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Homomorphism Homomorphism

Definition 4.1 (homomorphisms between structures)
Suppose M = (M, I) and N = (N, J) are two LA-structures. A
homomorphism between M and N is a function e :M Ñ N with
the following properties:

For each constant symbol ci P A,
e(cMi ) = cNi .

For each function symbol Fi P A, if n = π(Fi), then for each
ā = xa1, . . . , any PM

n,
e(FM

i (ā)) = FN
i (e(ā)).

For each predicate symbol Pi P A, if n = π(Pi), then for each
ā = xa1, . . . , any PM

n,
ā P PM

i iff e(ā) P PN
i .

If e is 1-1, it is called an isomorphic embedding of M into N . If,
in addition, e is onto, then it is called an isomorphism of M onto
N , and write M – N .
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Homomorphism Homomorphism

Exampls

Example 4.1
Let M be the structure (N; +, ¨). We define a function
h : NÑ t0, 1u by

h(n) =

"

0, if n is even;
1, if n is odd.

Then h is a homomorphism of M onto U = (t0, 1u, J), where
J(+) and J(¨) are given by

J(+) 0 1
0 0 1
1 1 0

J(¨) 0 1
0 0 0
1 0 1
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Homomorphism Homomorphism

Exampls

Example 4.2
Consider the two structures

M = (Z+,ăZ) and N = (N,ăN ).

There is an isomorphism h from M onto N : h(n) = n´ 1.
The identity map id : Z+ Ñ N is an isomorphic embedding of
M into N . M fits coherently with the structure of N . Due
to this fact, we say that M is a substructure of N . More
generally,
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Homomorphism Substructure

Substructure

Definition 4.2
Consider two LA-structures M = (M, I) and N = (N, J) such
that M Ď N . We say M is a substructure of N (write M Ď N )
if the following conditions are met:

For every c P A, cM = cN ;
For every F P A, FM = FN |Mn, where n = π(F );
For every P P A, PM = PN XMn, where n = π(P ).

Also N is called an extension of M.

Example 4.3
(Q; +Q) is a substructure of (C; +C).
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Homomorphism Substructure

Simple facts about substructures

Let M = (M, I), N = (N, J) be two LA-structures. If
M Ď N , M must be closed under FN for all F P A.

This closure property holds for the 0-ary function symbols, as
cM PM , for each c P A.

Conversely, given a LA-structure N = (N, J). Suppose
∅ ‰M Ď N and M is closed under FN , for all F P A. Then
there is a unique M Ď N with universe M .

An extreme case: if AX F = ∅ i.e. no function symbols, then
any nonempty subset of N can be the universe of a
substructure of N .
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Homomorphism Substructure

Theorem 4.1
Suppose that M = (M, I) and N = (N, J) are two LA-structures
with M Ď N . Then the following are equivalent.

1 M Ď N .
2 For all atomic φ P LA and for all M-assignments ν,

(M, ν) |ù φ Ø (N , ν) |ù φ.

Proof.
This follows from part (1) of Homomorphism Theorem (coming up
next) and the definition of substructures.
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Homomorphism Homomorphism theorem

Homomorphism Theorem

Theorem 4.2
Suppose that e : MÑ N is a homomorphism between
LA-structures M = (M, I) and N = (N, J). Suppose that ν is an
M-assignment. Then

1 e ˝ ν is an N -assignment. In fact, for any term τ ,
e ˝ ν(τ) = e(ν̄(τ)).

2 For any quantifier-free LA-formula φ not containing the
equality symbol,

(M, ν) |ù φ Ø (N , e ˝ ν) |ù φ.

3 If e is injective (1-1), then in part (2), we may delete the
restriction “not containing the equality symbol”.

4 If e is surjective (onto), then in part (2), we may drop the
restriction “quantifier-free”.
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Homomorphism Homomorphism theorem

Proof

Induction on the rank of terms. For instance, suppose F P A
with π(F ) = n and τ̄ P T n.

e ˝ ν(F (τ̄)) = FN (e ˝ ν(τ̄)) (defn of ν̄)
= FN (e(ν̄(τ̄))) (by induction)
= e(FM(ν̄(τ̄))) (e is a hom)
= e(ν̄(F (τ̄))) (defn of ν̄)

Induction on the rank of formulas.
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Homomorphism Homomorphism theorem

a. Checking atomic formulas such as P (τ̄) and the inductive
arguments on connective symbols are routine. This proves
part (2) for quantifier-free and no-equality-symbol formulas.

b. For the case of the equality symbol,
(M, ν) |ù τ = σ ô ν̄(τ) = ν̄(σ)

ñ e(ν̄(τ)) = e(ν̄(σ))

ô e ˝ ν(τ) = e ˝ ν(σ)

ô (N , e ˝ ν) |ù τ = σ

If e is injective, then “ñ” can be reversed.

Spring, 2025 Xianghui Shi Mathematical Logic 11 / 50



Homomorphism Homomorphism theorem

c. We assume e is surjective and check the inductive step on the
quantifier. Let φ = (@xψ).

(M, ν) |ù φ, so for every µ „φ ν, (M, µ) |ù ψ.
For each N -assignment µ˚ „φ e ˝ ν, since e is onto, there is
an M-assignment µ such that µ „φ ν and e ˝ µ = µ˚, in
particular, setting µ(x) = m for some m PM such that
e(m) = µ˚(x).
By inductive hypothesis, (N , e ˝ µ) |ù ψ.
µ „φ ν ñ e ˝ µ „φ e ˝ ν. So we have (N , e ˝ ν) |ù φ.
Similarly, (M, ν) * φ implies (N , e ˝ ν) * φ.
(Why?)
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Homomorphism Elementary equivalent

Elementary Equivalent

Definition 4.3
Suppose that M and N are LA-structures. Then M and N are
elementarily equivalent (write as M ” N ) if and only if for each
LA-sentences φ,

M |ù φ ô N |ù φ.

Corollary 4.3
Isomorphic structures are elementarily equivalent:

M – N ñ M ” N .
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Homomorphism Elementary equivalent

Remarks

There are elementarily equivalent structures that are not
isomorphic.

For finite LA-structures, M – N and M ” N are equivalent.
(The case that A is finite follows from Exercise 4.1)

Example 4.4
(R;ăR) is elementarily equivalent to (Q;ăQ) (to be discussed
later), but they are not isomorphic — different cardinality.
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Homomorphism Elementary equivalent

An example revisited

Example 4.5
Consider the two structures

M = (Z+;ăZ) and N = (N,ăN ).

M – N via the map
h(n) = n´ 1,

so M ” N . In other word, these two structures are
indistinguishable by first-order sentences.
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Homomorphism Elementary equivalent

Note that id : Z+ Ñ N is an isomorphic embedding. Hence for any
M-assignment ν and any quantifier-free formula φ,

(M, ν) |ù φ iff (N , id ˝ ν) |ù φ.

This equivalence may fail if φ contains quantifiers. For example,
let φ(x) ” @y(x ‰ y Ñ x ă y), then

M |ù φ[1] but N * φ[1]
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Homomorphism Automorphism and definability

Automorphism

An automorphism of the structure M = (M, I) is an
isomorphism of M onto itself.

The identity function on M is trivially an automorphism of
M.

M may or may not have nontrivial automorphisms. If not, we
say M is rigid.

As a consequence of Homomorphism Theorem, automorphism
preserve the definable relations.
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Homomorphism Automorphism and definability

Preserving the definable relations

Corollary 4.4
Let e : MÑM be an automorphism and R be an n-ary definable
relation on M . Then for any xa1, . . . , any PM ,

xa1, . . . , any P R iff xe(a1), . . . e(an)y P R.

Remark
This means that automorphisms fix definable sets. It is useful in
showing that a given relation is not definable.
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Homomorphism Automorphism and definability

Non-definable sets I

The set N is not definable in the structure (R;ă).
This is witnessed by the automorphism e(a) = a3, since it
maps points outside of N into N.

Take the previous example of a directed graph
M = (ta, b, cu; t(a, b), (a, c)u), where t(a, b), (a, c)u interprets
a binary symbol.

b a c

The only nontrivial automorphism of this structure is the map
that fixes a and exchanges b and c, since it has to respect the
directions of edges. This map does not fix tbu, so tbu is not
definable.
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Homomorphism Automorphism and definability

Non-definable sets II

Consider the vector space
E = (E; +, fr)rPR,

where
E is the universe,
+ is the vector addition, and
for each r P R, fr is the scalar multiplication by r.

Consider the set of unit vectors,
U = tx⃗ | x⃗ P E and |x⃗| = 1u.

Claim. U is not definable in the structure E .
This is witnessed by the doubling map

e(x⃗) = 2x⃗.

e is an automorphism but it does not preserve U .

Spring, 2025 Xianghui Shi Mathematical Logic 20 / 50



Homomorphism Automorphism and definability

Exercise 4.1
Suppose that A is finite and that M is a finite LA-structure.
Prove that there is an LA-sentence φ such that for every
LA-structure N , if N |ù φ then N –M.
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Homomorphism Automorphism and definability

Exercise 4.2

Fix A = tP u, where P is a binary function symbol. For each of the
following two pairs of LA-structures, show that they are not
elementarily equivalent, by giving a sentence true in one and false
in the other.

1 (R;ˆ) and (R˚;ˆ˚), where x is the usual multiplication
operation on the real numbers, R˚ is the set of the non-zero
reals, and ˆ˚ is ˆ restricted to R˚.

2 (N; +) and (Z+; +˚), where +˚ is + restricted to the set Z+

of positive integers.
3 For each of the above structures, give a sentence true in that

structure and false in the other three.
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Homomorphism Elementary substructure

Elementary Substructure

Suppose M = (M, I), N = (N, J) and M Ď N .
M is a substructure of N iff

For all atomic LA-formulas φ, and for all M-assignments ν,
(M, ν) |ù φ ô (N , ν) |ù φ.

This inspires the following concept

Definition 4.4 (Elementary substructure)
Let M,N be as above. We say that M is an elementary
substructure of N , and write M ď N , if and only if for all
LA-formulas φ, and for all M-assignments ν,

(M, ν) |ù φ ô (N , ν) |ù φ.

or equivalently, for all ā P
Ť

nPNM
n,

M |ù φ[ā] ô N |ù φ[ā].
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Homomorphism Elementary substructure

Remarks

M ď N implies M Ď N .
M ď N implies M ” N .

As a consequence, for any finite structure, there is no other
elementary substructure besides itself.

For the converse of both claims, consider (N,ă) and (Z+,ă).
When A = ∅, for every infinite LA-structure, every infinite
subset of its universe forms an elementary substructure.

Exercise 4.3
Let A = ∅ and N be the LA-structure whose universe is N. Show
that for every infinite S Ď N, the LA-struture with S being its
universe is an elementary substructure of N .
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Homomorphism Elementary substructure

Question

Question 4.5
How do we tell a substructure of N is an elementary substructure?

The answer is Tarski’s criterion, which gives an elegant
characterization in terms of definable sets. For that we give a more
general notion of definability.
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Homomorphism Elementary substructure

Definability

Definition 4.5
Suppose that M = (M, I) is an LA-structure.

1 Suppose that b̄ PMk. A set Y ĎMn is definable in M
with parameter b̄ (or b̄-definable in M) iff there a
LA-formula φ(x̄, ȳ) such that

Y = Yφ,b̄ =def tā PM
n |M |ù φ[ā, b̄]u

2 Suppose that X ĎM . A set Y ĎMn is definable in M
with parameters from X (or X-definable in M) iff
Y = Yφ,b̄ for some LA-formula φ(x̄, ȳ) and some parameters
b̄ P Xk.

3 Y is definable in M (without parameters) iff it is
∅-definable in M.
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Homomorphism Elementary substructure

Definability Theorem

Theorem 4.6
Suppose that M = (M, I) is an LA-structure and that X ĎM .
Suppose that Y ĎMn is X-definable in M and that e :M ÑM
is an automorphism of M. If e fixes X, i.e. for each b P X,
e(b) = b, then:

Y = e[Y ] = txe(a1), . . . , e(an)y | xa1, . . . , any P Y u.

Proof (Sketch). Extend the language by adding constant symbols
for each element b P X, i.e. work with language LA˚ , where
A˚ = AY tcb | b P Xu. Any LA-automorphism over M fixing X can be
viewed as LA˚ -automorphism over M.
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Homomorphism Elementary substructure

Example 4.6
Suppose that A = ∅ and M = (M,∅) is an LA-structure. Note
that any bijection e :M ÑM defines an automorphism of M.
The following claims follow from the Definability Theorem.
Suppose that D ĎM , then

1 D is definable in M without parameters iff D = ∅ or D =M .
2 D is definable in M from parameters iff D is finite or MzD is

finite. (Exercise 4.4- 3 )
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Homomorphism Tarski’s criterion

Theorem 4.7 (Tarski’s Criterion)
Suppose M = (M, I) and N = (N, J) are LA-structures, and M Ď N .
Then the following are equivalent:

1 M ď N

2 for every M -definable nonempty set D Ď N , D XM ‰ ∅.
2 ’ for every LA-formula φ(x, ȳ) and b̄ PMn, if there is a P N such

that N |ù φ[a, b̄], then there is a1 PM such that N |ù φ[a1, b̄].

The equivalence 1 ô 2 1 is also known as Tarski-Vaught Test.
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Homomorphism Tarski’s criterion

Proof

We prove 1 ô 2 only.
1 ñ 2 : Let D = ta | N |ù φ[a, b̄]u, where b̄ PMn are parameters.

This is implies that N |ù Dxφ[x, b̄]. By elementarity, M |ù Dxφ[x, b̄],
which means D XM ‰ ∅.

2 ñ 1 : Induction on the ranks of formulas. Since id : MÑ N is an
isomorphic embedding, by the proof of Homomorphism Theorem, we only
need to check the quantifier case φ = @xψ.
Suppose for all a PM , b̄ PMn,

N |ù ψ[a, b̄] ô M |ù ψ[a, b̄]

Since M Ď N ,
N |ù @xψ[x, b̄] ñ M |ù @xψ[x, b̄].

For the other direction, fix b̄ PMn, let D = ta | N |ù ␣ψ[a, b̄]u.
Suppose N |ù Dx␣ψ[x, b̄], i.e. D ‰ ∅. By 2 , D XM ‰ ∅. This means
M |ù Dx␣ψ[x, b̄].
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Homomorphism Tarski’s criterion

Exercise 4.4
1 Let N = (N, 0, 1,+,ˆ). Show that if M Ď N , then M = N .
2 Let A = tP u where P is a unary predicate symbol. Let

M = (M, I) be the finite LA-structure with
M = ta, b, c, d, eu and I(P ) = ta, bu.

Which subsets of M are definable in M without parameters.
Which subsets of M are definable in M with parameters.

3 Prove the second claim of Example 4.6.
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Homomorphism Case study: Dense Linear Order (DLO)

Case study: Dense linear order

We shall study a few examples, try to classify the definable sets of
these structures.

Let A = tP u, where P is a binary predicate symbol. Consider the
LA-structure (R,ă), where ă is the usual ordering of the reals.

Suppose X Ă R is finite. Define for each a, b P R, a „X b iff there
exists an automorphism e of (R,ă) such that e fixes X and
e(a) = b.
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Homomorphism Case study: Dense Linear Order (DLO)

An equivalence relation

The relation „X is an equivalence relation. Namely, for all
x, y, z P R,

1 x „X x;
since the identity map id is an automorphism.

2 if x „X y then y „X x;
since the inverse of an automorphism is an automorphism.

3 if x „X y and y „X z then x „X z.
since the composition of automorphisms is an automorphism.
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Homomorphism Case study: Dense Linear Order (DLO)

Intervals

For each r P R, let
[r]X = tx P R | x „X ru

be the equivalence class of r.

Definition 4.6
interval: If a ď b ď c and a, c P I then b P I.
endpoint(s): sup(I)Y inf(I).
Notation: (a, b), [a, b].
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Homomorphism Case study: Dense Linear Order (DLO)

Lemma 4.7
Suppose that X Ă R is finite. Then for each a P R, [a]X is an
interval. In fact,

if a P X then [a]X = tau;

if a R X then [a]X is the maximum interval I Ă R such that
a P I and I XX = ∅.
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Homomorphism Case study: Dense Linear Order (DLO)

Proof of lemma 4.7

Suppose a P X. Since a „X bñ a = b, [a]X = tau.

Suppose X = tx1, . . . , xnu and w.l.o.g. assume a P (x1, x2).
We show that [a]X = (x1, x2). Suppose b P (x1, x2) and
b ‰ a.

x1 a x2

x1 b x2

id h1 h2 id
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Homomorphism Case study: Dense Linear Order (DLO)

Define
h = h1 Y h2 Y id |R´(x1,x2).

where h1 is the linear transformation from (x1, a) to (x1, b),

h1(t) =
b´ x1
a´ x1

(t´ x1) + x1

and h2 is the linear transformation from (a, x2) to (b, x2)

h2(t) = x2 ´
x2 ´ b

x2 ´ a
(x2 ´ t).

a „X b via h. So (x1, x2) Ď [a]X . Since any automorphism sending a to
outside (x1, x2) moves either x1 or x2, it must be that
(x1, x2) = [a]X .
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Homomorphism Case study: Dense Linear Order (DLO)

Definable subsets of (R,ă)

Theorem 4.8
Suppose that X Ď R and A Ď R. Then the following are
equivalent.

1 A is X-definable in (R,ă).
2 A is a finite union of intervals with endpoints in X.

Proof.
2 ñ 1 is clear. For instance,

(x1, x2) = ta | (R,ă) |ù x1 ă a^ a ă x2u.

For 1 ñ 2 , suppose A is definable with parameter p̄. The key
point is that if a P A then [a]p̄ Ď A, thus A =

Ť

aPA[a]X . Each
[a]p̄ is an interval, and there are only finitely many of them.
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Homomorphism Case study: Dense Linear Order (DLO)

Corollary 4.9 (Elementary substructures of (R,ă))
Let R = (R,ă). Suppose that M Ď R and M = (M,ăM ) is the
induced substructure of R. Then the following are equivalent

1 M ď R.
2 M is a dense linear order without endpoints. (DLO)

Proof.
1 ñ 2 : DLO Ď Th(M) and M ” R, thus M |ù DLO.
2 ñ 1 : Suppose A is tm1, . . . ,mnu-definable in R and A ‰ ∅. Show
AXM ‰ ∅. By Theorem 4.8, we may assume that A is an interval.

I = tmiu: I Ď AXM ;
I = (mi,mi+1): use “dense”;
I = (´8,m1) or I = (mn,+8): use “without endpoints”.
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Homomorphism Case study: Dense Linear Order (DLO)

(Q,ă) is a DLO, and Q Ď R, so (Q,ă) ď (R,ă). Thus we have

Corollary 4.10 (Definable subsets of (Q,ă))
Suppose that X Ď Q and that A Ă Q. Then the following are
equivalent

1 A is X-definable in (Q,ă).
2 A is a finite union of intervals with endpoints in X.

Proof sketch (one interval as an example).
Suppose φ(x; r1, r2) is a definition for A = (r1, r2). Then

@x [φ(x, r1, r2)Ø (r1 ă x^ x ă r2)].

The point is that the formula above is a first order property with
parameters in Q, therefore holds in both (R,ă) and (Q,ă).
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Homomorphism Case study: Dense Linear Order (DLO)

Some basics of cardinals

Definition 4.7
A set A is countable if A = ∅ or there is an injection f : AÑ N.

Assuming AC, this is equivalent to the following definition

Definition
A set A is countable if A = ∅ or there is a surjection f : NÑ A.

Intuitively, the surjection f is an enumeration of all the elements of
A. We shall always assume AC. The next result follows from
(countable) AC.

Spring, 2025 Xianghui Shi Mathematical Logic 41 / 50



Homomorphism Case study: Dense Linear Order (DLO)

Theorem 4.11
Suppose that tAi | i P Nu is a countable sequence of countable
sets. Then A =

Ť

iAi is a countable set.

Example 4.7
N, Z, Q, L0, LA (A countable) are countable sets.
(Cantor) P(N), R are uncountable.
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Homomorphism Case study: Dense Linear Order (DLO)

Exercise (not assigned)
1 Show that if M = (M, I) is an LA-structure and X is a

countable subset of M , then the collection of all sets A ĎM
such that A is definable in M with parameters from X is
countable. (Hint: Show that there are only countably many
formulas and countably many finite sequences from X.)

2 Show that the set of all algebraic numbers in R is countable.
A real r is algebraic if for some a0, . . . , an´1 P Z,

(R; +, ¨, 0, 1) |ù
řn

i=0 air
i = 0.
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Homomorphism Case study: Dense Linear Order (DLO)

Theorem 4.12 ((Downward) Lowenheim-Skolem)
Suppose N = (N, I) is an LA-structure and X is a countable
subset of N . Then there is countable M such that X ĎM Ď N
and M = (M, IæM) ď N .a

aThis is also known as L-S-T Theorem, where L-S-T stands for
Lowenheim-Skolem-Tarski.

Proof.
The key is to construct a countable sequence xMk | k P Ny of countable
subsets of N such that

M0 = X,
for each k P N, Mk ĎMk+1,
for each k P N, if A Ď N is Mk-definable in N and A ‰ ∅, then
AXMk+1 ‰ ∅.
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Homomorphism Case study: Dense Linear Order (DLO)

Arbitrary dense linear orders

Let M = (M,ă) be an arbitrary DLO.

Question
How to characterize the definable subsets of M?

There are examples of DLO structure M with the additional
property that there is no nontrivial automorphism over M. So it
doesn’t help to use the method of automorphism to analyze
arbitrary DLOs.

However, one can appeal to the Downward L-S-T Theorem.
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Homomorphism Case study: Dense Linear Order (DLO)

Countable dense linear order without endpoints

Theorem 4.13
Suppose that M = (M,ă) is a countable dense linear order
without endpoints. Then M – (Q,ă).

Proof.
Enumerate M = tmiui and Q = tQiui.
(Back-and-forth argument) Suppose a finite partial
isomorphism hn : QÑM has been constructed up to step n.

Take in least i such that qi R dom(h), find m PM such that
h1 := hn Y t(qin ,m)u remains to be an isomorphism (on its
domain).
take jn least j such that mj R h

1, find q P Q such that
hn+1 := h1 Y t(q,mjn)u remains to be an isomorphism.

Let h =
Ť

nhn. Verify that h works.
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Homomorphism Case study: Dense Linear Order (DLO)

Definable subsets of arbitrary M

Theorem 4.14
Suppose that M is a dense linear order without endpoints. Then

1 M ” (Q,ă).
2 If X ĎM and A ĎM is X-definable in M, then A is a finite

union of intervals with endpoints in X.

Proof.
Use the Downward Lowenheim Skolem. There is a countable
M0 ď M. M0 – (Q,ă), so M0 ” (Q,ă). Moreover, suppose A
is definable with parameter p̄ P Xm, choose M0 such that
p̄ ĎM0, (2) follows from that M0 ď M.
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Homomorphism Case study: Dense Linear Order (DLO)

Definable subsets of (R,+,ˆ,ă, 0, 1)

The analysis of the definable sets in familiar mathematical
structures can be quite a complicated problem, and one whose
resolution involves a deep understanding of those structures.

Theorem 4.15 (Tarski-Seidenberg)
Let R = (R,+,ˆ,ă, 0, 1). Suppose A Ď R is definable from
parameters in R. Then A is a finite union of intervals.

Exercise 4.5
Consider the structure R = (R,+,ˆ,ă, 0, 1). Let N be the
substructure of R given by the set of all r P R such that the set
Ar = tru is definable in R without parameters. Show that N ď R.

Hint: Use Tarski’s Criterion together with the Tarski-Seidenberg
Theorem.
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Homomorphism Case study: Dense Linear Order (DLO)

Definable subsets of (R,+,ˆ,ă, F, 0, 1)

Question
What about expanded structures of the form

RF = (R,+,ˆ,ă, F, 0, 1),
where a single function F : RÑ R is added?

Theorem 4.16
Let RF = (R,+,ˆ,ă, F, 0, 1).

1 If F (x) = sinx, then there is an A Ď R which is definable in
RF without parameters such that A is NOT a finite union of
intervals. (Let A = tx P R | sinx = 0u)

2 (Wilkie, 1996) If F (x) = sin 1
1+x2 or F (x) = ex, then every

A Ď R that is definable from parameters in RF is a finite
union of intervals.
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Homomorphism Case study: Dense Linear Order (DLO)

Definable subsets of (N,ă)

Question
What about the definable subsets of the structure (N,ă)?

(N,ă) is a discrete order, and it admits no automorphism.
First construct a structure M = (M,ă) such that

(N,ă) ă (M,ă) and M ‰ (N,ă)1.

Then use automorphism of M is a finite union of intervals.
Answer: every definable subsets of N is either finite or
co-finite (i.e. its complement is finite).

1The existence of such M follows from Compactness Theorem, which is a
corollary of the upcoming Gödel’s Completeness Theorem.

Spring, 2025 Xianghui Shi Mathematical Logic 50 / 50


