Mathematical Logic

Xianghui Shi

School of Mathematical Science Beijing Normal University

Spring, 2025

Semantics

Definition 2.1

Suppose $A \subseteq \{c_i \mid i \in \mathbb{N}\} \cup \{F_i \mid i \in \mathbb{N}\} \cup \{P_i \mid i \in \mathbb{N}\}$. A finite sequence φ is an \mathcal{L}_A -formula, $\varphi \in \mathcal{L}_A$, iff

- $\ \, \mathbf{ } \ \, \varphi \in \mathcal{L},$
- 2 the constant, predicate and function symbols occurring in φ are all in A.

The set, \mathcal{T}_A , of \mathcal{L}_A -terms can be defined similarly. Both \mathcal{T}_A and \mathcal{L}_A can be defined inductively. This A is often called the **signature** of the language \mathcal{L}_A .

\mathcal{L}_A -structure

Definition 2.2

An \mathcal{L}_A -structure is a pair (M, I) with the following properties:

- $M \neq \emptyset,$
- 2 I is a function with $\operatorname{dom}(I) = A$ such that for each $i \in \mathbb{N}$,
 - If $c_i \in A$, then $I(c_i) \in M$;
 - If $F_i \in A$, then $I(F_i)$ is a function

 $I(F_i): M^n \to M,$ where $n = \pi(F_i).$

• If
$$P_i \in A$$
, then $I(P_i)$ is a relation

 $I(P_i) \subseteq M^n$, where $n = \pi(P_i)$.

We shall use $c^{\mathcal{M}}, F^{\mathcal{M}}, P^{\mathcal{M}}$, instead of I(c), I(F), I(P).

Examples

Set Theory: A = {ê}. equality: Yes constant: None predicate: ê (2-ary) function: None

 (V, \in) , where V is the class of all sets, \in is the membership relation, is an \mathcal{L}_A -structure.

Here \forall should mean "for all sets", and \exists "there exists a set".

Q Number Theory: $B = \{\hat{0}, \hat{<}, \hat{S}, \hat{+}, \hat{\times}, \hat{E}\}$ equality: Yes constant: $\hat{0}$ predicate: $\hat{<}(2-ary)$ function: \hat{S} (1-ary); $\hat{+}, \hat{\times}, \hat{E}$ (2-ary)

 $(\mathbb{N}, 0, <, S, +, \times, \operatorname{Exp})$, where \mathbb{N} is the set of all natural numbers, and the rest use our natural interpretation, is an \mathcal{L}_B -structure. Here " $a \operatorname{Exp} b$ " is for a^b .

Here \forall should mean "for all natural numbers", and \exists "there exists a natural number".

```
Group Theory: C = {1, +}
equality: Yes
constant: 1
predicate: None
function: + (2-ary)
```

The additive group of integers $(\mathbb{Z}, 0, +)$ and the multiplicative semi-group of integers $(\mathbb{Z}, 1, \times)$ are \mathcal{L}_C -structures.

Here \forall should mean "for all integers", and \exists "there exists an integer".

 \mathcal{L}_A -structures can determine the truth values of \mathcal{L}_A -sentences (\mathcal{L}_A -formulas without free variables).

Definition 2.3

If an \mathcal{L}_A -sentence φ is true in an \mathcal{L}_A -structure \mathcal{M} , we say \mathcal{M} is a **model** of φ , or \mathcal{M} **satisfies** φ , written as $\mathcal{M} \models \varphi$.

$$\varphi \equiv \exists x \forall y \neg (y \in x)$$

 (V, \in) and $(\mathbb{N}, <)$ are both models of $\varphi.$ But φ is interpreted differently.

- (V, \in) : There exists an empty set.
- $(\mathbb{N},<){\rm :}\,$ There is a natural number such that no natural number is smaller.

$$\varphi \equiv \exists x \forall y \neg (y \in x)$$

 (V, \in) and $(\mathbb{N}, <)$ are both models of $\varphi.$ But φ is interpreted differently.

- (V, \in) : There exists an empty set.
- $(\mathbb{N},<){\rm :}\,$ There is a natural number such that no natural number is smaller.

$$\varphi \equiv \exists x \forall y \neg (y \in x)$$

 (V, \in) and $(\mathbb{N}, <)$ are both models of $\varphi.$ But φ is interpreted differently.

- (V, \in) : There exists an empty set.
- $(\mathbb{N},<){\rm :}\,$ There is a natural number such that no natural number is smaller.

$$\varphi \equiv \exists x \forall y \neg (y \in x)$$

 (V, \in) and $(\mathbb{N}, <)$ are both models of φ . But φ is interpreted differently.

- (V, \in) : There exists an empty set.
- $(\mathbb{N},<){\rm :}\,$ There is a natural number such that no natural number is smaller.

On the other hand, $(\mathbb{N}, <)$ is not a model of the **paring** axiom:

 $\forall x \forall y \exists z \forall t (t \in z \leftrightarrow t = x \lor t = y)$

\mathcal{M} -assignment

Definition 2.4

Suppose $\mathcal{M} = (M, I)$ is a \mathcal{L}_A -structure. A function ν is an \mathcal{M} -assignment if ν is a map from $\{x_i \mid i \in \mathbb{N}\}$ to M.

 ν can be extended to a function $\check{\nu} : \mathcal{T} \to M$ as follows: **Base step:** $\check{\nu}(\langle x_i \rangle) = \nu(x_i)$, and $\check{\nu}(\langle c_i \rangle) = I(c_i)$.

Recursion step: If $\tau = F_i(\tau_1 \dots \tau_n)$, then $\check{\nu}(\tau) = I(F_i)(\check{\nu}(\tau_1) \dots \check{\nu}(\tau_n)).$

Agreement of \mathcal{M} -assignments

Suppose that $\mathcal{M} = (M, I)$ is an \mathcal{L}_A -structure, τ a \mathcal{L}_A -term, φ a \mathcal{L}_A -formula, and ν, μ two \mathcal{M} -assignments.

Definition 2.5

- Let $\bar{x} = \langle x_{n_1}, \cdots, x_{n_k} \rangle$. μ, ν agree on \bar{x} if $\mu(x_{n_i}) = \nu(x_{n_i})$ for $i \leq k$. Write as $\mu|_{\bar{x}} = \nu|_{\bar{x}}$.
- Suppose τ(x̄) is a term with (free) variables x̄. ν, μ agree on the (free) variables of τ if μ|x̄ = ν|x̄. Denote it as ν ~τ μ.
- Suppose $\varphi(\bar{x})$ is a formula with free variables \bar{x} . ν, μ agree on the free variables of φ if $\mu|_{\bar{x}} = \nu|_{\bar{x}}$. Denote it as $\nu \sim_{\varphi} \mu$.

Extending assignment to terms and formulas

Lemma 2.0

Suppose that ν, μ agree on the variables of τ . Then $\check{\mu}(\tau) = \check{\nu}(\tau)$.

Using the unique readability of terms, prove by induction on the construction complexity of τ : for the inductive step, $\tau = F_i(\bar{\sigma})$,

 $\check{\mu}(\tau) = \check{\mu}(F_i(\bar{\sigma})) = I(F_i)(\check{\mu}(\bar{\sigma})) \xrightarrow{\text{by ind.}} I(F_i)(\check{\nu}(\bar{\sigma})) = \check{\nu}(F_i(\bar{\sigma})) = \check{\nu}(\tau)$ Therefore, we shall not distinguish ν and $\check{\nu}$.

By the unique readability of formulas, we define the satisfaction relation $(\mathcal{M}, \nu) \models \varphi$ by induction as follows:

Atomic cases: Suppose that φ is an atomic formula. $\tau, \sigma, \tau_i \in \mathcal{T}.$ • $\varphi = P_i(\tau_1 \dots \tau_n), n = \pi(P_i).$ $(\mathcal{M}, \nu) \models \varphi \quad \text{iff} \quad \langle \check{\nu}(\tau_1), \dots, \check{\nu}(\tau_n) \rangle \in P_i^{\mathcal{M}}.$ • $\varphi = (\sigma \stackrel{\circ}{=} \tau).$ $(\mathcal{M}, \nu) \models \varphi \quad \text{iff} \quad \check{\nu}(\sigma) = \check{\nu}(\tau).$

Inductive cases: Suppose that φ is not an atomic formula. $\psi \in \mathcal{L}$ and $x_i \in \mathfrak{X}$.

• $\varphi = (\neg \psi).$ • $\varphi = (\psi_1 \rightarrow \psi_2).$ • $(\mathcal{M}, \nu) \models \varphi$ iff $(\mathcal{M}, \nu) \not\models \psi.$ • $(\mathcal{M}, \nu) \models \varphi$ iff either $(\mathcal{M}, \nu) \not\models \psi_1$ or $(\mathcal{M}, \nu) \models \psi_2.$ • $\varphi = (\forall x_i \psi).$ • $(\mathcal{M}, \nu) \models \varphi$ iff for all \mathcal{M} -assignments μ , if $\nu \sim_{\varphi} \mu$ then $(\mathcal{M}, \mu) \models \psi.$

Satisfaction and free variables

Theorem 2.1

Suppose that $\mathcal{M} = (M, I)$ is a \mathcal{L}_A -structure, φ is an \mathcal{L}_A -formula, $\nu \sim_{\varphi} \mu$. Then

$$(\mathcal{M},\nu)\models\varphi\quad \textit{iff}\quad (\mathcal{M},\mu)\models\varphi$$

If φ . is a sentence, then the satisfaction relation $(\mathcal{M}, \mu) \models \varphi$ is independent of \mathcal{M} -assignments (often written as $\mathcal{M} \models \varphi$).

Satisfaction and free variables

Theorem 2.1

Suppose that $\mathcal{M} = (M, I)$ is a \mathcal{L}_A -structure, φ is an \mathcal{L}_A -formula, $\nu \sim_{\varphi} \mu$. Then

$$(\mathcal{M},\nu)\models\varphi\quad \textit{iff}\quad (\mathcal{M},\mu)\models\varphi$$

If φ . is a sentence, then the satisfaction relation $(\mathcal{M}, \mu) \models \varphi$ is independent of \mathcal{M} -assignments (often written as $\mathcal{M} \models \varphi$).

Prove by induction on the rank (construction complexity) of φ : rank(φ) For the case $\varphi = (\forall x_i \psi)$. We have rank(ψ) < rank(φ).

- $(\mathcal{M}, \mu) \models \varphi$, by definition, for all \mathcal{M} -assignments γ , $\gamma \sim_{\varphi} \mu$ implies $(\mathcal{M}, \gamma) \models \psi$.
- Since $\nu \sim_{\varphi} \mu$, we have $(\mathcal{M}, \nu) \models \psi$. Take any $\rho \sim_{\psi} \nu$, we have $\rho \sim_{\varphi} \nu \sim_{\varphi} \mu$, by the ind. hypo., $(\mathcal{M}, \rho) \models \psi$.
- By definition again, $(\mathcal{M}, \nu) \models \varphi$.

Theorem 2.1 allows the following notational conventions.

Definition 2.6

Let $\mathcal{M} = (M, I)$ is an \mathcal{L}_A -structure and $a_1 \dots a_n \in M$, let ν be any \mathcal{M} -assignment. Then

• Write $\bar{\nu}(\tau)$ as $\tau[a_1 \dots a_n]$, for any ν such that $\nu(x_i) = a_i$, $i \leq n$, where $\tau = \tau(x_1 \dots x_n) \in \mathcal{T}_A$.

• Write $\mathcal{M} \models \varphi[a_1 \dots a_n]$, if $(\mathcal{M}, \nu) \models \varphi$, for any ν such that $\nu(x_i) = a_i, i \leq n$, where $\varphi = \varphi(x_1 \dots x_n) \in \mathcal{L}_A$.

- Another way to define $(\mathcal{M}, \nu) \models \forall x_i \varphi$ $(\mathcal{M}, \nu) \models \forall x_i \varphi$ iff for every $d \in M$, $(\mathcal{M}, \nu_d^{x_i}) \models \varphi$, where $\nu_d^{x_i}(x_j) = \begin{cases} \nu(x_j), & j \neq i; \\ d, & j = i. \end{cases}$
- $(\mathcal{M}, \nu) \models \varphi \land \psi$ iff $(\mathcal{M}, \nu) \models \varphi$ and $(\mathcal{M}, \nu) \models \psi$. Similar for \lor and \leftrightarrow .
- $(\mathcal{M}, \nu) \models \exists x_i \varphi \text{ iff } (\mathcal{M}, \nu_d^{x_i}) \models \varphi, \text{ for some } d \in M.$

Substitution

Definition 2.7 • $\tau(x_1 \dots x_n; \tau_1 \dots \tau_n)$ • $\varphi(x_1 \dots x_n; \tau_1 \dots \tau_n)$ • term τ is free for x_i in φ : (free) variables in τ remain to be free in φ after substitution.

Lemma 2.1

$${f 0}$$
 $au(x_1\ldots x_n; au_1\ldots au_n)$ is a term,

②
$$\varphi(x_1 \dots x_n; au_1 \dots au_n)$$
 is a formula.

Substitution



Lemma 2.1

$${f 0} \quad au(x_1\ldots x_n; au_1\ldots au_n)$$
 is a term,

2)
$$\varphi(x_1 \dots x_n; \tau_1 \dots \tau_n)$$
 is a formula.

Prove by induction: (1) on terms, (2) on formulas.

Substitution Theorem

Theorem 2.2

Let $\mathcal{M} = (M, I)$ be an \mathcal{L}_A -structure, $\tau_1 \dots \tau_n \in \mathcal{T}_A$ and ν be an \mathcal{M} -assignment such that $\check{\nu}(\tau_i) = b_i$, $i \leq n$. Then a For $\tau(x_1 \dots x_n) \in \mathcal{T}_A$, $\check{\nu}(\tau(x_1 \dots x_n; \tau_1 \dots \tau_n)) = \tau[b_1 \dots b_n]$. a For $\varphi(x_1 \dots x_n) \in \mathcal{L}_A$, assuming $\bar{\tau}$ are free for \bar{x} in φ , $(\mathcal{M}, \nu) \models \varphi(x_1 \dots x_n; \tau_1 \dots \tau_n) \Leftrightarrow \mathcal{M} \models \varphi[b_1 \dots b_n]$.

For short, we shall use $\tau(\bar{x}; \bar{\tau})$, $\varphi(\bar{x}; \bar{\tau})$, $\tau[\bar{b}]$ and $\varphi[\bar{b}]$. For any φ , write $\varphi^*(\bar{t}) := \varphi(\bar{x}; \bar{\tau}(\bar{t}))$. $(\mathcal{M}, \nu) \models \varphi(\bar{x}; \bar{\tau})$ means $(\mathcal{M}, \nu) \models \varphi^*(\bar{t})$. We show that

$$(\mathcal{M}, \nu) \models \varphi^*(\bar{t}) \quad \text{ iff } \quad \mathcal{M} \models \varphi[\bar{b}] \text{ i.e. } \varphi[\nu(\bar{\tau})].$$

Proof of substitution

Induction on the ranks of τ and φ respectively. As an example, we prove for the case: $\varphi = (\psi_1 \rightarrow \psi_2)$.

$$\begin{split} (\mathcal{M},\nu) &\models (\psi_1 \to \psi_2)(\bar{x};\bar{\tau}) \\ \text{ff } (\mathcal{M},\nu) \not\models \psi_1(\bar{x};\bar{\tau}) \text{ or } (\mathcal{M},\nu) \models \psi_2(\bar{x};\bar{\tau}) \qquad \text{(defn of }\models\text{)} \\ \text{ff } \mathcal{M} &\models \neg \psi_1[\bar{b}] \text{ or } \mathcal{M} \models \psi_2[\bar{b}] \qquad \qquad \text{(ind. hyp.)} \\ \text{ff } \mathcal{M} &\models (\psi_1 \to \psi_2)[\bar{b}] \end{split}$$

The non-trivial case is $\varphi = (\forall x_0 \psi)$. Note that

$$\varphi^*(\bar{t}) = (\forall x_0 \psi)(\bar{x}; \bar{\tau}(\bar{t}))$$

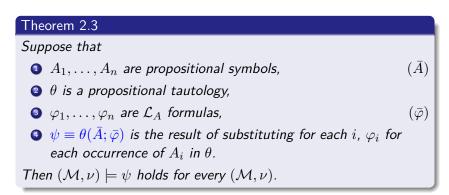
= $\forall x_0 \psi(\bar{x}, x_0; \bar{\tau}(\bar{t}), x_0)$
= $\forall x_0 \psi^*(\bar{t}, x_0)$

Here \bar{t} denotes the free variables involved in substitution ($\bar{\tau}$ for \bar{x}).

- Start with $(\mathcal{M}, \nu) \models \varphi^*(\overline{t})$. By the definition of \models , for all \mathcal{M} -assignments μ , if $\mu \sim_{\overline{t}} \nu$, then $(\mathcal{M}, \mu) \models \psi^*(\overline{t}, x_0)$.
- 2 By the ind. hyp., for each such μ , $\mathcal{M} \models \psi[\mu(\bar{\tau}), \mu(x_0)]$.
- So As $\mu(x_0)$ is arbitrary, for any \mathcal{M} -assignments ρ such that $\rho(\bar{x}) = \bar{b}$, then $(\mathcal{M}, \rho) \models \psi(\bar{x}, x_0)$. Thus $\mathcal{M} \models \varphi[\rho(\bar{x})]$ i.e. $\varphi[\bar{b}]$.

Conversely,

- from $\mathcal{M} \models \varphi[\overline{b}]$, we have that for all \mathcal{M} -assignment ρ such that $\rho(\overline{x}) = \overline{b}$, $(\mathcal{M}, \rho) \models \varphi(\overline{x})$; hence $(\mathcal{M}, \rho) \models \psi(\overline{x}, x_0)$
- 2 Suppose μ is such that $\mu \sim_{\bar{t}} \nu$. Then $\mu(\bar{\tau}) = \nu(\bar{\tau}) = \bar{b}$.
- Set ρ_{μ} such that $\rho_{\mu}(\bar{x}) = \mu(\bar{\tau})$ and $\rho_{\mu}(x_0) = \mu(x_0)$. So $\mathcal{M} \models \psi[\rho_{\mu}(\bar{x}), \rho_{\mu}(x_0)].$
- By the ind. hyp., $(\mathcal{M}, \rho_{\mu}) \models \psi^*(\bar{t}, x_0)$.
- So As $\mu(x_0)$ and hence $\rho_{\mu}(x_0)$ are arbitrary, we have $(\mathcal{M}, \rho_{\mu}) \models \varphi^*(\overline{t})$.



PROOF. Omitted. The key point is that

$$(\mathcal{M}, \nu) \models \psi$$
 iff $\theta(\overline{A}; \overline{(\mathcal{M}, \nu) \models \varphi_i})^1$ is true.

¹This is a truth assignment for $\{A_1, \dots, A_n\}$.

Theorem 2.4

Let $\mathcal{M} = (M, I)$ be an \mathcal{L}_A -structure, ν be an \mathcal{M} -assignment. Suppose φ is a \mathcal{L}_A -formula, $\bar{c} = \langle c_{n_i} : 1 \leq i \leq k \rangle$ enumerates the constants symbols occuring in φ , and all variables occuring in φ are contained in $\bar{x} = \langle x_i : 1 \leq i \leq m \rangle$.

Let $\hat{\nu}$ be the \mathcal{M} -assignment where

$$\hat{\nu}(x_j) = \begin{cases} \nu(x_j), & \text{if } x_j \neq x_{m+i} \text{ for any } i = 1, \cdots, k\\ I(c_{n_i}), & \text{if } x_j = x_{m+i} \text{ for some } i = 1, \cdots, k \end{cases}$$

Let $\hat{\varphi}$ be the formula obtained by substituting x_{m+i} for all occurrences of c_{n_i} in φ , for all $i = 1, \cdots, k$. Then

$$(\mathcal{M},\nu)\models \varphi \quad iff \quad (\mathcal{M},\hat{\nu})\models \hat{\varphi}.$$

Exercise 2.1

- Let L_A be a language with one binary relation symbol. Give an example of a sentence φ ∈ L_A and L_A-structures M₁ and M₂ such that M₁ ⊨ φ and M₂ ⊭ φ.
- ② Do there exist an *L_A*-structure *M*, an *M*-assignment *ν*, and an *L_A*-formula *φ* such that $(M, ν) \models φ$ and $(M, ν) \models (¬φ)$? Do there exist such *M* and *ν* such that $(M, ν) \nvDash φ$ and $(M, ν) \nvDash (¬φ)$?