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Proof system The notion of proof

Validity
Definition 5.1
A validity is an £-formula ¢ such that for all (M, v),
(M, v) = .

@ Validities are truths hold in every pair of (M, v). They provide no
particular information about any structure. From this aspect, a
single validity is not worth much of effort to study.

@ However, the set of all validities is a fascinating set.

Given a L-formula, how do we tell it is a validity or not?
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Proof system The notion of proof

Things to do

We will give a pure logical description of validity:
An L-formula is valid iff it can be proven.

To do this, we need to set up
o A set A of logical axioms.
For connectives, quantifier, equality.

@ Rule(s) of deductions.

@ The notion of proofs.
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Proof system The notion of proof

Recall that a term 7 is free for x; in ¢ means variables in 7 remain to be
free in ¢ after substituting 7 in z;.

Definition 5.2 (Substitutable)
Suppose pe L and T € T.

@ Suppose that z; is a free variable of .

o 7 is substitutable for z; iff every variable x; of 7 is free for x;
in .

o If 7 is substitutable for x; in ¢, then ©(x;;7) denotes the
L-formula obtained by substituting 7 for every free occurrence
of z; in . Similar for @(@;,, ..., i3 Tiys -, Tip,)-

@ Suppose that ¢; is a constant symbol.

o 7 is substitutable for c; iff for every variable of z; of 7, no
occurrence of ¢; in ¢ is within the scope of an occurrence of
V!Ej.

o If 7 is substitutable for ¢; in ¢, then ¢(c;; 7) denotes the
L-formula obtained by substituting 7 for every free occurrence
of ¢; in . Similar for (¢, .., Cips Tiyy -5 Tip)-
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Proof system The notion of proof

Logical axioms |

The set of logical axioms A is the smallest set of £-formulas
satisfying the following closure properties.

@ (Instances of Propositional Tautologies) Suppose that
©1, 92,93 € L. Then each of the following L-formulas is a
logical axiom:

(Group | axioms)
o (1= (w2 = w3)) = (b1 = p2) = (1 = ¥3))
o Y1 =¥
o 1 — (p2 — 1)
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Proof system The notion of proof

Logical axioms I

(Group Il axioms)
° 1 — (—p1 — ¢2)

(Group Il axioms)
° (1= 1) >

(Group IV axioms)
o —p1 = (p1 = ¢2)
° p1 = (—p2 = =(p1 = ¢2))
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Proof system The notion of proof

Logical axioms Il

@ Suppose that p € £, 7 € T and that 7 is substitutable for z;
in . Then

Vzip — (1) € A

© Suppose that 1,2 € L. Then
Vi (o1 — p2) — (Vo o1 — Vo 02) € A,

@ Suppose p € L and z; does not occur freely in . Then
w — Ve A
[There are two cases for “does not occur freely”:
e x; is “new"”;
e x; occurs boundedly in some v € I']
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Proof system The notion of proof

Logical axioms |V

© For every variable z;, x; = x; € A.

@ Suppose @1, 2 € L and z; is substitutable for x; in 1 and in
©2.
If wa(xi;x5) = p1(zi;z4), then (z; = ;) — (g1 — ¢2) € A.

@ Suppose that ¢ € A. Then Vz;p € A.
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Proof system The notion of proof

The notion of proof

Definition 5.3

Suppose that I' € £ and @ € T'. Then I" | ¢ iff there exists a finite
sequence {1, ..., @y of L-formulas such that

o pyellUA,
® vn =,
@ for each 7 < n, either

o p;el"UA, or
o there exist i, 41 < 4 such that v;, = (i, — ©i).?
{p1,-..,pny is called a deduction/proof of ¢,, from T
When T" |- ¢, we say that I' proves .

?This rule of inference is called Modus Ponens (MP).
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Proof system The notion of proof

“Consistent” and “Satisfiable”

Definition 5.4

Suppose I' < L.
e [ is consistent iff for every ¢,
if [' = ¢, then ' I£ —p.

o [' is satisfiable iff there exists a structure M and an
M-assignment v such that

(M,v) =T

A

The next slide is the famous Godel Completeness Theorem.
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Proof system The notion of proof

Godel Completeness Theorem

Theorem 5.1 (Gédel Completeness, version 1)
ForanyT' c L,
I is consistent < T is satisfiable

Another version:

Theorem 5.2 (Gédel Completeness, version 1)

ForanyI' € L and any p € L,

'y < Trop
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Proof system Soundness

Soundness

The “only if" (<) direction of the above two statements are also
called Soundness Theorem.

Theorem 5.3 (Soundness, version Il)

Suppose thatI' € L, p € L and that I - . Then for any (M,v),
if (M,v) E=T,2 then (M,v) = ¢.

(M, v) =T abbreviates “(M, v) |= v, for every v e I'".

Proof (Sketch).

Induction on the lengths of proofs. Inductively verify the cases

pn €', A or obtained via MP, in particular the case in A.

A-2 as an example, to see (M, v) = Vo — @(x;;7). Assume
(M, v) = Vi, set p(z;) = v(r), and copy v at x; (j # ).
(M, ) E o(2i57), s pt ~va,p v, We have (M, V) = p(zg; 7). O
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Proof system Soundness

Corollary 5.4 (Soundness, version )

Suppose I' € L. If T is satisfiable, then I' is consistent.

@ Prove Theorem 5.3.

@ Prove Corrolary 5.4.

We now start to prove the other direction.
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Proof system Deduction and generalization theorems

Deduction

Theorem 5.5 (Deduction)
Suppose that I' < L and @1, € L. Then

Fu{pi} -2 iff T o1 — .

<: fT @1 — @ via 8, then T U {1} - @2 via 0 + {p1, p2).

—: Suppose I' U {1} - @3 via @ = (01, ..., 0,). Proceed by induction
on the length of 6.7 Fix j <n. Assume I' - o1 — 6;, i < j.

4 gj = Q1. Use w1 — Y1 e A-1.
(] OjeFuA. Use9j—>(<pl—>9j)eA—1.

@ 0;, =0;, — 0;, somei; <iy<j. Use
(b1 = (0, = 0;)) = (1 = 0i,) = (o1 — ;) € A-L. B

“Exactly the same as in propositional logic
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Proof system Deduction and generalization theorems

Generalization

Theorem 5.6 (Generalization)

Suppose that I' € L, p € L and I" - . Suppose that x; is a

variable and x; does not occur freely in any formula in I'. Then
' V.TZ‘QO.

We prove by induction on the lengths of proofs § = (f1,...,60,). Assume
for each j <n, I' - Va;0;.

@ §; € A: use Va;0; € A-7.
("] Hj eI': use 0j — VZEZHJ e A-4. <9j7 Qj i V.IZHJ,VQJZGJ>
@ MP: use sz(ﬂh d Gj) g (V:z:zt?“ i Va:,ﬂj) € A-3. O

Spring, 2025 Xianghui Shi Mathematical Logic 16 / 42



Proof system Deduction and generalization theorems

Theorem on Constants

Next theorem says that at certain settings constant symbols can be
treated as (new) “free” variables.

Theorem 5.7 (Constants)

Suppose that ' < L, p € L and T' - ¢. Suppose that c; is a
constant and c¢; does not occur in any formula of I'. Let x; be a
variable which is substitutable for ¢; in @ and does not occur freely
in . Then the following conditions hold:

QI+ VLL’jQO(Ci; xj).
@ There is a deduction {p1,...ppn) for I' = Va;p(ci;x5) such
that

e ¢; does not occur in p,,, m < n.
e if ¢ occurs in p,,, m < n, then c occurs in
{Vajo(ci;x5)} T,

This theorem needs two lemmas:
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Proof system Deduction and generalization theorems

Suppose that ¢ € L, x; is free for x; in ¢ and x; does not occur
freely in Vxjp. Then

- Vo — Vzio(xj; x;).

A-2 gives - Vxjo — p(xj; x;). By Deduction
{Vajo} b o(w); ).

x; does not occur freely in I' = {Vzp}. By Generalization,
{Vzj0} b Vaip(z); 24).

Use Deduction again,

- Va0 — Va;o(z); ;). O
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Proof system Deduction and generalization theorems

Suppose that I' € L and the constant symbol ¢; does not occur in
any formula of T'. Suppose that {0,...0,,) is a deduction from T’
and that the variable x; does not occur in 0;, for all i < m. Then

Or(cs;xj), .o Omlcs; )
is a deduction from T".

Induction on the lengths of proofs.

e Foreach p €T, p(ci; ;) = .

@ By inspection, for any ¢ € A, if x; does not occur in ¢, then
(e ) € A.

@ If v is obtained by MP, use the fact that for @1, @9 € L,
(01 = 2)(cis x5) = p1(ci; x5) — p2(ci; z;). O

Spring, 2025 Xianghui Shi Mathematical Logic 19 / 42



Proof system Deduction and generalization theorems

Proof of Theorem 5.7

The tricky case is that x; could appear boundedly in ¢.

Let § = {fy,...,0,) be a deduction of ¢ from T. Let z; be a variable
never “used” in 9 (as 0 uses finitely many symbols). Let Ty =6 N T.

@ By Lemma 5.7, I'g - ©(c¢;;x1). By Generalization,
To - Varp(ci; xk).

@ By Lemma 5.7, - Yapp(ci; zx) — (Vajo(ci; xr)(xk; x;)). So
Do - Varp(c; ar) — Vajo(e; ;).

Apply MP to get Clause @ .

Clause @ follows by induction on the lengths of the proofs.
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Proof system The Henkin property

Maximally consistent

Definition 5.5

Suppose that I' € £ is consistent. ' is maximally consistent iff
for any ¢ € L, either ¢ € T" or I U {¢} is not consistent.

Suppose that I' € L is maximally consistent. Then for each ¢ € L,
either pe ' or —p eI

v

Suppose —¢ ¢ I'. By maximality, for some 9 € L,
Fu{—¢}+v and T u{—p}+

Applying A-1 and MP, we get I' - . If I is consistent, then so is
I' U {¢}. By maximality, p € T". O

V.
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Proof system The Henkin property

The Henkin property

Definition 5.6
I' € £ has the Henkin property iff for each ¢ € £ and for each
variable x;, if 3z;¢ € I' then there exists a constant ¢; such that

o(xi;¢5) €T

The next theorem motivates the definition of Henkin's property.
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Proof system The Henkin property

Theorem 5.8

Suppose that M = (M, 1) is a structure and v is a M-assignment
such that ran(v) < {I(¢;) | i € N}. Let T = {p | (M,v) &= »}.
Then

@ [ is maximally consistent.
@ I has the Henkin property iff
Mo = (Mo, Ip) < M,
where My = {I(c;) | i € N}, I is the restriction of I to M.

V
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Proof system The Henkin property

Proof of theorem

1.1 T is consistent:
FEyo=s Mv)Ep= (M) ¥ —p=T1F —p
1.2 T is maximal.
p¢l=r M) o= Mr)E-p=r-pel.
2.1 = Verify Tarski's Criterion. Let D = {a | M |= ¢[a, I(2)]}.
D # @. Want ¢; s.t. I(¢;) € D. Let (1) = ¢(x1,0),
(M,v) EJz19p = Jz1p € T = ¥(c;) € T, some ¢;.
Then (M,v) =(c;). Hence, I(¢;) € D n My # &.
2.2 <«=: For the Henkin property, suppose 3z;¢o(x;,T) € T.
M = 3z0(zi, 0(7)). ©(Z) € My and My < M, so for some ¢;,
Mo = ¢llo(c;), 7(Z)]. Since I(c;) = lo(c;), ¢(c;, ) € T O
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Proof system The Henkin property

Lemma for substitution

Lemma 5.8

Suppose that ¢ € L has no quantifiers and T = {(7; : i < n),

o ={o; : 1 < n)y are two sequences of terms. Then for any
sequence of variables T = (xp, : i < n) such that none of z,,,
appears in any of T; and o;,

{ri = 0i | i <n}u{p@7)} - ¢(7;0).

PROOF. Prove by induction on n, the length of Z.

This is used in verifying that the M-assignment v constructed in the
proof of Completeness (Theorem 5.9) is well-defined.
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Proof system The Henkin property

o let 7/ =(m:i<mny,d ={o;:i<n), T ={Tm, i <n).
@ Granting the inductive hypothesis for the cases < n, we have
{rizoili<n}b @7, 2m,) = @6, 2m,).
@ Since z,,, does not appear in 7,4, by Generalization,
{ri = o |i <n} = Vao(o(z; 7, 2) > o(T;6, 2)).
then by A-2 (to the substitution (z,,;0y)) and MP,
{ri=oi|i<n} b o@;7,0) = o(2;0). (1)
@ Take an “unused” xy, by A-6,
@b (Tm, = a1) = (P& 7, 2m,) = 0(T; 7, 2k))
@ Substitute (2., ;7,) and (x;0,), we have
D (tn = 00) = (9(&; 7, m0) = 9(2:7',00))
@ Combine with (t), then
{ri=oili<n}to@7) - ¢(;0). O
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Proof system The Henkin property

Henkin property & Satisfiability

Theorem 5.9

Suppose that I' € L is maximally consistent and has the Henkin
property. Then T' is satisfiable.

Sketch of the proof

Define (M,v) s.t. (M,v) =T.
@ Define ¢; ~r ¢j iff ¢; = ¢; € I'. ~r is an equivalence relation.
o M ={[g]r|ieN}.

Spring, 2025 Xianghui Shi Mathematical Logic 27 / 42



Proof system The Henkin property

Sketch of the proof (Cont'd)

@ Define I.

°I(Cz) [C]F
o [clp € I(P;) iff Pi(¢c)eT.

o I(F)([cly) = [ex] iff Fy(¢) = cp e T
check that I(P;) and I(F;) are well-defined.

o v(x;) = I(c;) if z; = ¢j € I'. Check that v is well-defined.
o For each z;, thereisac; s.t. ; =c; el
(uses A-5 and Henkin property)
o Ifz; =cjel and x; =ci €T, then ¢; ~r cx.
(uses Lemma 5.8, A-2,6,7).
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Proof system The Henkin property

Sketch of the proof (Cont'd)

e Forany 7€ T, v(r) =[¢i]p iff T = ¢; €T
e For every formula ¢, ¢ € I' iff (M, v) = ¢.

e Reduce to the case of sentences: replacing free variables by
“new" constant symbols. (need A-1,2,7).

e Induction on the length of . For the case of quantification,
from the Henkin property, we have:

Ve el iff for every ¢, ¥(xs;¢5) €T
iff  for every ¢;, M = 1(x;;¢5)
iff M = Y.
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Proof system Extensions of consistent sets of formulas

Extensions of consistent sets of formulas

Theorem 5.10

Suppose that T" € L is consistent and there are infinitely many
constants ¢; which do not occur in any formula of I'. Then there is
a set of formulas 3. € L such that

@rcx.
@ X is maximally consistent.

© X has the Henkin property.

Hence, T' is satisfiable.

This theorem can be rephrased as follows:

Suppose I' © L 4 is consistent, there is extension I'* in a language
Laoc, where C'is a set of infinitely new constant symbols, such that
©-© above hold for T'*.
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Proof system Extensions of consistent sets of formulas

Let Ar denote the set of all constant, function and predicate
symbols used in T, {d; j | 7,j € N} enumerate the constant that do
not occur in I'. Define an increasing sequence (3; | i € N) as
follows: Let Xg =T

Suppose ¥; is defined. Let {¢; ; | j € N} enumerate all the

L 4,-formulas, where A; = Ap U {dy; | k <1, j € N} (so
Ag = Ar).
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Proof system Extensions of consistent sets of formulas

Proof (Cont'd)

We construct a sequence (¥; ; | j € N) s.t.
@ X0 =2;.
o If v ;¢ %;;and X; ; U {¢; ;} is consistent, then
ZQJ =Y, U {pi;}; otherwise ZQJ =%;;.
If further ¢; ; = ¢, then X; j11 = Egﬂ- u{Y(zk; dij)};
otherwise, ; j11 = E;J.
Let ;41 = szi,j-

At the end, let ¥ = ;. ¥ is maximally consistent and has the
Henkin property.
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Proof system Godel's Completeness Theorem

Godel's Completeness Theorem

Theorem 5.11 (Completeness, version )

A set of L formulas is consistent iff it is satisfiable.

Theorem 5.12 (Completeness, version I1)

Foranyl'c L and p € L,

To iff Tk o
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Proof system Godel's Completeness Theorem

Proof of Gédel's Completeness Theorem

We sketch the proof of version I.

By Soundness, if I" is satisfiable then I is consistent. We show the other
direction. The key is to get infinitely many unused constant symbols.

Let ¢’ be the formula obtained from ¢ by replacing co; for each ¢;
occurring in . Let TV = {¢’ | ¢ € T'}. Then

@ I is consistent = I" is consistent.

- [Need the lemma on next slide]

@ I is satisfiable = T is satisfiable.

- [Only need to change the interpretation.] O

To complete the proof, what's left is the following lemma.
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Proof system Godel's Completeness Theorem

Suppose p : {c; | i € N} — {¢; | i € N} is an injective function.
Given a formula o and a set of formulas I, let ©f be the formula
obtained from ¢ by replacing p(c;) for each ¢; occurring in ¢, and
let I'? = {~* |y € I'}. Then

I f iff Tk .

@ The direction “<": translate a I'-proof to a I'*-proof.
@ The direction “=":

e Since proofs are finite, we may assume that I' is finite. Let C
be the set of constant symbols appearing in I' U {¢}.

o Since C is finite, the complement of p|[C] is infinite, there is an
injective & : {c; | i € N} — {¢; | i € N} such that {1p[C] = id.

o Apply the direction “<" to &: TP |- P = ['¢°P |- 5P, O

v
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Proof system The Craig interpolation theorem

Definition 5.7

Suppose that I' © L4 and p € L4. Then I' -, ¢ iff there exists
a proof {¢1,...,pn) of ¢ from I' such that for each i < n, ¢; is
an L 4-formula.

Suppose that ' € L4 and o € L 4. Then

F|—§0 iff F"CAQO
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Proof system The Craig interpolation theorem

Theorem 5.14 (Completeness for £ 4)

Suppose that T' € L4 and o € L4. Then
Pk, iff T ke

@ Show that for every pair of £ formulas ¢ and ¥, {¢, (—p)} - 1.

@ Suppose that I' U {(—)} is not consistent. Show that I" - ¢.
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Proof system The Craig interpolation theorem

*Craig Interpolation Theorem

Suppose ¢ € £ and I' © L. Let Ar denote the minimal signature
for formulas in I', and A, = A{so}'

Theorem 5.15 (Craig Interpolation Theorem for L)

Suppose that p,7p € L, ' € L and that " - ¢ — 1. Suppose that
Ay, Ay S Ar. Then thereis a € L4, s.t.

OFl—(go—>0),
QI (0—v).
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Proof system The Craig interpolation theorem

Proof of Craig's Interpolation

@ Suppose NOT, we construct a model of ¢ A —1).

@ Let £ = ACAw, Lo = ACAU) and EO =L1nLs.

We shall expand £;'s to £}'s by adding a (common) countable set
C of new constant symbols, i =0, 1,2.

@ Let S, T be two theories in L1, L5. A sentence o € L separates S
and T'if S+ o and T+ —o. Say S and T are inseparable if no
such o exists.

OBSERVATION:
If T"and U are inseparable, then both are consistent.

@ Starting with So = {¢}, To = {—1}, construct two S-increasing
sequences of finite sets of sentences S,,,7T,, n € N such that the
resulting theories S, and T, are two inseparable, maximal

consistent theories with Henkin property in £, £} respectively.
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Proof system The Craig interpolation theorem

Proof of Craig's Interpolation, cont'd

@ OBSERVATION:
@ S, is a maximal consistent theory in £}, and T, is a maximal
consistent theory in £5.
@ S, nT, is amaximal consistent theory in LJ.
@ S, uT, is a consistent theory in L] U L}.
@ Suppose M = S,,. By Henkin's property, the interpretations
{cM | ce O}, give an elementary submodel Mg < M.

Suppose N |= T,,. Let Ny be the counterpart of M,.
Mo and Ny have the same Ly-reduct.

@ Let W be a model of S, U T, such that W|., = M|, and
W|£2 :N0|£2. ThenWI:gp/\ﬁw_ m
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Proof system The Craig interpolation theorem

Implicit and explicit defintions

An important applications of Craig's interpolation is Beth's
Definability Theorem, for which we need the following definitions.

Definition

Fix a language £ 4. Let P and P’ be two n-place relation symbols
not in A. For a set X of £, (p}-sentence, let Y be the result of
replacing P by P’. We say
@ X defines P implicitly if ¥ u X' + VZ(P(Z) « P'(Z)).
@ X defines P explicitly if there is a formula ¢(z) € L4 such
that ¥ - VZ(P(Z) « ¢(Z)).
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Proof system The Craig interpolation theorem

“Beth’s Definability Theorem

Theorem (Beth)
> defines P implicitly iff it defines P explicitly.

<" is easy. “=". Add new constant symbols ¢ to A, and may
assume X, % closed under conjunction.

@ Let ) € ¥ and o € X’ be such that o = ¢’ and
Y A = P(¢) — P'(¢). Rearrang the later to
¥ A P(€) -1 — P'(c).
@ Let o(¢) be a Craig Interpolation for that:
¥ A P(¢) - 6(¢) and 6(¢) - o' — P’(¢), these yield:
Y+ P(¢) — 0(¢) and ¢ - 6(¢) — P(¢) and hence
Y+ P(c) < 0(c). O

Spring, 2025 Xianghui Shi Mathematical Logic



