can be axiomatized as follows, denoted as AL,

S3. @y(y ‰ 0̂Ñ Dx(y = Ŝx))

L1. @x@y (x ă̂ Ŝy ô x ď̂ y)

L2. @x␣(x ă̂ 0̂)

L3. @x@y (x ă̂ y _ x =̂ y _ y ă̂ x)

L4. @x@y (x ă̂ y Ñ ␣(y ă̂ x))

L5. @x@y@z (x ă̂ y ^ y ă̂ z Ñ x ă̂ z)

A model of Th(NL) consists of a standard part, N, followed a
certain number of linearly ordered “Z-chains” (with order).
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The Compactness Theorem Applications of the Compactness Theorem

Consider NA = (N; 0, S,ă,+) and NM = (N; 0, S,ă,+, ¨)

Note that the relation ă on N can be defined from t0, S,+u.
Nonstandard models of Th(NA) and Th(NM ) are also models
of Th(NL), but further require the “ordertype” of the
Z-chains to be a “dense linear order without endpoints”.

Question
1 What are the (countable) models of Th(NL)?
2 How about Th(NA), Th(NM )?
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The Compactness Theorem Applications of the Compactness Theorem

Nonstandard models of analysis

We use a first-order language with uncountable symbols. In
addition to +, ¨,ă, we include

ĉr, for every r P R;
F̂f , for every n-ary function over R;
P̂p, for every n-ary relation over R.

For this language, we have a standard structure with: R = (R, I),
where I(ĉr) = r, I(F̂f ) = f , I(P̂p) = p.
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The Compactness Theorem Applications of the Compactness Theorem

Theorem 6.9
Th(R) has a nonstandard model.

This is another instance of Exercise 6.1.
Proof.
Consider Σ = Th(R)Y t0̂ă x1 ^ x1 ă ĉr | r P R+u. Apply Compactness
to show that Σ is consistent. a

a(Abraham Robinson, 1961) The interpretation of x1 is a infinitesimal. It
gives the intuition of Leibniz’s dx.

Since the language of R contains tcr | r P Ru, the model of Σ is in
fact an elementary extension of R.
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The Compactness Theorem Applications of the Compactness Theorem

Let R˚ be a nonstandard model of Th(R). There is a natural
elementary embedding of R into R˚:

h(r) = I˚(ĉr), for each r P R.
So we may view R ď R˚ as an elementary substructure. We call
elements of R˚ hyper-reals, those in R standard reals.

Let R˚ denote the universe of R˚, and f˚, p˚ abbreviates
I˚(F̂f ), I

˚(P̂p) respectively. In general, for any definable object A
in R, A˚ denotes the corresponding object in R˚.
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The Compactness Theorem Applications of the Compactness Theorem

1st-order Properties of R˚

The binary relation ă˚ on R˚ is a linear order.
For instance, the property “transitivity” can be expressed by the
sentence:

@x@y@z (x ă̂ y ^ y ă̂ z Ñ x ă̂ z)

The binary operation +˚ on R˚ is commutative.
... Applying to each of the field axioms, we conclude that

(R˚; 0, 1,+˚, ¨˚) is a field.

|a+˚ b|˚ ď˚ |a|˚ +˚ |b|˚, for all a, b P R˚.
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The Compactness Theorem Applications of the Compactness Theorem

Properties of R that Cannot be expressed in the first order
language are likely to fail in R˚.

There is an b P R˚ ´ R that is infinitely large, i.e., r ă˚ b for
all r P R. And 1/˚b is a sample infinitesimal.

The least-upper-bound property fails in R˚.

R is bounded by an infinitely large hyper-real, but R has no least
upper bound.

If A Ď R is unbounded, then A˚ contains infinite hyper-reals.
(e.g. N˚,Q˚)

Spring, 2025 Xianghui Shi Mathematical Logic 27 / 32



The Compactness Theorem Applications of the Compactness Theorem

Definition 6.4
Define the set F of finite elements by

F = tx P R˚ | |x|˚ ă˚ y, for some y P R+u.

Infinitesimal are elements of the following set:
I = tx P R˚ | |x|˚ ă˚ y, for all y P R+u

We say x is infinitely close to to y, x » y, iff x´˚ y P I.

Properties
R, I Ĺ F ,
RX I = t0u, and
» is an equivalence relation.
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The Compactness Theorem Applications of the Compactness Theorem

Properties of F

Exercise (Not assigned)
Show that

1 F is a subring, i.e. closed under +˚,´˚,ˆ˚.
2 I is an ideal, i.e. closed under +˚,´˚, and ˆ˚ from F .
3 » is an equivalence relation on R˚ respecting +˚,´˚,ˆ˚.

Thus (F/»,+
˚/»,ˆ

˚/», ¨ ¨ ¨ ) – (R,+,ˆ, ¨ ¨ ¨ ).
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The Compactness Theorem Applications of the Compactness Theorem

Standard part

Every x P F is infinitely close to a unique r P R, the standard
part of x, st(x). Thus x has a unique decomposition:
x = st(x) + i, where i is infinitesimal.
If x fi y and at least one finite, then there is a standard q
strictly between x and y.

Properties of st(¨)
1 st : F Ñ R is surjective.
2 st(x) = 0 iff x is infinitestimal.
3 st(x+˚ y) = st(x) + st(y).
4 st(xˆ˚ y) = st(x)ˆ st(y).

Thus st : F Ñ R is an epimorphism with kernel I. Consequently,
the quotient ring F/I – R (the real field).
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The Compactness Theorem Applications of the Compactness Theorem

Infinitestimal and (ε, δ)-definitions

1 Definition. Let f : RÑ R, a, b P R. Then
limxÑa f(x) = b iff x » a ùñ f˚(x) » b.

2 Standard definition of “limit”: For all standard ε ą 0,
φ(x, ε) ” Dδ ą 0 (0 ‰ |x´ a| ă δ Ñ |f(x)´ b| ă ε).

2 ñ 1 . If R |ù @x@εφ(x, ε), then R˚ |ù @x@εφ(x, ε). For
any x P R˚ such that x » a, |x´˚ a| ă δ, so
|f˚(x)´˚ b| ă ε, for any ε ą 0. Thus f˚(x) » b.

1 ñ 2 . Suppose f satisfies 1 . Suppose x P R, ε P R+. Then
R˚ |ù φ(x, ε), since we can take δ to be
infinitesimal. By elementarity, R |ù φ(x, ε).
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The Compactness Theorem Applications of the Compactness Theorem

From the definition of “limit”, one can define “continuity”, ”derivative”,
”integral”, etc.

f is continuous at a iff x » a ùñ f˚(x) » f(a).

f 1(a) = b iff for every 0 ‰ dx P I, df
dx » b, where

df = f˚(a+ dx)´ f(a).

Theorem
Show that in R, f 1(a) exists ñ f is continuous at a.

Nonstandard proof. Since
f˚(a+ dx)´ f(a)

dx
» f 1(a).

f 1(a) is finite, so f 1(a) ¨ dx P I. Thus f˚(a+ dx) » f(a).

Let F (x) = x2. Then
F 1(x) = dF

dx = (a+dx)2´a2

dx = 2a(dx)+(dx)2

dx = 2a+ dx » 2a.
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