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Homomorphism Homomorphism

Definition 4.1 (homomorphisms between structures)

Suppose M = (M, I) and N' = (N, J) are two L 4-structures. A
homomorphism between M and N is a function e : M — N with
the following properties:

@ For each constant symbol ¢; € A,

e(ci) = .

2
@ For each function symbol F; € A, if n = w(F;), then for each
a=-<{ay,...,a,ye M",
e(FM(a)) = F¥ (e(a)).
@ For each predicate symbol P; € A, if n = 7(F;), then for each
a=<ay,...,anye M",
acPM iff e(a)ePVN.
If e is 1-1, it is called an isomorphic embedding of M into \V. If,
in addition, e is onto, then it is called an isomorphism of M onto
N, and write M =~ N.
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Homomorphism Homomorphism

Exampls

Example 4.1
Let M be the structure (N;+, ). We define a function
h:N— {0,1} by
0, if nis even;
) = { 1, if nis odd.

Then h is a homomorphism of M onto U = ({0, 1}, J), where
J(+) and J(-) are given by

JH+)|0 1 J() [0 1
0 |0 1 0 [0 O
1 |10 1 (0 1
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Homomorphism Homomorphism

Exampls

Example 4.2
Consider the two structures
M= (Z",<z) and N = (N,<p).
@ There is an isomorphism h from M onto N: h(n) =n — 1.

@ The identity map id : Z™ — N is an isomorphic embedding of
M into . M fits coherently with the structure of A/. Due
to this fact, we say that M is a substructure of N/. More
generally,

.
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Homomorphism Substructure

Substructure

Definition 4.2

Consider two L 4-structures M = (M, I) and N' = (N, J) such
that M = N. We say M is a substructure of N (write M = N)
if the following conditions are met:

@ For every ce A, M :cN;

o For every F e A, FM = FN\M”, where n = 7(F);

o For every P e A, PM = PN ~ M™, where n = 7(P).
Also N is called an extension of M. |

Example 4.3
(Q; +¢q) is a substructure of (C; +¢).
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Homomorphism Substructure

Simple facts about substructures

o Let M= (M,I), N =(N,J) be two L4-structures. If
M < N, M must be closed under FV for all F e A.

This closure property holds for the 0-ary function symbols, as
cM e M, for each c € A.

e Conversely, given a L 4-structure N' = (N, J). Suppose
@ # M < N and M is closed under FN, for all '€ A. Then
there is a unique M < N with universe M.

An extreme case: if A nF = & i.e. no function symbols, then
any nonempty subset of NV can be the universe of a
substructure of .
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Homomorphism Substructure

Theorem 4.1

Suppose that M = (M, I) and N = (N, J) are two L 4-structures
with M < N. Then the following are equivalent.

QO McW\N.
@ For all atomic ¢ € L4 and for all M-assignments v,

M) < Ny e
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Homomorphism Substructure

Theorem 4.1

Suppose that M = (M, I) and N = (N, J) are two L 4-structures
with M < N. Then the following are equivalent.

QO McW\N.
@ For all atomic ¢ € L4 and for all M-assignments v,

M) < Ny e

This follows from part (1) of Homomorphism Theorem (coming up
next) and the definition of substructures. O]

v
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Homomorphism Homomorphism theorem

Homomorphism Theorem

Theorem 4.2

Suppose that e : M — N is a homomorphism between
L a-structures M = (M,I) and N = (N, J). Suppose that v is an
M-assignment. Then

© cov is an N-assignment. In fact, for any term T,
eov(r) =e(r(r)).
@ For any quantifier-free L 5-formula @ not containing the
equality symbol,

Murv)Ee < Neov) o
@ Ife is injective (1-1), then in part (2), we may delete the
restriction “not containing the equality symbol’.

© If e is surjective (onto), then in part (2), we may drop the
restriction “quantifier-free’.
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Homomorphism Homomorphism theorem

@ Induction on the rank of terms. For instance, suppose F' € A
with 7(F) =n and 7€ T".

eov(F(7)) = FN(eou(7)) (defn of
= FN(e((7))) (by induction
= e(FM(0(7))) (e is a hom
=e(v(F(7))) (defn of

@ Induction on the rank of formulas.

2)
)
)
2)
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Homomorphism Homomorphism theorem

@ Checking atomic formulas such as P(7) and the inductive
arguments on connective symbols are routine. This proves
part (2) for quantifier-free and no-equality-symbol formulas.

@ For the case of the equality symbol,

Mv)ET=0< (1) =1(0)

If e is injective, then “=" can be reversed.
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Homomorphism Homomorphism theorem

@ We assume e is surjective and check the inductive step on the
quantifier. Let ¢ = (Va1)).

o (M,v) = ¢, so for every pi ~, v, (M, ) = 1.

o For each N-assignment u* ~, €0V, since e is onto, there is
an M-assignment y such that u ~, v and eo = p*, in
particular, setting p(z) = m for some m € M such that
e(m) = p*(z).

o By inductive hypothesis, (NV,eo p) = 1.
p~pv=eop~,eor. Sowe have (N,eov) = .

o Similarly, (M, v) i ¢ implies (N, eov) ¥ .
(Why?) O
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Homomorphism Elementary equivalent

Elementary Equivalent

Definition 4.3
Suppose that M and N are L 4-structures. Then M and N are
elementarily equivalent (write as M = N) if and only if for each

L 4-sentences ¢,

MEp < NEop

Mathematical Logic

Spring, 2025 Xianghui Shi



Homomorphism Elementary equivalent

Elementary Equivalent

Definition 4.3

Suppose that M and N are L 4-structures. Then M and N are
elementarily equivalent (write as M = N) if and only if for each
L 4-sentences ¢,

MEp & NEo

Corollary 4.3

Isomorphic structures are elementarily equivalent:

Mx=N = M=N.
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Homomorphism Elementary equivalent

REMEILS

@ There are elementarily equivalent structures that are not
isomorphic.

o For finite £4-structures, M =~ N and M = N are equivalent.
(The case that A is finite follows from Exercise 4.1)

Example 4.4

(R; <R) is elementarily equivalent to (Q; <@) (to be discussed
later), but they are not isomorphic — different cardinality.
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Homomorphism Elementary equivalent

An example revisited

Example 4.5

Consider the two structures
M= (ZT;<z) and N = (N,<p).
M = N via the map
h(n)=n—1,
so M = N. In other word, these two structures are
indistinguishable by first-order sentences.
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Homomorphism Elementary equivalent

Note that id : ZT — N is an isomorphic embedding. Hence for any
Me-assignment v and any quantifier-free formula ¢,

(M) o iff (Nidov) = .
This equivalence may fail if ¢ contains quantifiers. For example,
let p(z) =Vy(x #y — = < y), then

M (1] but N # pl]
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Homomorphism Automorphism and definability

Automorphism

e An automorphism of the structure M = (M, 1) is an
isomorphism of M onto itself.

@ The identity function on M is trivially an automorphism of

M.

@ M may or may not have nontrivial automorphisms. If not, we
say M is rigid.

@ As a consequence of Homomorphism Theorem, automorphism
preserve the definable relations.
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Homomorphism Automorphism and definability

Preserving the definable relations

Corollary 4.4

Let e : M — M be an automorphism and R be an n-ary definable
relation on M. Then for any {a1,...,a,)y € M,

{ai,...,any€ R iff {e(ai),...e(an)) € R.

This means that automorphisms fix definable sets. It is useful in
showing that a given relation is not definable.
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Homomorphism Automorphism and definability

Non-definable sets |

@ The set N is not definable in the structure (R; <).

Spring, 2025

This is witnessed by the automorphism e(a) = a3, since it
maps points outside of N into N.

Take the previous example of a directed graph
M = ({a,b,c}; {(a,b), (a,c)}), where {(a,b),(a,c)} interprets
a binary symbol.

b < a > C

The only nontrivial automorphism of this structure is the map
that fixes a and exchanges b and ¢, since it has to respect the
directions of edges. This map does not fix {b}, so {b} is not
definable.
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Homomorphism Automorphism and definability

Non-definable sets Il

o Consider the vector space
&= (E5 =+, fr)reR7
where

o F is the universe,
e + is the vector addition, and
e for each r € R, f, is the scalar multiplication by 7.

Consider the set of unit vectors,
U={Z|7e F and |Z| =1}.

CrAM. U is not definable in the structure £.
This is witnessed by the doubling map

e(Z) = 2.

e is an automorphism but it does not preserve U.
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Homomorphism Automorphism and definability

Suppose that A is finite and that M is a finite £ 4-structure.
Prove that there is an £ 4-sentence ¢ such that for every

L 4-structure N, if N |= ¢ then N =~ M.
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Homomorphism Automorphism and definability

Fix A = {P}, where P is a binary function symbol. For each of the
following two pairs of L 4-structures, show that they are not
elementarily equivalent, by giving a sentence true in one and false
in the other.

Q@ (R; x) and (R*; x*), where x is the usual multiplication
operation on the real numbers, R* is the set of the non-zero
reals, and x* is x restricted to R*.

Q@ (N;+) and (Z™;+*), where +* is + restricted to the set Z*
of positive integers.

© For each of the above structures, give a sentence true in that
structure and false in the other three.

A
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Homomorphism Elementary substructure

Elementary Substructure

Suppose M = (M,I), N =(N,J) and M < N.

M is a substructure of N iff
For all atomic L s-formulas o, and for all M-assignments v,

Mv)Ee = Nv)Ee
This inspires the following concept

Definition 4.4 (Elementary substructure)

Let M, N be as above. We say that M is an elementary
substructure of N, and write M < N/, if and only if for all
L 4-formulas ¢, and for all M-assignments v,

M) e < Nv)Ee

or equivalently, for all @ € | J,,.yM",

MEgplal < N lal

.
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Homomorphism Elementary substructure

REMEILS

M <N impliess M C V.
M <N implies M = N.

As a consequence, for any finite structure, there is no other
elementary substructure besides itself.

@ For the converse of both claims, consider (N, <) and (ZT, <).

@ When A = &, for every infinite L 4-structure, every infinite
subset of its universe forms an elementary substructure.

Let A = & and A be the £ 4-structure whose universe is N. Show
that for every infinite S € N, the £ 4-struture with S being its
universe is an elementary substructure of N.

Spring, 2025 Xianghui Shi Mathematical Logic



Homomorphism Elementary substructure

Question

Question 4.5
How do we tell a substructure of N is an elementary substructure?

The answer is Tarski's criterion, which gives an elegant
characterization in terms of definable sets. For that we give a more

general notion of definability.
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Homomorphism Elementary substructure

Definability

Definition 4.5

Suppose that M = (M, ) is an L 4-structure.

@ Suppose that be M*. A set Y = M™ is definable in M
with parameter b (or b-definable in A/) iff there a
L 4-formula ¢(Z,y) such that

Y =Y, 5=dqr{ae M" | M |= ¢[a,b]}

@ Suppose that X € M. Aset Y € M" is definable in M
with parameters from X (or X-definable in )/) iff
Y=Y,5 for some L 4-formula ¢(Z,y) and some parameters
be XF.

@ Y is definable in M (without parameters) iff it is
@-definable in M.

Spring, 2025 Xianghui Shi Mathematical Logic



Homomorphism Elementary substructure

Definability Theorem

Theorem 4.6

Suppose that M = (M, I) is an L 4-structure and that X < M.
Suppose that Y < M" is X -definable in M and that e : M — M
is an automorphism of M. If e fixes X, i.e. for eachbe X,

e(b) = b, then:

Y =el[Y] = {{e(ar),...,e(an)) | {a1,...,any € Y}

PROOF (SKETCH). Extend the language by adding constant symbols
for each element b € X, i.e. work with language L 4%, where

A* =AU {c | be X}. Any L -automorphism over M fixing X can be
viewed as L 4«-automorphism over M.
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Homomorphism Elementary substructure

Example 4.6
Suppose that A = @ and M = (M, @) is an L-structure. Note
that any bijection ¢ : M — M defines an automorphism of M.
The following claims follow from the Definability Theorem.
Suppose that D € M, then

@ D is definable in M without parameters iff D = @ or D = M.

@ D is definable in M from parameters iff D is finite or M\D is
finite. (Exercise 4.4-Q)

A
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Homomorphism Tarski's criterion

Theorem 4.7 (Tarski's Criterion)

Suppose M = (M, I) and N = (N, J) are L a-structures, and M = N.
Then the following are equivalent:

QO MN

@ for every M-definable nonempty set D € N, D n M # &.

@ for every La-formula o(x,7) and be M™, if there is a € N such
that N |= ¢la, b], then there is a’ € M such that N' = ¢la’, b].

The equivalence @ < @' is also known as Tarski-Vaught Test.
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Homomorphism Tarski's criterion

Proof

We prove @ < @ only.

Q= 0: Let D={a|N | ¢a,b]}, where be M" are parameters.
This is implies that A = Jzp[z, b]. By elementarity, M |= Jxy[z, ],
which means D n M # &.

Q@ = @: Induction on the ranks of formulas. Since id : M — A is an
isomorphic embedding, by the proof of Homomorphism Theorem, we only
need to check the quantifier case ¢ = V).

Suppose for all a € M, be M™,
NEvlal < Mol
Since M S W,
N = Vay[z,b] = M EVaplx,b].

For the other direction, fix b e M™, let D = {a | N |= —[a, b]}.
Suppose N |= dz—9[z,0], i.e. D # @. By @, D n M # @. This means
M = Jz—p[z, b). O
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Homomorphism Tarski's criterion

Exercise 4.4
@ Let N = (N,0,1,+, x). Show that if M = N/, then M = N.

@ Let A = {P} where P is a unary predicate symbol. Let
M = (M, I) be the finite £ -structure with
M = {a,b,c,d, e} and I(P) = {a, b}.
e Which subsets of M are definable in M without parameters.
e Which subsets of M are definable in M with parameters.

© Prove the second claim of Example 4.6.
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Homomorphism Case study: Dense Linear Order (DLO)

Case study: Dense linear order

We shall study a few examples, try to classify the definable sets of
these structures.

Let A = {P}, where P is a binary predicate symbol. Consider the
L g-structure (R, <), where < is the usual ordering of the reals.

Suppose X < R is finite. Define for each a,b € R, a ~x b iff there
exists an automorphism e of (R, <) such that e fixes X and
e(a) =b.
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Homomorphism Case study: Dense Linear Order (DLO)

An equivalence relation

The relation ~x is an equivalence relation. Namely, for all
z,y, 2 € R,

Q@ z~xu

since the identity map id is an automorphism.
Q if x ~x y then y ~x x;

since the inverse of an automorphism is an automorphism.
Q@ ifxr~xyandy ~x 2z then x ~x 2.

since the composition of automorphisms is an automorphism.

Spring, 2025 Xianghui Shi
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Homomorphism Case study: Dense Linear Order (DLO)

Intervals

For each r e R, let
[rlx ={zeR |z ~x r}

be the equivalence class of 7.

Definition 4.6

e interval: If a <b<canda,cel thenbel.
e endpoint(s): sup(]) u inf(I).
e Notation: (a,b), [a,b].
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Homomorphism Case study: Dense Linear Order (DLO)

Suppose that X < R is finite. Then for each a € R, [a]x is an
interval. In fact,

o ifae X then [a|x = {a};

e ifa¢ X then [a]x is the maximum interval I — R such that
acelandln X =0.

A
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Homomorphism Case study: Dense Linear Order (DLO)

Proof of lemma 4.7

@ Suppose a € X. Sincea ~x b=a =0, [a]x = {a}.

@ Suppose X = {x1,...,x,} and w.l.o.g. assume a € (z1, z2).
We show that [a]x = (21, 22). Suppose b € (x1,z2) and
b # a.

[y

a

]
|\\
h1\ \\\ \hz
\\l
T
b

80-----08
80-----08
a

[y
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Homomorphism Case study: Dense Linear Order (DLO)

Define
h = hl U h2 v id ‘Rf(ml,z2)~
where hy is the linear transformation from (x1,a) to (z1,b),

hi(t) =

and hy is the linear transformation from (a,z2) to (b, z2)

b*IL’l

t—x) +
a—xl( xl) 1

xg—b

hg(t) = T2 — (1‘2 — t).

To — Q
a ~x bvia h. So (z1,x2) € [a]x. Since any automorphism sending a to
outside (1, z2) moves either x1 or x5, it must be that
(z1,22) = [a] x. O
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Homomorphism Case study: Dense Linear Order (DLO)

Definable subsets of (R, <)

Theorem 4.8

Suppose that X < R and A € R. Then the following are
equivalent.

@ A is X-definable in (R, <).

@ A is a finite union of intervals with endpoints in X .

@ = @ is clear. For instance,

(r1,22) ={a | (R, <) =1 <a A a < xa}.

For @ = @, suppose A is definable with parameter p. The key
point is that if a € A then [a]; = A, thus A =] ,c4[a]x. Each
[a]p is an interval, and there are only finitely many of them. OJ
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Homomorphism Case study: Dense Linear Order (DLO)

Corollary 4.9 (Elementary substructures of (R, <))
Let R = (R, <). Suppose that M < R and M = (M, <y) is the
induced substructure of R. Then the following are equivalent

O M<R.

@ M is a dense linear order without endpoints. (DLO)

V

Q = @: DLO  Th(M) and M =R, thus M = DLO.

Q = @: Suppose A is {my,...,my}-definable in R and A # &. Show
An M # @. By Theorem 4.8, we may assume that A is an interval.

o I ={m;}: I< An M,

@ [ = (my,miy1): use “dense”;

@ I =(—o0,mq) or I = (my,+o0): use “without endpoints”. O
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Homomorphism Case study: Dense Linear Order (DLO)

(Q,<) is aDLO, and Q € R, so (Q, <) < (R, <). Thus we have

Corollary 4.10 (Definable subsets of (Q, <))

Suppose that X < Q and that A c Q. Then the following are
equivalent

@ A is X-definable in (Q, <).
@ A is a finite union of intervals with endpoints in X .

Proof sketch (one interval as an example).

Suppose @(x;r1,73) is a definition for A = (ry,73). Then
Vo [p(x,r1,7m2) < (11 <z Az <T2)l.

The point is that the formula above is a first order property with
parameters in Q, therefore holds in both (R, <) and (Q, <). O
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Homomorphism Case study: Dense Linear Order (DLO)

Some basics of cardinals

Definition 4.7
A set A is countable if A = & or there is an injection f: A — N.

Assuming AC, this is equivalent to the following definition

Definition

A set A is countable if A = @ or there is a surjection f: N — A.

Intuitively, the surjection f is an enumeration of all the elements of
A. We shall always assume AC. The next result follows from
(countable) AC.
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Homomorphism Case study: Dense Linear Order (DLO)

Theorem 4.11

Suppose that {A; | i € N} is a countable sequence of countable
sets. Then A =|J;A; is a countable set.

Example 4.7

o N, Z, Q, Lo, L4 (A countable) are countable sets.
o (Cantor) P(N), R are uncountable.
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Homomorphism Case study: Dense Linear Order (DLO)

Exercise (not assigned)

@ Show that if M = (M, I) is an L4-structure and X is a
countable subset of M, then the collection of all sets A € M
such that A is definable in M with parameters from X is
countable. (Hint: Show that there are only countably many
formulas and countably many finite sequences from X.)

@ Show that the set of all algebraic numbers in R is countable.
A real r is algebraic if for some aq,...,a,_1 € 7Z,

(Ra T %5 07 1) ): Z?:O airi =0.

.
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Homomorphism Case study: Dense Linear Order (DLO)

Theorem 4.12 ((Downward) Lowenheim-Skolem)

Suppose N' = (N, I) is an L 4-structure and X is a countable
subset of N. Then there is countable M such that X € M < N
and M = (M,I'|M)< N2

°This is also known as L-S-T Theorem, where L-S-T stands for
Lowenheim-Skolem-Tarski.

V.
The key is to construct a countable sequence (M, | k € N) of countable
subsets of IV such that
("] M() = X,
@ for each ke N, My S M1,

@ for each ke N, if A = N is Mj-definable in V and A # &, then
An Mgy # 9. ]
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Homomorphism Case study: Dense Linear Order (DLO)

Arbitrary dense linear orders

Let M = (M, <) be an arbitrary DLO.

How to characterize the definable subsets of M?

There are examples of DLO structure M with the additional
property that there is no nontrivial automorphism over M. So it
doesn’t help to use the method of automorphism to analyze
arbitrary DLOs.

However, one can appeal to the Downward L-S-T Theorem.
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Homomorphism Case study: Dense Linear Order (DLO)

Countable dense linear order without endpoints

Theorem 4.13

Suppose that M = (M, <) is a countable dense linear order
without endpoints. Then M =~ (Q, <).

@ Enumerate M = {m;}; and Q = {Q;};.
o (Back-and-forth argument) Suppose a finite partial
isomorphism h,, : QQ — M has been constructed up to step n.
o Take iy, least i such that ¢; ¢ dom(h), find m € M such that
b = hy, U {(gi,,m)} remains to be an isomorphism (on its
domain).
o take j, least j such that m; ¢ b/, find ¢ € @ such that
hpt1 :=h" U {(¢g,m;,)} remains to be an isomorphism.

o Let h =, hn. Verify that h works. O
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Case study: Dense Linear Order (DLO)

Homomorphism

Definable subsets of arbitrary M

Theorem 4.14
Suppose that M is a dense linear order without endpoints. Then
Q0 M= (Q,<).
Q@ If X M and A < M is X-definable in M, then A is a finite
union of intervals with endpoints in X .

Use the Downward Lowenheim Skolem. There is a countable
Mo <M. My =(Q, <), so My = (Q,<). Moreover, suppose A
is definable with parameter p € X™, choose M such that
D < My, (2) follows from that My < M.

Ol

Xianghui Shi Mathematical Logic
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Homomorphism Case study: Dense Linear Order (DLO)

Definable subsets of (R, +, x,<,0,1)

The analysis of the definable sets in familiar mathematical
structures can be quite a complicated problem, and one whose
resolution involves a deep understanding of those structures.

Theorem 4.15 (Tarski-Seidenberg)

Let R = (R, +, x,<,0,1). Suppose A < R is definable from
parameters in R. Then A is a finite union of intervals.

Consider the structure R = (R, +, x,<,0,1). Let A/ be the
substructure of R given by the set of all 7 € R such that the set
A, = {r} is definable in R without parameters. Show that /' < R.

HiINT: Use Tarski's Criterion together with the Tarski-Seidenberg
Theorem.
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Homomorphism Case study: Dense Linear Order (DLO)

Definable subsets of (R, +, x, <, F,0,1)

What about expanded structures of the form
7?/F = (]Rv_'_a X7<7F505 1)7
where a single function F': R — R is added?

Theorem 4.16

Let Rp = (R, +, x, <, F,0,1).
Q If F(z) = sinx, then there is an A < R which is definable in

R without parameters such that A is NOT a finite union of
intervals. (Let A={zeR|sinz =0})

@ (Wilkie, 1996) If F(z) = sin 1+le or F(x) = €*, then every

A € R that is definable from parameters in R is a finite
union of intervals.

Spring, 2025 Xianghui Shi Mathematical Logic



Homomorphism Case study: Dense Linear Order (DLO)

Definable subsets of (N, <)

What about the definable subsets of the structure (N, <)?

e (N, <) is a discrete order, and it admits no automorphism.
e First construct a structure M = (M, <) such that

(N,<) < (M,<) and M # (N, <)L
@ Then use automorphism of M is a finite union of intervals.

@ Answer: every definable subsets of N is either finite or
co-finite (i.e. its complement is finite).

'The existence of such M follows from Compactness Theorem, which is a
corollary of the upcoming Godel’s Completeness Theorem.
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