Mathematical Logic

Xianghui Shi

School of Mathematical Science Beijing Normal University

Spring, 2025

1 Propositional Logic

2 First order Logic

- *L*-formula
- Semantics
- Definability
- Homomorphism

Definition 4.1 (homomorphisms between structures)

Suppose $\mathcal{M} = (M, I)$ and $\mathcal{N} = (N, J)$ are two \mathcal{L}_A -structures. A **homomorphism** between \mathcal{M} and \mathcal{N} is a function $e : M \to N$ with the following properties:

• For each constant symbol $c_i \in A$,

$$e(c_i^{\mathcal{M}}) = c_i^{\mathcal{N}}.$$

• For each function symbol $F_i \in A$, if $n = \pi(F_i)$, then for each $\bar{a} = \langle a_1, \ldots, a_n \rangle \in M^n$,

$$e(F_i^{\mathcal{M}}(\bar{a})) = F_i^{\mathcal{N}}(e(\bar{a})).$$

• For each predicate symbol $P_i \in A$, if $n = \pi(P_i)$, then for each $\bar{a} = \langle a_1, \dots, a_n \rangle \in M^n$,

$$\bar{a} \in P_i^{\mathcal{M}} \quad \text{iff} \quad e(\bar{a}) \in P_i^{\mathcal{N}}.$$

If e is 1-1, it is called an **isomorphic embedding** of \mathcal{M} into \mathcal{N} . If, in addition, e is onto, then it is called an **isomorphism** of \mathcal{M} onto \mathcal{N} , and write $\mathcal{M} \cong \mathcal{N}$.

Example 4.1

Let $\mathcal M$ be the structure $(\mathbb N;+,\cdot).$ We define a function $h:\mathbb N\to\{0,1\}$ by

$$h(n) = \begin{cases} 0, & \text{if } n \text{ is even;} \\ 1, & \text{if } n \text{ is odd.} \end{cases}$$

Then h is a homomorphism of $\mathcal M$ onto $\mathcal U=(\{0,1\},J),$ where J(+) and $J(\cdot)$ are given by

$$\begin{array}{c|cccc} J(+) & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array} \qquad \begin{array}{c|ccccc} J(\cdot) & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$$

Exampls

Example 4.2

Consider the two structures

$$\mathcal{M} = (\mathbb{Z}^+, <_Z)$$
 and $\mathcal{N} = (\mathbb{N}, <_N).$

- There is an isomorphism h from \mathcal{M} onto \mathcal{N} : h(n) = n 1.
- The identity map id : $\mathbb{Z}^+ \to \mathbb{N}$ is an isomorphic embedding of \mathcal{M} into \mathcal{N} . \mathcal{M} fits coherently with the structure of \mathcal{N} . Due to this fact, we say that \mathcal{M} is a substructure of \mathcal{N} . More generally,

Substructure

Definition 4.2

Consider two \mathcal{L}_A -structures $\mathcal{M} = (M, I)$ and $\mathcal{N} = (N, J)$ such that $M \subseteq N$. We say \mathcal{M} is a substructure of \mathcal{N} (write $\mathcal{M} \subseteq \mathcal{N}$) if the following conditions are met:

• For every
$$c \in A$$
, $c^{\mathcal{M}} = c^{\mathcal{N}}$;

• For every
$$F \in A$$
, $F^{\mathcal{M}} = F^{\mathcal{N}} | M^n$, where $n = \pi(F)$;

• For every
$$P \in A$$
, $P^{\mathcal{M}} = P^{\mathcal{N}} \cap M^n$, where $n = \pi(P)$.

Also \mathcal{N} is called an **extension** of \mathcal{M} .

Example 4.3

 $(\mathbb{Q};+_Q)$ is a substructure of $(\mathbb{C};+_C)$.

Simple facts about substructures

• Let $\mathcal{M} = (M, I)$, $\mathcal{N} = (N, J)$ be two \mathcal{L}_A -structures. If $\mathcal{M} \subseteq \mathcal{N}$, M must be closed under $F^{\mathcal{N}}$ for all $F \in A$.

Homomorphism

This closure property holds for the 0-ary function symbols, as $c^{\mathcal{M}} \in M$, for each $c \in A$.

Substructure

• Conversely, given a \mathcal{L}_A -structure $\mathcal{N} = (N, J)$. Suppose $\varnothing \neq M \subseteq N$ and M is closed under $F^{\mathcal{N}}$, for all $F \in A$. Then there is a unique $\mathcal{M} \subseteq \mathcal{N}$ with universe M.

An extreme case: if $A \cap \mathcal{F} = \emptyset$ i.e. no function symbols, then any nonempty subset of N can be the universe of a substructure of \mathcal{N} .

Theorem 4.1

Suppose that $\mathcal{M} = (M, I)$ and $\mathcal{N} = (N, J)$ are two \mathcal{L}_A -structures with $M \subseteq N$. Then the following are equivalent.

- **2** For all atomic $\varphi \in \mathcal{L}_A$ and for all \mathcal{M} -assignments ν ,

$$(\mathcal{M},\nu)\models\varphi\quad \leftrightarrow\quad (\mathcal{N},\nu)\models\varphi.$$

Theorem 4.1

Suppose that $\mathcal{M} = (M, I)$ and $\mathcal{N} = (N, J)$ are two \mathcal{L}_A -structures with $M \subseteq N$. Then the following are equivalent.

- **2** For all atomic $\varphi \in \mathcal{L}_A$ and for all \mathcal{M} -assignments ν ,

$$(\mathcal{M},\nu)\models\varphi\quad\leftrightarrow\quad(\mathcal{N},\nu)\models\varphi.$$

Proof.

This follows from part (1) of Homomorphism Theorem (coming up next) and the definition of substructures. $\hfill\square$

Homomorphism Theorem

Theorem 4.2

Suppose that $e: \mathcal{M} \to \mathcal{N}$ is a homomorphism between \mathcal{L}_A -structures $\mathcal{M} = (M, I)$ and $\mathcal{N} = (N, J)$. Suppose that ν is an \mathcal{M} -assignment. Then

() $e \circ \nu$ is an \mathcal{N} -assignment. In fact, for any term τ ,

 $\overline{e \circ \nu}(\tau) = e(\bar{\nu}(\tau)).$

2 For any quantifier-free \mathcal{L}_A -formula φ not containing the equality symbol,

$$(\mathcal{M},\nu)\models\varphi\quad \leftrightarrow\quad (\mathcal{N},e\circ\nu)\models\varphi.$$

- If e is injective (1-1), then in part (2), we may delete the restriction "not containing the equality symbol".
- If e is surjective (onto), then in part (2), we may drop the restriction "quantifier-free".

- Induction on the rank of terms. For instance, suppose $F \in A$ with $\pi(F) = n$ and $\bar{\tau} \in \mathcal{T}^n$. $\overline{e \circ \nu}(F(\bar{\tau})) = F^{\mathcal{N}}(\overline{e \circ \nu}(\bar{\tau}))$ (defn of $\bar{\nu}$) $= F^{\mathcal{N}}(e(\bar{\nu}(\bar{\tau})))$ (by induction) $= e(F^{\mathcal{M}}(\bar{\nu}(\bar{\tau})))$ (e is a hom) $= e(\bar{\nu}(F(\bar{\tau})))$ (defn of $\bar{\nu}$)
- Induction on the rank of formulas.

- Checking atomic formulas such as P(\(\bar{\pi}\)) and the inductive arguments on connective symbols are routine. This proves part (2) for quantifier-free and no-equality-symbol formulas.
- Is For the case of the equality symbol,

$$(\mathcal{M}, \nu) \models \tau = \sigma \Leftrightarrow \bar{\nu}(\tau) = \bar{\nu}(\sigma)$$
$$\Rightarrow e(\bar{\nu}(\tau)) = e(\bar{\nu}(\sigma))$$
$$\Leftrightarrow \overline{e \circ \nu}(\tau) = \overline{e \circ \nu}(\sigma)$$
$$\Leftrightarrow (\mathcal{N}, e \circ \nu) \models \tau = \sigma$$

If e is injective, then " \Rightarrow " can be reversed.

- We assume e is surjective and check the inductive step on the quantifier. Let $\varphi = (\forall x \psi)$.
 - $(\mathcal{M}, \nu) \models \varphi$, so for every $\mu \sim_{\varphi} \nu, (\mathcal{M}, \mu) \models \psi$.
 - For each \mathcal{N} -assignment $\mu^* \sim_{\varphi} e \circ \nu$, since e is onto, there is an \mathcal{M} -assignment μ such that $\mu \sim_{\varphi} \nu$ and $e \circ \mu = \mu^*$, in particular, setting $\mu(x) = m$ for some $m \in M$ such that $e(m) = \mu^*(x)$.
 - By inductive hypothesis, $(\mathcal{N}, e \circ \mu) \models \psi$. $\mu \sim_{\varphi} \nu \Rightarrow e \circ \mu \sim_{\varphi} e \circ \nu$. So we have $(\mathcal{N}, e \circ \nu) \models \varphi$.
 - Similarly, $(\mathcal{M}, \nu) \not\models \varphi$ implies $(\mathcal{N}, e \circ \nu) \not\models \varphi$. (Why?)

Elementary Equivalent

Definition 4.3

Suppose that \mathcal{M} and \mathcal{N} are \mathcal{L}_A -structures. Then \mathcal{M} and \mathcal{N} are elementarily equivalent (write as $\mathcal{M} \equiv \mathcal{N}$) if and only if for each \mathcal{L}_A -sentences φ ,

$$\mathcal{M} \models \varphi \quad \Leftrightarrow \quad \mathcal{N} \models \varphi.$$

Elementary Equivalent

Definition 4.3

Suppose that \mathcal{M} and \mathcal{N} are \mathcal{L}_A -structures. Then \mathcal{M} and \mathcal{N} are elementarily equivalent (write as $\mathcal{M} \equiv \mathcal{N}$) if and only if for each \mathcal{L}_A -sentences φ ,

$$\mathcal{M} \models \varphi \quad \Leftrightarrow \quad \mathcal{N} \models \varphi.$$

Corollary 4.3

Isomorphic structures are elementarily equivalent:

$$\mathcal{M} \cong \mathcal{N} \quad \Rightarrow \quad \mathcal{M} \equiv \mathcal{N}.$$

- There are elementarily equivalent structures that are not isomorphic.
- For finite \mathcal{L}_A -structures, $\mathcal{M} \cong \mathcal{N}$ and $\mathcal{M} \equiv \mathcal{N}$ are equivalent. (The case that A is finite follows from Exercise 4.1)

Example 4.4

 $(\mathbb{R}; <_R)$ is elementarily equivalent to $(\mathbb{Q}; <_Q)$ (to be discussed later), but they are not isomorphic — different cardinality.

An example revisited

Example 4.5

Consider the two structures

$$\mathcal{M} = (\mathbb{Z}^+; <_Z)$$
 and $\mathcal{N} = (\mathbb{N}, <_N).$

 $\mathcal{M}\cong \mathcal{N}$ via the map

$$h(n) = n - 1,$$

so $\mathcal{M} \equiv \mathcal{N}$. In other word, these two structures are indistinguishable by first-order sentences.

Note that id : $\mathbb{Z}^+ \to \mathbb{N}$ is an isomorphic embedding. Hence for any \mathcal{M} -assignment ν and any quantifier-free formula φ ,

$$(\mathcal{M},\nu)\models\varphi\quad\text{iff}\quad(\mathcal{N},\text{id}\circ\nu)\models\varphi.$$

This equivalence may fail if φ contains quantifiers. For example, let $\varphi(x) \equiv \forall y (x \neq y \rightarrow x < y)$, then

 $\mathcal{M}\models \varphi[1] \quad \text{but} \quad \mathcal{N} \not\models \varphi[1]$

Automorphism

- An automorphism of the structure $\mathcal{M} = (M, I)$ is an isomorphism of \mathcal{M} onto itself.
- The identity function on M is trivially an automorphism of $\mathcal{M}.$
- ${\mathcal M}$ may or may not have nontrivial automorphisms. If not, we say ${\mathcal M}$ is rigid.
- As a consequence of Homomorphism Theorem, automorphism preserve the definable relations.

Preserving the definable relations

Corollary 4.4

Let $e : \mathcal{M} \to \mathcal{M}$ be an automorphism and R be an n-ary <u>definable</u> relation on M. Then for any $\langle a_1, \ldots, a_n \rangle \in M$,

$$\langle a_1, \ldots, a_n \rangle \in R \quad iff \quad \langle e(a_1), \ldots e(a_n) \rangle \in R.$$

Remark

This means that automorphisms fix definable sets. It is useful in showing that a given relation is not definable.

Non-definable sets I

• The set $\mathbb N$ is not definable in the structure $(\mathbb R;<).$

This is witnessed by the automorphism $e(a) = a^3$, since it maps points outside of \mathbb{N} into \mathbb{N} .

• Take the previous example of a directed graph $\mathcal{M} = (\{a, b, c\}; \{(a, b), (a, c)\})$, where $\{(a, b), (a, c)\}$ interprets a binary symbol.

$$b \longleftarrow a \longrightarrow c$$

The only nontrivial automorphism of this structure is the map that fixes a and exchanges b and c, since it has to respect the directions of edges. This map does not fix $\{b\}$, so $\{b\}$ is not definable.

Non-definable sets II

• Consider the vector space

$$\mathcal{E} = (E; +, f_r)_{r \in \mathbb{R}},$$

where

- E is the universe,
- $\bullet~+$ is the vector addition, and
- for each $r \in \mathbb{R}$, f_r is the scalar multiplication by r.

Consider the set of unit vectors,

 $U = \{ \vec{x} \mid \vec{x} \in E \text{ and } |\vec{x}| = 1 \}.$

CLAIM. U is not definable in the structure \mathcal{E} . This is witnessed by the doubling map

$$e(\vec{x}) = 2\vec{x}.$$

e is an automorphism but it does not preserve U.

Exercise 4.1

Suppose that A is finite and that \mathcal{M} is a finite \mathcal{L}_A -structure. Prove that there is an \mathcal{L}_A -sentence φ such that for every \mathcal{L}_A -structure \mathcal{N} , if $\mathcal{N} \models \varphi$ then $\mathcal{N} \cong \mathcal{M}$.

Exercise 4.2

Fix $A = \{P\}$, where P is a binary function symbol. For each of the following two pairs of \mathcal{L}_A -structures, show that they are not elementarily equivalent, by giving a sentence true in one and false in the other.

- (ℝ; ×) and (ℝ*; ×*), where x is the usual multiplication operation on the real numbers, ℝ* is the set of the non-zero reals, and ×* is × restricted to ℝ*.
- ② (ℕ; +) and (\mathbb{Z}^+ ; +*), where +* is + restricted to the set \mathbb{Z}^+ of positive integers.
- For each of the above structures, give a sentence true in that structure and false in the other three.

Elementary Substructure

Suppose
$$\mathcal{M} = (M, I)$$
, $\mathcal{N} = (N, J)$ and $M \subseteq N$.

 ${\mathcal M}$ is a substructure of ${\mathcal N}$ iff

For all atomic \mathcal{L}_A -formulas φ , and for all \mathcal{M} -assignments ν ,

$$(\mathcal{M},\nu)\models\varphi \quad \Leftrightarrow \quad (\mathcal{N},\nu)\models\varphi.$$

This inspires the following concept

Definition 4.4 (Elementary substructure)

Let \mathcal{M}, \mathcal{N} be as above. We say that \mathcal{M} is an **elementary** substructure of \mathcal{N} , and write $\mathcal{M} \leq \mathcal{N}$, if and only if for all \mathcal{L}_A -formulas φ , and for all \mathcal{M} -assignments ν ,

$$(\mathcal{M},\nu)\models\varphi \quad \Leftrightarrow \quad (\mathcal{N},\nu)\models\varphi.$$

or equivalently, for all $\bar{a} \in \bigcup_{n \in \mathbb{N}} M^n$,

$$\mathcal{M} \models \varphi[\bar{a}] \quad \Leftrightarrow \quad \mathcal{N} \models \varphi[\bar{a}].$$

Remarks

- $\mathcal{M} \leq \mathcal{N}$ implies $\mathcal{M} \subseteq \mathcal{N}$.
- $\mathcal{M} \leq \mathcal{N}$ implies $\mathcal{M} \equiv \mathcal{N}$.

As a consequence, for any finite structure, there is no other elementary substructure besides itself.

- For the converse of both claims, consider $(\mathbb{N}, <)$ and $(\mathbb{Z}^+, <)$.
- When A = Ø, for every infinite L_A-structure, every infinite subset of its universe forms an elementary substructure.

Exercise 4.3

Let $A = \emptyset$ and \mathcal{N} be the \mathcal{L}_A -structure whose universe is \mathbb{N} . Show that for every infinite $S \subseteq \mathbb{N}$, the \mathcal{L}_A -struture with S being its universe is an elementary substructure of \mathcal{N} .

Question 4.5

How do we tell a substructure of N is an elementary substructure?

The answer is Tarski's criterion, which gives an elegant characterization in terms of definable sets. For that we give a more general notion of definability.

Definability

Definition 4.5

Suppose that $\mathcal{M} = (M, I)$ is an \mathcal{L}_A -structure.

• Suppose that $\overline{b} \in M^k$. A set $Y \subseteq M^n$ is definable in \mathcal{M} with parameter \overline{b} (or \overline{b} -definable in M) iff there a \mathcal{L}_A -formula $\varphi(\overline{x}, \overline{y})$ such that

$$Y = Y_{\varphi,\bar{b}} =_{\text{def}} \{ \bar{a} \in M^n \mid \mathcal{M} \models \varphi[\bar{a},\bar{b}] \}$$

- Suppose that $X \subseteq M$. A set $Y \subseteq M^n$ is definable in \mathcal{M} with parameters from X (or X-definable in M) iff $Y = Y_{\varphi,\bar{b}}$ for some \mathcal{L}_A -formula $\varphi(\bar{x}, \bar{y})$ and some parameters $\bar{b} \in X^k$.
- Y is definable in *M* (without parameters) iff it is Ø-definable in *M*.

Definability Theorem

Theorem 4.6

Suppose that $\mathcal{M} = (M, I)$ is an \mathcal{L}_A -structure and that $X \subseteq M$. Suppose that $Y \subseteq M^n$ is X-definable in \mathcal{M} and that $e : M \to M$ is an automorphism of \mathcal{M} . If e fixes X, i.e. for each $b \in X$, e(b) = b, then:

$$Y = e[Y] = \{ \langle e(a_1), \dots, e(a_n) \rangle \mid \langle a_1, \dots, a_n \rangle \in Y \}.$$

PROOF (SKETCH). Extend the language by adding constant symbols for each element $b \in X$, i.e. work with language \mathcal{L}_{A^*} , where $A^* = A \cup \{c_b \mid b \in X\}$. Any \mathcal{L}_A -automorphism over \mathcal{M} fixing X can be viewed as \mathcal{L}_{A^*} -automorphism over \mathcal{M} .

Example 4.6

Suppose that $A = \emptyset$ and $\mathcal{M} = (M, \emptyset)$ is an \mathcal{L}_A -structure. Note that any bijection $e : M \to M$ defines an automorphism of \mathcal{M} . The following claims follow from the Definability Theorem. Suppose that $D \subseteq M$, then

- **1** D is definable in M without parameters iff $D = \emptyset$ or D = M.
- ② D is definable in M from parameters iff D is finite or $M \setminus D$ is finite. (Exercise 4.4-③)

Theorem 4.7 (Tarski's Criterion)

Suppose $\mathcal{M} = (M, I)$ and $\mathcal{N} = (N, J)$ are \mathcal{L}_A -structures, and $\mathcal{M} \subseteq \mathcal{N}$. Then the following are equivalent:

2 for every *M*-definable nonempty set $D \subseteq N$, $D \cap M \neq \emptyset$.

(2) for every \mathcal{L}_A -formula $\varphi(x, \bar{y})$ and $\bar{b} \in M^n$, if there is $a \in N$ such that $\mathcal{N} \models \varphi[a, \bar{b}]$, then there is $a' \in M$ such that $\mathcal{N} \models \varphi[a', \bar{b}]$.

The equivalence $\mathbf{0} \Leftrightarrow \mathbf{0}'$ is also known as Tarski-Vaught Test.

Proof

 $\begin{array}{l} \textcircled{1} \Rightarrow \textcircled{2}: \quad \text{Let } D = \{a \mid \mathcal{N} \models \varphi[a, \bar{b}]\}, \text{ where } \bar{b} \in M^n \text{ are parameters.} \\ \text{This is implies that } \mathcal{N} \models \exists x \varphi[x, \bar{b}]. \text{ By elementarity, } \mathcal{M} \models \exists x \varphi[x, \bar{b}], \\ \text{which means } D \cap M \neq \varnothing. \end{array}$

 $@\Rightarrow @$: Induction on the ranks of formulas. Since id : $\mathcal{M} \to \mathcal{N}$ is an isomorphic embedding, by the proof of Homomorphism Theorem, we only need to check the quantifier case $\varphi = \forall x \psi$.

Suppose for all $a \in M$, $\overline{b} \in M^n$,

$$\mathcal{N} \models \psi[a, \bar{b}] \quad \Leftrightarrow \quad \mathcal{M} \models \psi[a, \bar{b}]$$

Since $\mathcal{M} \subseteq \mathcal{N}$,

$$\mathcal{N} \models \forall x \psi[x, \bar{b}] \quad \Rightarrow \quad \mathcal{M} \models \forall x \psi[x, \bar{b}].$$

For the other direction, fix $\overline{b} \in M^n$, let $D = \{a \mid \mathcal{N} \models \neg \psi[a, \overline{b}]\}$. Suppose $\mathcal{N} \models \exists x \neg \psi[x, \overline{b}]$, i.e. $D \neq \emptyset$. By (2), $D \cap M \neq \emptyset$. This means $\mathcal{M} \models \exists x \neg \psi[x, \overline{b}]$.

Exercise 4.4

- Let $\mathcal{N} = (\mathbb{N}, 0, 1, +, \times)$. Show that if $\mathcal{M} \subseteq \mathcal{N}$, then $\mathcal{M} = \mathcal{N}$.
- 2 Let $A = \{P\}$ where P is a unary predicate symbol. Let $\mathcal{M} = (M, I)$ be the finite \mathcal{L}_A -structure with $M = \{a, b, c, d, e\}$ and $I(P) = \{a, b\}$.
 - Which subsets of M are definable in M without parameters.
 - Which subsets of M are definable in M with parameters.

Prove the second claim of Example 4.6.

We shall study a few examples, try to classify the definable sets of these structures.

Let $A = \{P\}$, where P is a binary predicate symbol. Consider the \mathcal{L}_A -structure $(\mathbb{R}, <)$, where < is the usual ordering of the reals.

Suppose $X \subset \mathbb{R}$ is finite. Define for each $a, b \in \mathbb{R}$, $a \sim_X b$ iff there exists an automorphism e of $(\mathbb{R}, <)$ such that e fixes X and e(a) = b.

The relation \sim_X is an equivalence relation. Namely, for all $x,y,z\in\mathbb{R},$

since the identity map id is an automorphism.

2 if $x \sim_X y$ then $y \sim_X x$;

since the inverse of an automorphism is an automorphism.

• if $x \sim_X y$ and $y \sim_X z$ then $x \sim_X z$.

since the composition of automorphisms is an automorphism.

Intervals

For each $r \in \mathbb{R}$, let

$$[r]_X = \{ x \in \mathbb{R} \mid x \sim_X r \}$$

be the equivalence class of r.

Definition 4.6

- interval: If $a \leq b \leq c$ and $a, c \in I$ then $b \in I$.
- endpoint(s): $\sup(I) \cup \inf(I)$.
- Notation: (a, b), [a, b].

Lemma 4.7

Suppose that $X \subset \mathbb{R}$ is finite. Then for each $a \in \mathbb{R}$, $[a]_X$ is an interval. In fact,

- if $a \in X$ then $[a]_X = \{a\};$
- if $a \notin X$ then $[a]_X$ is the maximum interval $I \subset \mathbb{R}$ such that $a \in I$ and $I \cap X = \emptyset$.

Proof of lemma 4.7

- Suppose $a \in X$. Since $a \sim_X b \Rightarrow a = b$, $[a]_X = \{a\}$.
- Suppose $X = \{x_1, \ldots, x_n\}$ and w.l.o.g. assume $a \in (x_1, x_2)$. We show that $[a]_X = (x_1, x_2)$. Suppose $b \in (x_1, x_2)$ and $b \neq a$.

Define

$$h = h_1 \cup h_2 \cup \operatorname{id}|_{\mathbb{R} - (x_1, x_2)}.$$

where h_1 is the linear transformation from (x_1, a) to (x_1, b) ,

$$h_1(t) = \frac{b - x_1}{a - x_1}(t - x_1) + x_1$$

and h_2 is the linear transformation from (a, x_2) to (b, x_2)

$$h_2(t) = x_2 - \frac{x_2 - b}{x_2 - a}(x_2 - t).$$

 $a \sim_X b$ via h. So $(x_1, x_2) \subseteq [a]_X$. Since any automorphism sending a to outside (x_1, x_2) moves either x_1 or x_2 , it must be that $(x_1, x_2) = [a]_X$.

Definable subsets of $(\mathbb{R}, <)$

Theorem 4.8

Suppose that $X \subseteq \mathbb{R}$ and $A \subseteq \mathbb{R}$. Then the following are equivalent.

• A is X-definable in $(\mathbb{R}, <)$.

2 A is a finite union of intervals with endpoints in X.

Proof.

 $2 \Rightarrow 1$ is clear. For instance,

$$(x_1, x_2) = \{ a \mid (\mathbb{R}, <) \models x_1 < a \land a < x_2 \}.$$

For $\P \Rightarrow \P$, suppose A is definable with parameter \bar{p} . The key point is that if $a \in A$ then $[a]_{\bar{p}} \subseteq A$, thus $A = \bigcup_{a \in A} [a]_X$. Each $[a]_{\bar{p}}$ is an interval, and there are only finitely many of them.

Corollary 4.9 (Elementary substructures of $(\mathbb{R}, <)$)

Let $\mathcal{R} = (\mathbb{R}, <)$. Suppose that $M \subseteq \mathbb{R}$ and $\mathcal{M} = (M, <_M)$ is the induced substructure of \mathcal{R} . Then the following are equivalent

- **2** \mathcal{M} is a dense linear order without endpoints. (DLO)

Proof.

$$\bigcirc \Rightarrow \bigcirc: \mathsf{DLO} \subseteq \mathsf{Th}(\mathcal{M}) \text{ and } \mathcal{M} \equiv \mathcal{R}, \text{ thus } \mathcal{M} \models \mathsf{DLO}.$$

2 \Rightarrow **1**: Suppose A is $\{m_1, \ldots, m_n\}$ -definable in \mathcal{R} and $A \neq \emptyset$. Show $A \cap M \neq \emptyset$. By Theorem 4.8, we may assume that A is an interval.

•
$$I = \{m_i\}$$
: $I \subseteq A \cap M$;

•
$$I = (m_i, m_{i+1})$$
: use "dense";

• $I = (-\infty, m_1)$ or $I = (m_n, +\infty)$: use "without endpoints".

$(\mathbb{Q},<)$ is a DLO, and $\mathbb{Q}\subseteq\mathbb{R},$ so $(\mathbb{Q},<)\leqslant(\mathbb{R},<).$ Thus we have

Corollary 4.10 (Definable subsets of $(\mathbb{Q}, <)$)

Suppose that $X \subseteq \mathbb{Q}$ and that $A \subset \mathbb{Q}$. Then the following are equivalent

- A is X-definable in $(\mathbb{Q}, <)$.
- **2** A is a finite union of intervals with endpoints in X.

Proof sketch (one interval as an example).

Suppose $\varphi(x; r_1, r_2)$ is a definition for $A = (r_1, r_2)$. Then

$$\forall x \, [\varphi(x, r_1, r_2) \leftrightarrow (r_1 < x \land x < r_2)].$$

The point is that the formula above is a first order property with parameters in \mathbb{Q} , therefore holds in both $(\mathbb{R}, <)$ and $(\mathbb{Q}, <)$.

Definition 4.7

A set A is **countable** if $A = \emptyset$ or there is an injection $f : A \to \mathbb{N}$.

Assuming AC, this is equivalent to the following definition

Definition

A set A is **countable** if $A = \emptyset$ or there is a surjection $f : \mathbb{N} \to A$.

Intuitively, the surjection f is an enumeration of all the elements of A. We shall always assume AC. The next result follows from (countable) AC.

Theorem 4.11

Suppose that $\{A_i \mid i \in \mathbb{N}\}$ is a countable sequence of countable sets. Then $A = \bigcup_i A_i$ is a countable set.

Example 4.7

- \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathcal{L}_0 , \mathcal{L}_A (A countable) are countable sets.
- (Cantor) $\mathcal{P}(\mathbb{N})$, \mathbb{R} are uncountable.

Exercise (not assigned)

- Show that if M = (M, I) is an L_A-structure and X is a countable subset of M, then the collection of all sets A ⊆ M such that A is definable in M with parameters from X is countable. (Hint: Show that there are only countably many formulas and countably many finite sequences from X.)
- Show that the set of all algebraic numbers in \mathbb{R} is countable. A real r is algebraic if for some $a_0, \ldots, a_{n-1} \in \mathbb{Z}$,

$$(\mathbb{R};+,\cdot,0,1) \models \sum_{i=0}^{n} a_i r^i = 0.$$

Theorem 4.12 ((Downward) Lowenheim-Skolem)

Suppose $\mathcal{N} = (N, I)$ is an \mathcal{L}_A -structure and X is a countable subset of N. Then there is countable M such that $X \subseteq M \subseteq N$ and $\mathcal{M} = (M, I \upharpoonright M) \leqslant \mathcal{N}.^a$

 $^a{\rm This}$ is also known as $\mbox{L-S-T}$ Theorem, where L-S-T stands for Lowenheim-Skolem-Tarski.

Proof.

The key is to construct a countable sequence $\langle M_k \mid k \in \mathbb{N} \rangle$ of countable subsets of N such that

- $M_0 = X$,
- for each $k \in \mathbb{N}$, $M_k \subseteq M_{k+1}$,
- for each $k \in \mathbb{N}$, if $A \subseteq N$ is M_k -definable in \mathcal{N} and $A \neq \emptyset$, then $A \cap M_{k+1} \neq \emptyset$.

Arbitrary dense linear orders

Let $\mathcal{M} = (M, <)$ be an arbitrary DLO.

There are examples of DLO structure \mathcal{M} with the additional property that there is no nontrivial automorphism over \mathcal{M} . So it doesn't help to use the method of automorphism to analyze arbitrary DLOs.

However, one can appeal to the Downward L-S-T Theorem.

Countable dense linear order without endpoints

Theorem 4.13

Suppose that $\mathcal{M} = (M, <)$ is a countable dense linear order without endpoints. Then $\mathcal{M} \cong (\mathbb{Q}, <)$.

Proof.

- Enumerate $M = \{m_i\}_i$ and $\mathbb{Q} = \{Q_i\}_i$.
- (Back-and-forth argument) Suppose a finite partial isomorphism $h_n : \mathbb{Q} \to \mathcal{M}$ has been constructed up to step n.
 - Take i_n least i such that $q_i \notin \text{dom}(h)$, find $m \in M$ such that $h' := h_n \cup \{(q_{i_n}, m)\}$ remains to be an isomorphism (on its domain).
 - take j_n least j such that $m_j \notin h'$, find $q \in Q$ such that $h_{n+1} := h' \cup \{(q, m_{j_n})\}$ remains to be an isomorphism.
- Let $h = \bigcup_n h_n$. Verify that h works.

Definable subsets of arbitrary \mathcal{M}

Theorem 4.14

Suppose that ${\mathcal M}$ is a dense linear order without endpoints. Then

2 If $X \subseteq M$ and $A \subseteq M$ is X-definable in \mathcal{M} , then A is a finite union of intervals with endpoints in X.

Proof.

Use the Downward Lowenheim Skolem. There is a countable $\mathcal{M}_0 \leq \mathcal{M}$. $\mathcal{M}_0 \cong (\mathbb{Q}, <)$, so $\mathcal{M}_0 \equiv (\mathbb{Q}, <)$. Moreover, suppose A is definable with parameter $\bar{p} \in X^m$, choose \mathcal{M}_0 such that $\bar{p} \subseteq M_0$, (2) follows from that $\mathcal{M}_0 \leq \mathcal{M}$.

Definable subsets of $(\mathbb{R}, +, \times, <, 0, 1)$

The analysis of the definable sets in familiar mathematical structures can be quite a complicated problem, and one whose resolution involves a deep understanding of those structures.

Theorem 4.15 (Tarski-Seidenberg)

Let $\mathcal{R} = (\mathbb{R}, +, \times, <, 0, 1)$. Suppose $A \subseteq \mathbb{R}$ is definable from parameters in \mathcal{R} . Then A is a finite union of intervals.

Exercise 4.5

Consider the structure $\mathcal{R} = (\mathbb{R}, +, \times, <, 0, 1)$. Let \mathcal{N} be the substructure of \mathcal{R} given by the set of all $r \in \mathbb{R}$ such that the set $A_r = \{r\}$ is definable in \mathcal{R} without parameters. Show that $\mathcal{N} \leq \mathcal{R}$.

 $\operatorname{HINT}:$ Use Tarski's Criterion together with the Tarski-Seidenberg Theorem.

Question

What about expanded structures of the form

$$\mathcal{R}_F = (\mathbb{R}, +, \times, <, F, 0, 1),$$

where a single function $F : \mathbb{R} \to \mathbb{R}$ is added?

Theorem 4.16

Let $\mathcal{R}_F = (\mathbb{R}, +, \times, <, F, 0, 1).$

- If F(x) = sin x, then there is an A ⊆ ℝ which is definable in *R_F* without parameters such that A is NOT a finite union of intervals. (Let A = {x ∈ ℝ | sin x = 0})
- (Wilkie, 1996) If F(x) = sin 1/(1+x²) or F(x) = e^x, then every A ⊆ ℝ that is definable from parameters in R_F is a finite union of intervals.

Definable subsets of $(\mathbb{N}, <)$

Question

What about the definable subsets of the structure $(\mathbb{N}, <)$?

- $(\mathbb{N}, <)$ is a discrete order, and it admits no automorphism.
- First construct a structure $\mathcal{M}=(M,<)$ such that

 $(\mathbb{N}, <) < (M, <) \quad \text{and} \quad \mathcal{M} \neq (\mathbb{N}, <)^1.$

- \bullet Then use automorphism of ${\mathcal M}$ is a finite union of intervals.
- Answer: every definable subsets of N is either finite or co-finite (i.e. its complement is finite).

¹The existence of such \mathcal{M} follows from Compactness Theorem, which is a corollary of the upcoming Gödel's Completeness Theorem.