Mathematical Logic

Xianghui Shi

School of Mathematical Science Beijing Normal University

Spring, 2025

Propositional Logic

2 First order Logic

- *L*-formula
- Semantics
- Definability
- Homomorphism
- Proof system

Definition 5.1

A validity is an \mathcal{L} -formula φ such that for all (\mathcal{M}, ν) ,

 $(\mathcal{M},\nu)\models\varphi.$

- Validities are truths hold in every pair of (*M*, ν). They provide no particular information about any structure. From this aspect, a single validity is not worth much of effort to study.
- However, the set of all validities is a fascinating set.

Question

Given a \mathcal{L} -formula, how do we tell it is a validity or not?

We will give a pure logical description of validity: An \mathcal{L} -formula is valid iff it can be proven.

To do this, we need to set up

• A set Δ of logical axioms.

For connectives, quantifier, equality.

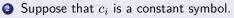
- Rule(s) of deductions.
- The notion of proofs.

Recall that a term τ is free for x_i in φ means variables in τ remain to be free in φ after substituting τ in x_i .

Definition 5.2 (Substitutable)

Suppose $\varphi \in \mathcal{L}$ and $\tau \in \mathcal{T}$.

- **1** Suppose that x_i is a free variable of φ .
 - τ is substitutable for x_i iff every variable x_j of τ is free for x_i in φ .
 - If τ is substitutable for x_i in φ , then $\varphi(x_i; \tau)$ denotes the \mathcal{L} -formula obtained by substituting τ for every free occurrence of x_i in φ . Similar for $\varphi(x_{i_1}, \ldots, x_{i_n}; \tau_{i_1}, \ldots, \tau_{i_n})$.



- τ is substitutable for c_i iff for every variable of x_j of τ , no occurrence of c_i in φ is within the scope of an occurrence of $\forall x_j$.
- If τ is substitutable for c_i in φ , then $\varphi(c_i; \tau)$ denotes the \mathcal{L} -formula obtained by substituting τ for every free occurrence of c_i in φ . Similar for $\varphi(c_{i_1}, \ldots, c_{i_n}; \tau_{i_1}, \ldots, \tau_{i_n})$.

The set of logical axioms Δ is the smallest set of \mathcal{L} -formulas satisfying the following closure properties.

• (Instances of Propositional Tautologies) Suppose that $\varphi_1, \varphi_2, \varphi_3 \in \mathcal{L}$. Then each of the following \mathcal{L} -formulas is a logical axiom:

(Group I axioms)

•
$$(\varphi_1 \to (\varphi_2 \to \varphi_3)) \to ((\varphi_1 \to \varphi_2) \to (\varphi_1 \to \varphi_3))$$

•
$$\varphi_1 \to \varphi_1$$

•
$$\varphi_1 \to (\varphi_2 \to \varphi_1)$$

Logical axioms II

(Group II axioms)

• $\varphi_1 \rightarrow (\neg \varphi_1 \rightarrow \varphi_2)$

(Group III axioms)

• $(\neg \varphi_1 \rightarrow \varphi_1) \rightarrow \varphi_1$

(Group IV axioms)

•
$$\neg \varphi_1 \rightarrow (\varphi_1 \rightarrow \varphi_2)$$

• $\varphi_1 \rightarrow (\neg \varphi_2 \rightarrow \neg (\varphi_1 \rightarrow \varphi_2))$

Logical axioms III

$$\forall x_i \varphi \to \varphi(x_i; \tau) \in \Delta.$$

- Suppose that $\varphi_1, \varphi_2 \in \mathcal{L}$. Then $\forall x_i (\varphi_1 \to \varphi_2) \to (\forall x_i \varphi_1 \to \forall x_i \varphi_2) \in \Delta.$
- Suppose $\varphi \in \mathcal{L}$ and x_i does not occur freely in φ . Then

 $\varphi \to \forall x_i \, \varphi \in \Delta.$

[There are two cases for "does not occur freely":

• x_i occurs boundedly in some $\gamma \in \Gamma$.]

- **(**) For every variable x_i , $x_i \stackrel{\circ}{=} x_i \in \Delta$.
- Suppose $\varphi_1, \varphi_2 \in \mathcal{L}$ and x_j is substitutable for x_i in φ_1 and in φ_2 . If $\varphi_2(x_i; x_j) = \varphi_1(x_i; x_j)$, then $(x_i \stackrel{\circ}{=} x_j) \rightarrow (\varphi_1 \rightarrow \varphi_2) \in \Delta$.

The notion of proof

Definition 5.3

Suppose that $\Gamma \subseteq \mathcal{L}$ and $\varphi \in \Gamma$. Then $\Gamma \vdash \varphi$ iff there exists a finite sequence $\langle \varphi_1, \ldots, \varphi_n \rangle$ of \mathcal{L} -formulas such that

- $\varphi_1 \in \Gamma \cup \Delta$,
- $\varphi_n = \varphi$,
- for each $i \leq n$, either
 - $\varphi_i \in \Gamma \cup \Delta$, or

• there exist $i_0, i_1 < i$ such that $\varphi_{i_1} \equiv (\varphi_{i_0} \rightarrow \varphi_i)$.^a $\langle \varphi_1, \dots, \varphi_n \rangle$ is called a **deduction/proof** of φ_n from Γ .

When $\Gamma \vdash \varphi$, we say that Γ proves φ .

^aThis rule of inference is called Modus Ponens (MP).

"Consistent" and "Satisfiable"

Definition 5.4

Suppose $\Gamma \subseteq \mathcal{L}$.

• Γ is **consistent** iff for every φ ,

if
$$\Gamma \vdash \varphi$$
, then $\Gamma \not\vdash \neg \varphi$.

• Γ is satisfiable iff there exists a structure \mathcal{M} and an \mathcal{M} -assignment ν such that

$$(\mathcal{M},\nu)\models\Gamma.$$

The next slide is the famous Gödel Completeness Theorem.

Gödel Completeness Theorem

For any $\Gamma \subseteq \mathcal{L}$,

 Γ is consistent \Leftrightarrow Γ is satisfiable

Another version:

Theorem 5.2 (Gödel Completeness, version II)

For any $\Gamma \subseteq \mathcal{L}$ and any $\varphi \in \mathcal{L}$,

$$\Gamma \models \varphi \quad \Leftrightarrow \quad \Gamma \vdash \varphi$$

Soundness

The "only if" (\Leftarrow) direction of the above two statements are also called **Soundness Theorem**.

Theorem 5.3 (Soundness, version II)

Suppose that $\Gamma \subseteq \mathcal{L}$, $\varphi \in \mathcal{L}$ and that $\Gamma \vdash \varphi$. Then for any (\mathcal{M}, ν) , if $(\mathcal{M}, \nu) \models \Gamma$,^a then $(\mathcal{M}, \nu) \models \varphi$.

 ${}^{a}(\mathcal{M},\nu)\models\Gamma$ abbreviates " $(\mathcal{M},\nu)\models\gamma$, for every $\gamma\in\Gamma$ ".

Proof (Sketch).

Induction on the lengths of proofs. Inductively verify the cases $\varphi_n \in \Gamma$, Δ or obtained via MP, in particular the case in Δ . Δ -2 as an example, to see $(\mathcal{M}, \nu) \models \forall x_i \varphi \rightarrow \varphi(x_i; \tau)$. Assume $(\mathcal{M}, \nu) \models \forall x_i \varphi$, set $\mu(x_i) = \nu(\tau)$, and copy ν at x_j $(j \neq i)$. $(\mathcal{M}, \mu) \models \varphi(x_i; \tau)$, as $\mu \sim_{\forall x_j \varphi} \nu$, we have $(\mathcal{M}, \nu) \models \varphi(x_i; \tau)$.

Corollary 5.4 (Soundness, version I)

Suppose $\Gamma \subseteq \mathcal{L}$. If Γ is satisfiable, then Γ is consistent.

Exercise 5.1

- Prove Theorem 5.3.
- Prove Corrolary 5.4.

We now start to prove the other direction.

Deduction

Theorem 5.5 (Deduction)

Suppose that $\Gamma \subseteq \mathcal{L}$ and $\varphi_1, \varphi_2 \in \mathcal{L}$. Then $\Gamma \cup \{\varphi_1\} \vdash \varphi_2 \quad iff \quad \Gamma \vdash \varphi_1 \rightarrow \varphi_2.$

Proof.

$$\Leftarrow: \text{ If } \Gamma \vdash \varphi_1 \to \varphi_2 \text{ via } \bar{\theta} \text{, then } \Gamma \cup \{\varphi_1\} \vdash \varphi_2 \text{ via } \bar{\theta} + \langle \varphi_1, \varphi_2 \rangle.$$

 $\Rightarrow: \mbox{ Suppose } \Gamma \cup \{\varphi_1\} \vdash \varphi_2 \mbox{ via } \bar{\theta} = \langle \theta_1, \dots, \theta_n \rangle. \mbox{ Proceed by induction} \\ \mbox{ on the length of } \bar{\theta}.^a \mbox{ Fix } j \leqslant n. \mbox{ Assume } \Gamma \vdash \varphi_1 \rightarrow \theta_i, \ i < j. \label{eq:result}$

•
$$\theta_j \equiv \varphi_1$$
. Use $\varphi_1 \rightarrow \varphi_1 \in \Delta$ -1.

•
$$\theta_j \in \Gamma \cup \Delta$$
. Use $\theta_j \to (\varphi_1 \to \theta_j) \in \Delta$ -1.

•
$$\theta_{i_2} \equiv \theta_{i_1} \rightarrow \theta_j$$
, some $i_1 < i_2 < j$. Use
 $(\varphi_1 \rightarrow (\theta_{i_1} \rightarrow \theta_j)) \rightarrow ((\varphi_1 \rightarrow \theta_{i_1}) \rightarrow (\varphi_1 \rightarrow \theta_j)) \in \Delta$ -1.

^aExactly the same as in propositional logic

Theorem 5.6 (Generalization)

Suppose that $\Gamma \subseteq \mathcal{L}$, $\varphi \in \mathcal{L}$ and $\Gamma \vdash \varphi$. Suppose that x_i is a variable and x_i does not occur freely in any formula in Γ . Then $\Gamma \vdash \forall x_i \varphi$.

Proof.

We prove by induction on the lengths of proofs $\bar{\theta} = \langle \theta_1, \ldots, \theta_n \rangle$. Assume for each j < n, $\Gamma \vdash \forall x_i \theta_j$.

•
$$\theta_j \in \Delta$$
: use $\forall x_i \theta_j \in \Delta$ -7.

•
$$\theta_j \in \Gamma$$
: use $\theta_j \to \forall x_i \theta_j \in \Delta$ -4. $\langle \theta_j, \theta_j \to \forall x_i \theta_j, \forall x_i \theta_j \rangle$.

• MP: use
$$\forall x_i(\theta_{i_1} \to \theta_j) \to (\forall x_i \theta_{i_1} \to \forall x_i \theta_j) \in \Delta$$
-3.

Theorem on Constants

Next theorem says that at certain settings constant symbols can be treated as (new) "free" variables.

<u>Theore</u>m 5.7 (Constants)

Suppose that $\Gamma \subseteq \mathcal{L}, \varphi \in \mathcal{L}$ and $\Gamma \vdash \varphi$. Suppose that c_i is a constant and c_i does not occur in any formula of Γ . Let x_i be a variable which is substitutable for c_i in φ and does not occur freely in φ . Then the following conditions hold:

- 2 There is a deduction $\langle \varphi_1, \dots, \varphi_n \rangle$ for $\Gamma \vdash \forall x_j \varphi(c_i; x_j)$ such that
 - c_i does not occur in φ_m , $m \leq n$.
 - if c_k occurs in φ_m , m < n, then c_k occurs in $\{\forall x_i \varphi(c_i; x_i)\} \cup \Gamma.$

This theorem needs two lemmas:

Lemma 5.7

Suppose that $\varphi \in \mathcal{L}$, x_i is free for x_j in φ and x_i does not occur freely in $\forall x_j \varphi$. Then

$$\vdash \forall x_j \varphi \to \forall x_i \varphi(x_j; x_i).$$

Proof.

 Δ -2 gives $\vdash \forall x_j \varphi \rightarrow \varphi(x_j; x_i)$. By Deduction $\{\forall x_j \varphi\} \vdash \varphi(x_j; x_i)$.

 x_i does not occur freely in $\Gamma = \{ \forall x_j \varphi \}$. By Generalization,

$$\{\forall x_j\varphi\} \vdash \forall x_i\varphi(x_j;x_i).$$

Use Deduction again,

$$\vdash \forall x_j \varphi \to \forall x_i \varphi(x_j; x_i).$$

Lemma 5.7

Suppose that $\Gamma \subseteq \mathcal{L}$ and the constant symbol c_i does not occur in any formula of Γ . Suppose that $\langle \theta_1, \dots, \theta_m \rangle$ is a deduction from Γ and that the variable x_i does not occur in θ_i , for all $i \leq m$. Then

$$\langle \theta_1(c_i; x_j), \ldots, \theta_m(c_i; x_j) \rangle$$

is a deduction from Γ .

Proof.

Induction on the lengths of proofs.

- For each $\varphi \in \Gamma$, $\varphi(c_i; x_j) = \varphi$.
- By inspection, for any $\varphi \in \Delta$, if x_j does not occur in φ , then $\varphi(c_i; x_j) \in \Delta$.
- If φ is obtained by MP, use the fact that for $\varphi_1, \varphi_2 \in \mathcal{L}$, $(\varphi_1 \rightarrow \varphi_2)(c_i; x_j) = \varphi_1(c_i; x_j) \rightarrow \varphi_2(c_i; x_j).$

Proof of Theorem 5.7

The tricky case is that x_j could appear boundedly in φ .

Let $\bar{\theta} = \langle \theta_1, \dots, \theta_n \rangle$ be a deduction of φ from Γ . Let x_k be a variable never "used" in $\bar{\theta}$ (as $\bar{\theta}$ uses finitely many symbols). Let $\Gamma_0 = \bar{\theta} \cap \Gamma$.

- By Lemma 5.7, $\Gamma_0 \vdash \varphi(c_i; x_k)$. By Generalization, $\Gamma_0 \vdash \forall x_k \varphi(c_i; x_k)$.
- By Lemma 5.7, $\vdash \forall x_k \varphi(c_i; x_k) \rightarrow (\forall x_j \varphi(c_i; x_k)(x_k; x_j))$. So $\Gamma_0 \vdash \forall x_k \varphi(c_i; x_k) \rightarrow \forall x_j \varphi(c_i; x_j)$.

Apply MP to get Clause <a>[1] .

Clause **2** follows by induction on the lengths of the proofs.

Maximally consistent

Definition 5.5

Suppose that $\Gamma \subseteq \mathcal{L}$ is consistent. Γ is **maximally consistent** iff for any $\varphi \in \mathcal{L}$, either $\varphi \in \Gamma$ or $\Gamma \cup \{\varphi\}$ is not consistent.

Lemma 5.7

Suppose that $\Gamma \subseteq \mathcal{L}$ is maximally consistent. Then for each $\varphi \in \mathcal{L}$, either $\varphi \in \Gamma$ or $\neg \varphi \in \Gamma$.

Proof.

Suppose $\neg \varphi \notin \Gamma$. By maximality, for some $\psi \in \mathcal{L}$,

$$\Gamma \cup \{\neg \varphi\} \vdash \psi \quad \text{and} \quad \Gamma \cup \{\neg \varphi\} \vdash \neg \psi$$

Applying Δ -1 and MP, we get $\Gamma \vdash \varphi$. If Γ is consistent, then so is $\Gamma \cup \{\varphi\}$. By maximality, $\varphi \in \Gamma$.

The Henkin property

Definition 5.6

 $\Gamma \subseteq \mathcal{L}$ has the **Henkin property** iff for each $\varphi \in \mathcal{L}$ and for each variable x_i , if $\exists x_i \varphi \in \Gamma$ then there exists a constant c_j such that $\varphi(x_i; c_j) \in \Gamma$.

The next theorem motivates the definition of Henkin's property.

Theorem 5.8

Suppose that $\mathcal{M} = (M, I)$ is a structure and ν is a \mathcal{M} -assignment such that $\operatorname{ran}(\nu) \subseteq \{I(c_i) \mid i \in \mathbb{N}\}$. Let $\Gamma = \{\varphi \mid (\mathcal{M}, \nu) \models \varphi\}$. Then

- **1** Γ is maximally consistent.
- **2** Γ has the Henkin property iff

$$\mathcal{M}_0 = (M_0, I_0) \le \mathcal{M},$$

where $M_0 = \{I(c_i) \mid i \in \mathbb{N}\}$, I_0 is the restriction of I to M_0 .

Proof of theorem

1.1 Γ is consistent:

$$\Gamma \vdash \varphi \Rightarrow_s (\mathcal{M}, \nu) \models \varphi \Rightarrow (\mathcal{M}, \nu) \not\models \neg \varphi \Rightarrow_s \Gamma \not\vdash \neg \varphi.$$

1.2 Γ is maximal.

$$\varphi \notin \Gamma \Rightarrow_{\Gamma} (\mathcal{M}, \nu) \not\models \varphi \Rightarrow (\mathcal{M}, \nu) \models \neg \varphi \Rightarrow_{\Gamma} \neg \varphi \in \Gamma.$$

2.1 \Rightarrow : Verify Tarski's Criterion. Let $D = \{a \mid \mathcal{M} \models \varphi[a, I(\bar{c})]\}$. $D \neq \emptyset$. Want c_i s.t. $I(c_i) \in D$. Let $\psi(x_1) \equiv \varphi(x_1, \bar{c})$,

$$(\mathcal{M},\nu) \models \exists x_1 \psi \Rightarrow \exists x_1 \psi \in \Gamma \Rightarrow_H \psi(c_i) \in \Gamma$$
, some c_i .

Then $(\mathcal{M}, \nu) \models \psi(c_i)$. Hence, $I(c_i) \in D \cap M_0 \neq \emptyset$.

2.2 \Leftarrow : For the Henkin property, suppose $\exists x_i \varphi(x_i, \bar{x}) \in \Gamma$. $\mathcal{M} \models \exists x_i \varphi(x_i, \bar{\nu}(\bar{x})). \ \bar{\nu}(\bar{x}) \in M_0 \text{ and } \mathcal{M}_0 \leq \mathcal{M}, \text{ so for some } c_j,$ $\mathcal{M}_0 \models \varphi[I_0(c_j), \bar{\nu}(\bar{x})]. \text{ Since } I(c_j) = I_0(c_j), \ \varphi(c_j, \bar{x}) \in \Gamma.$

Lemma for substitution

Lemma 5.8

Suppose that $\varphi \in \mathcal{L}$ has no quantifiers and $\overline{\tau} = \langle \tau_i : i \leq n \rangle$, $\overline{\sigma} = \langle \sigma_i : i \leq n \rangle$ are two sequences of terms. Then for any sequence of variables $\overline{x} = \langle x_{m_i} : i \leq n \rangle$ such that none of x_{m_j} appears in any of τ_i and σ_i ,

$$\{\tau_i \stackrel{\circ}{=} \sigma_i \mid i \leqslant n\} \cup \{\varphi(\bar{x}; \bar{\tau})\} \vdash \varphi(\bar{x}; \bar{\sigma}).$$

PROOF. Prove by induction on n, the length of \bar{x} .

This is used in verifying that the \mathcal{M} -assignment ν constructed in the proof of Completeness (Theorem 5.9) is well-defined.

• Let
$$\bar{\tau}' = \langle \tau_i : i < n \rangle$$
, $\bar{\sigma}' = \langle \sigma_i : i < n \rangle$, $\bar{x}' = \langle x_{m_i} : i < n \rangle$.

• Granting the inductive hypothesis for the cases < n, we have $\{\tau_i \stackrel{\circ}{=} \sigma_i \mid i \leq n\} \vdash \varphi(\bar{x}; \bar{\tau}', x_{m_n}) \rightarrow \varphi(\bar{x}; \bar{\sigma}', x_{m_n}).$

• Since x_{m_n} does not appear in $\bar{\tau}, \bar{\sigma}$, by Generalization, $\{\tau_i \stackrel{\circ}{=} \sigma_i \mid i \leqslant n\} \vdash \forall x (\varphi(\bar{x}; \bar{\tau}', x) \rightarrow \varphi(\bar{x}; \bar{\sigma}', x)).$ then by Δ -2 (to the substitution $(x_{m_n}; \sigma_n)$) and MP, $\{\tau_i \stackrel{\circ}{=} \sigma_i \mid i \leqslant n\} \vdash \varphi(\bar{x}; \bar{\tau}', \sigma_n) \rightarrow \varphi(\bar{x}; \bar{\sigma}).$ (†)

• Take an "unused"
$$x_k$$
, by Δ -6,
 $\varnothing \vdash (x_{m_n} \stackrel{\circ}{=} x_k) \rightarrow (\varphi(\bar{x}; \bar{\tau}', x_{m_n}) \rightarrow \varphi(\bar{x}; \bar{\tau}', x_k))$

- Substitute $(x_{m_n}; \tau_n)$ and $(x_k; \sigma_n)$, we have $\varnothing \vdash (\tau_n \stackrel{\circ}{=} \sigma_n) \rightarrow (\varphi(\bar{x}; \bar{\tau}', \tau_n) \rightarrow \varphi(\bar{x}; \bar{\tau}', \sigma_n))$
- Combine with (\dagger) , then

$$\{\tau_i \stackrel{\circ}{=} \sigma_i \mid i \leqslant n\} \vdash \varphi(\bar{x}; \bar{\tau}) \to \varphi(\bar{x}; \bar{\sigma}).$$

Henkin property & Satisfiability

Theorem 5.9

Suppose that $\Gamma \subseteq \mathcal{L}$ is maximally consistent and has the Henkin property. Then Γ is satisfiable.

Sketch of the proof

Define (\mathcal{M}, ν) s.t. $(\mathcal{M}, \nu) \models \Gamma$.

• Define $c_i \sim_{\Gamma} c_j$ iff $c_i = c_j \in \Gamma$. \sim_{Γ} is an equivalence relation.

•
$$M = \{ [c_i]_{\Gamma} \mid i \in \mathbb{N} \}.$$

Sketch of the proof (Cont'd)

• Define *I*.

•
$$\underline{I(c_i)} = [c_i]_{\Gamma}.$$

•
$$\overline{[c]}_{\Gamma} \in I(P_i)$$
 iff $P_i(\overline{c}) \in \Gamma$.

•
$$I(F_i)(\overline{[c]}_{\Gamma}) = [c_k]$$
 iff $F_i(\overline{c}) = c_k \in \Gamma$.

check that $I(P_i)$ and $I(F_i)$ are well-defined.

- $\nu(x_i) = I(c_j)$ if $x_i = c_j \in \Gamma$. Check that ν is well-defined.
 - For each x_i , there is a c_j s.t. $x_i = c_j \in \Gamma$. (uses Δ -5 and Henkin property)
 - If $x_i \stackrel{\circ}{=} c_j \in \Gamma$ and $x_i \stackrel{\circ}{=} c_k \in \Gamma$, then $c_j \sim_{\Gamma} c_k$. (uses Lemma 5.8, Δ -2,6,7).

Sketch of the proof (Cont'd)

- For any $\tau \in \mathcal{T}$, $\bar{\nu}(\tau) = [c_i]_{\Gamma}$ iff $\tau \doteq c_i \in \Gamma$.
- For every formula φ , $\varphi \in \Gamma$ iff $(\mathcal{M}, \nu) \models \varphi$.
 - Reduce to the case of sentences: replacing free variables by "new" constant symbols. (need Δ -1,2,7).
 - Induction on the length of φ . For the case of quantification, from the Henkin property, we have:

$$\forall x_i \psi \in \Gamma \quad \text{iff} \quad \text{for every } c_j, \ \psi(x_i; c_j) \in \Gamma \\ \text{iff} \quad \text{for every } c_j, \ \mathcal{M} \models \psi(x_i; c_j) \\ \text{iff} \quad \mathcal{M} \models \forall x_i \psi.$$

Extensions of consistent sets of formulas

Theorem 5.10

Suppose that $\Gamma \subseteq \mathcal{L}$ is consistent and there are infinitely many constants c_i which do not occur in any formula of Γ . Then there is a set of formulas $\Sigma \subseteq \mathcal{L}$ such that

 $\ \, \mathbf{\Gamma} \subseteq \Sigma.$

2 Σ is maximally consistent.

3 Σ has the Henkin property.

Hence, Γ is satisfiable.

This theorem can be rephrased as follows:

Suppose $\Gamma \subseteq \mathcal{L}_A$ is consistent, there is extension Γ^* in a language $\mathcal{L}_{A \cup C}$, where C is a set of infinitely new constant symbols, such that **1**-**3** above hold for Γ^* . Let A_{Γ} denote the set of all constant, function and predicate symbols used in Γ , $\{d_{i,j} \mid i, j \in \mathbb{N}\}$ enumerate the constant that do not occur in Γ . Define an increasing sequence $\langle \Sigma_i \mid i \in \mathbb{N} \rangle$ as follows: Let $\Sigma_0 = \Gamma$.

Suppose Σ_i is defined. Let $\{\varphi_{i,j} \mid j \in \mathbb{N}\}$ enumerate all the \mathcal{L}_{A_i} -formulas, where $A_i = A_{\Gamma} \cup \{d_{k,j} \mid k < i, j \in \mathbb{N}\}$ (so $A_0 = A_{\Gamma}$).

Proof (Cont'd)

We construct a sequence $\langle \Sigma_{i,j} \mid j \in \mathbb{N} \rangle$ s.t.

- $\Sigma_{i0} = \Sigma_i$.
- If $\varphi_{i,j} \notin \Sigma_{i,j}$ and $\Sigma_{i,j} \cup \{\varphi_{i,j}\}$ is consistent, then $\Sigma'_{i,j} = \Sigma_{i,j} \cup \{\varphi_{i,j}\}$; otherwise $\Sigma'_{i,j} = \Sigma_{i,j}$.

If further $\varphi_{i,j} = \exists x_k \psi$, then $\Sigma_{i,j+1} = \Sigma'_{i,j} \cup \{\psi(x_k; d_{i,j})\};$ otherwise, $\Sigma_{i,j+1} = \Sigma'_{i,j}$. Let $\Sigma_{i+1} = \bigcup_j \Sigma_{i,j}$.

At the end, let $\Sigma = \bigcup \Sigma_i$. Σ is maximally consistent and has the Henkin property.

Gödel's Completeness Theorem

Theorem 5.11 (Completeness, version I)

A set of \mathcal{L} formulas is consistent iff it is satisfiable.

Theorem 5.12 (Completeness, version II)

For any $\Gamma \subseteq \mathcal{L}$ and $\varphi \in \mathcal{L}$,

$$\Gamma \models \varphi \quad iff \quad \Gamma \vdash \varphi.$$

Proof of Gödel's Completeness Theorem

We sketch the proof of version I.

By Soundness, if Γ is satisfiable then Γ is consistent. We show the other direction. The key is to get infinitely many unused constant symbols.

Let φ' be the formula obtained from φ by replacing c_{2i} for each c_i occurring in φ . Let $\Gamma' = \{\varphi' \mid \varphi \in \Gamma\}$. Then

- Γ is consistent $\Rightarrow \Gamma'$ is consistent.
 - [Need the lemma on next slide]
- Γ' is satisfiable $\Rightarrow \Gamma$ is satisfiable.
 - [Only need to change the interpretation.]

To complete the proof, what's left is the following lemma.

Lemma 5.12

Suppose $\rho : \{c_i \mid i \in \mathbb{N}\} \rightarrow \{c_i \mid i \in \mathbb{N}\}\$ is an injective function. Given a formula φ and a set of formulas Γ , let φ^{ρ} be the formula obtained from φ by replacing $\rho(c_i)$ for each c_i occurring in φ , and let $\Gamma^{\rho} = \{\gamma^{\rho} \mid \gamma \in \Gamma\}$. Then

$$\Gamma^{\rho} \vdash \varphi^{\rho} \quad iff \quad \Gamma \vdash \varphi.$$

Proof.

- The direction " \Leftarrow ": translate a Γ -proof to a Γ^{ρ} -proof.
- The direction "⇒":
 - Since proofs are finite, we may assume that Γ is finite. Let C be the set of constant symbols appearing in $\Gamma \cup \{\varphi\}$.
 - Since C is finite, the complement of $\rho[C]$ is infinite, there is an injective $\xi : \{c_i \mid i \in \mathbb{N}\} \rightarrow \{c_i \mid i \in \mathbb{N}\}$ such that $\xi \upharpoonright \rho[C] = id$.
 - Apply the direction " \Leftarrow " to ξ : $\Gamma^{\rho} \vdash \varphi^{\rho} \Rightarrow \Gamma^{\xi \circ \rho} \vdash \varphi^{\xi \circ \rho}$.

Definition 5.7

Suppose that $\Gamma \subseteq \mathcal{L}_A$ and $\varphi \in \mathcal{L}_A$. Then $\Gamma \vdash_{\mathcal{L}_A} \varphi$ iff there exists a proof $\langle \varphi_1, \ldots, \varphi_n \rangle$ of φ from Γ such that for each $i \leq n$, φ_i is an \mathcal{L}_A -formula.

Theorem 5.13

Suppose that $\Gamma \subseteq \mathcal{L}_A$ and $\varphi \in \mathcal{L}_A$. Then

$$\Gamma \vdash \varphi \quad iff \quad \Gamma \vdash_{\mathcal{L}_A} \varphi$$

Theorem 5.14 (Completeness for \mathcal{L}_A)

Suppose that $\Gamma \subseteq \mathcal{L}_A$ and $\varphi \in \mathcal{L}_A$. Then

$$\Gamma \vdash_{\mathcal{L}_A} \varphi \quad iff \quad \Gamma \models \varphi.$$

Exercise 5.2

- **(**) Show that for every pair of \mathcal{L} formulas φ and ψ , $\{\varphi, (\neg \varphi)\} \vdash \psi$.
- $\ensuremath{ 2 \ } \ensuremath{ {\rm Suppose that } \Gamma \cup \{ (\neg \varphi) \} \mbox{ is not consistent. Show that } \Gamma \vdash \varphi.$

*Craig Interpolation Theorem

Suppose $\varphi \in \mathcal{L}$ and $\Gamma \subset \mathcal{L}$. Let A_{Γ} denote the minimal signature for formulas in Γ , and $A_{\varphi} = A_{\{\varphi\}}$.

Theorem 5.15 (Craig Interpolation Theorem for $\mathcal{L})$

Suppose that $\varphi, \psi \in \mathcal{L}, \Gamma \subseteq \mathcal{L}$ and that $\Gamma \vdash \varphi \rightarrow \psi$. Suppose that $A_{\varphi} \cap A_{\psi} \subseteq A_{\Gamma}$. Then there is a $\theta \in \mathcal{L}_{A_{\Gamma}}$ s.t. **1** $\Gamma \vdash (\varphi \rightarrow \theta)$, **2** $\Gamma \vdash (\theta \rightarrow \psi)$.

Proof of Craig's Interpolation

• Suppose NOT, we construct a model of $\varphi \wedge \neg \psi$.

Let S,T be two theories in L₁, L₂. A sentence σ ∈ L₀ separates S and T if S ⊢ σ and T ⊢ ¬σ. Say S and T are inseparable if no such σ exists.

OBSERVATION:

If T and U are inseparable, then both are consistent.

Starting with S₀ = {φ}, T₀ = {¬ψ}, construct two ⊆-increasing sequences of finite sets of sentences S_n, T_n, n ∈ N such that the resulting theories S_ω and T_ω are two inseparable, maximal consistent theories with Henkin property in L'₁, L'₂ respectively.

• Observation:

- $\textcircled{0} \quad S_{\omega} \cap T_{\omega}$ is a maximal consistent theory in $\mathcal{L}'_0.$
- $\ \, \textcircled{0} \quad S_{\omega} \cup T_{\omega} \text{ is a consistent theory in } \mathcal{L}'_1 \cup \mathcal{L}'_2.$
- Suppose M ⊨ S_ω. By Henkin's property, the interpretations {c^M | c ∈ C}, give an elementary submodel M₀ < M.
 Suppose N ⊨ T_ω. Let N₀ be the counterpart of M₀.
 M₀ and N₀ have the same L₀-reduct.
- Let \mathcal{W} be a model of $S_{\omega} \cup T_{\omega}$ such that $\mathcal{W}|_{\mathcal{L}_1} = \mathcal{M}_0|_{\mathcal{L}_1}$ and $\mathcal{W}|_{\mathcal{L}_2} = \mathcal{N}_0|_{\mathcal{L}_2}$. Then $\mathcal{W} \models \varphi \land \neg \psi$.

An important applications of Craig's interpolation is Beth's Definability Theorem, for which we need the following definitions.

Definition

Fix a language \mathcal{L}_A . Let P and P' be two n-place relation symbols not in A. For a set Σ of $\mathcal{L}_{A \cup \{P\}}$ -sentence, let Σ' be the result of replacing P by P'. We say

- $\ \, {\bf S} \ \, {\rm defines} \ \, P \ \, {\rm implicitly} \ \, {\rm if} \ \, {\boldsymbol \Sigma} \cup {\boldsymbol \Sigma}' \vdash \forall \bar{x}(P(\bar{x}) \leftrightarrow P'(\bar{x})).$
- **2** Σ defines P explicitly if there is a formula $\varphi(\bar{x}) \in \mathcal{L}_A$ such that $\Sigma \vdash \forall \bar{x}(P(\bar{x}) \leftrightarrow \varphi(\bar{x})).$

*Beth's Definability Theorem

Theorem (Beth)

 Σ defines P implicitly iff it defines P explicitly.

Proof.

" \Leftarrow " is easy. " \Rightarrow ". Add new constant symbols \bar{c} to A, and may assume Σ, Σ' closed under conjunction.

• Let $\psi \in \Sigma$ and $\sigma \in \Sigma'$ be such that $\sigma = \psi'$ and $\psi \land \psi' \vdash P(\bar{c}) \rightarrow P'(\bar{c})$. Rearrang the later to $\psi \land P(\bar{c}) \vdash \psi' \rightarrow P'(\bar{c})$.

• Let $\sigma(\overline{c})$ be a Craig Interpolation for that: $\psi \wedge P(\overline{c}) \vdash \theta(\overline{c})$ and $\theta(\overline{c}) \vdash \psi' \to P'(\overline{c})$, these yield: $\psi \vdash P(\overline{c}) \to \theta(\overline{c})$ and $\psi \vdash \theta(\overline{c}) \to P(\overline{c})$ and hence $\psi \vdash P(\overline{c}) \leftrightarrow \theta(\overline{c})$.