# Mathematical Logic

Xianghui Shi

School of Mathematical Science Beijing Normal University



Spring, 2025

# Part II. First Order Logic







## Predicate and Quantifier

## Example 1.1

A proposition P:

2 is a prime.

```
A predicate P(x):
```

x is a prime.

- P is true. P(x) has no truth value unless
  - **①** x is replaced by a real object, or
  - **2** P(x) is prefixed by quantifiers:

 $\forall x P(x), \qquad \exists x P(x).$ 

## First-Order language

- Equality symbol:  $\hat{=}$
- Logical symbols: ( )  $\neg \rightarrow \forall$
- Non-logical symbols:
  - variables:  $\mathfrak{X} = \{x_i \mid i \in \mathbb{N}\}$
  - constants:  $\mathfrak{C} = \{c_i \mid i \in \mathbb{N}\}$
  - functions:  $\mathfrak{F} = \{F_i \mid i \in \mathbb{N}\}$
  - predicates:  $\mathfrak{P} = \{P_i \mid i \in \mathbb{N}\}$

In addition, for each  $k \in \mathbb{Z}^+$ , there are infinitely many  $F_i$ 's and  $P_i$ 's with k arguments. Use  $\pi : \{F_i \mid i \in \mathbb{N}\} \cup \{P_i \mid i \in \mathbb{N}\} \to \mathbb{Z}^+$  to denote the arity function.

Let S denote the set of all above symbols.

Building blocks of formulas for the first-order language are terms.

## Definition 1.1

The set of terms,  $\mathcal{T}$ , is defined as the smallest set of sequences T satisfying the following properties.

• For each 
$$i \in \mathbb{N}$$
,  $x_i \in T$  and  $c_i \in T$ .

2 If 
$$F_i \in \mathfrak{F}$$
,  $n = \pi(F_i)$  and  $\tau_1, \ldots, \tau_n \in T$ , then  $F_i(\tau_1 \ldots \tau_n) \in T$ .<sup>a</sup>

 ${}^{*}F_{i}(\tau_{1}\cdots\tau_{n})$  is the concatenation  $F_{i}(\tau_{1}\cdots\tau_{n})$ .

The definition of  $\ensuremath{\mathcal{T}}$  is external, the following is an internal version.

### Theorem 1.1

For each  $\tau \in \mathcal{T}$ , exactly one of the following conditions applies:

**1** There is an 
$$i \in \mathbb{N}$$
 s.t.  $\tau = x_i$  or  $c_i$ .

**2** There is an 
$$i \in \mathbb{N}$$
 s.t.  $\pi(F_i) = n$  and there are  $\tau_1, \ldots, \tau_n \in \mathcal{T}$   
s.t.  $\tau = F_i(\tau_1 \ldots \tau_n)$ .

Moreover, the elements of  $\mathcal{T}$  are uniquely readable.

# Unique Readability of terms

### Theorem 1.2

For each  $\tau \in \mathcal{T}$ , exactly one of the following conditions applies:

**1** There is an 
$$i \in \mathbb{N}$$
 s.t.  $\tau = x_i$  or  $c_i$ .

**2** There is an  $i \in \mathbb{N}$  s.t.  $\pi(F_i) = n$  and there are  $\tau_1, \ldots, \tau_n \in \mathcal{T}$ s.t.  $\tau = F_i(\tau_1 \ldots \tau_n)$ .

Further, in (2),  $F_i$  and  $\tau_1, \ldots, \tau_n$  are unique.

### Lemma 1

If  $\tau \in \mathcal{T}$ , then no proper initial segment of  $\tau$  is in  $\mathcal{T}$ .

As for  $\mathcal{L}_0$ , prove by induction on  $|\tau|$ , the length of  $\tau$ . The key is the first symbol of the sequence for a term for each case.

## Definition 1.2

The set of formulas,  $\mathcal{L}$ , is the smallest set L of finite sequences of symbols in S such that:

- (Atomic formulas)
  - If  $P_i \in \mathfrak{P}$ ,  $n = \pi(P_i)$  and  $\tau_1, \ldots, \tau_n \in \mathcal{T}$ , then  $P_i(\tau_1 \ldots \tau_n) \in L$ .

**2** If 
$$\tau_1, \tau_2 \in \mathcal{T}$$
, then  $(\tau_1 = \tau_2) \in L$ .

• (Compound formulas)

1) If 
$$\varphi \in L$$
, then  $(\neg \varphi) \in L$ .

- **2** If  $\varphi_1, \varphi_2 \in L$ , then  $(\varphi_1 \rightarrow \varphi_2) \in L$ .
- **3** If  $\varphi \in L$  and  $x_i \in \mathfrak{X}$ , then  $(\forall x_i \varphi) \in L$ .

## Readability of formulas

### Theorem 1.3 (Readability)

Suppose that  $\varphi \in \mathcal{L}$ . Then exactly one of the following conditions applies:

- There is an  $i \in \mathbb{N}$  and  $\tau, \ldots, \tau_n \in \mathcal{T}$  s.t.  $\varphi = P_i(\tau_1 \ldots \tau_n)$ , where  $n = \pi(P_i)$ .
- **2** There are  $\tau_1, \tau_2 \in \mathcal{T}$  s.t.  $\varphi = (\tau_1 = \tau_2)$ .

3 There is a 
$$\psi \in \mathcal{L}$$
 s.t.  $arphi = (\neg \psi)$ .

• There are 
$$\psi_1, \psi_2 \in \mathcal{L}$$
 s.t.  $\varphi = (\psi_1 \rightarrow \psi_2)$ .

**5** There is a 
$$\psi \in \mathcal{L}$$
 and  $x_i \in \mathfrak{X}$  s.t.  $\varphi = (\forall x_i \psi)$ .

# Readability of formulas

## Theorem 1.3 (Readability)

Suppose that  $\varphi \in \mathcal{L}$ . Then exactly one of the following conditions applies:

| 1 | There is an $i \in \mathbb{N}$ and $\tau_1, \ldots, \tau_n \in \mathcal{T}$ s.t. $\varphi = (\tau_1, \ldots, \tau_n)$ | $= P_i(\tau_1 \dots \tau_n),$ |
|---|-----------------------------------------------------------------------------------------------------------------------|-------------------------------|
|   | where $n = \pi(P_i)$ .                                                                                                | $P_i$                         |
| 2 | There are $	au_1, 	au_2 \in \mathcal{T}$ s.t. $arphi = (	au_1 \stackrel{\circ}{=} 	au_2)$ .                           | $(x_i, (c_i \text{ or } (F_i$ |
| 3 | There is a $\psi \in \mathcal{L}$ s.t. $\varphi = (\neg \psi)$ .                                                      | (¬                            |
| 4 | There are $\psi_1, \psi_2 \in \mathcal{L}$ s.t. $\varphi = (\psi_1 \rightarrow \psi_2)$ .                             | $(P_i \; \textit{or} \; (($   |
| 5 | There is a $\psi \in \mathcal{L}$ and $x_i \in \mathfrak{X}$ s.t. $\varphi = (\forall x_i \psi)$ .                    | (∀                            |

# Unique Readability of formulas

### Theorem 1.4 (Unique Readability)

*Further, in each of the above cases, the terms and/or subformulas mentioned in that case are unique.* 

## Again, the following lemma is needed

### Lemma 2

If  $\varphi \in \mathcal{L}$ , then no proper initial segment of  $\varphi$  is in  $\mathcal{L}$ .

Once again, the key is the leading two symbols of a sequence for a formula in  $\ensuremath{\mathcal{L}}.$ 

## Construction tree for an $\mathcal{L}$ -formula

 $\begin{array}{c} (\forall x_1((\neg(\forall x_3E(x_3,F(x_1,x_3)))) \rightarrow \\ (\forall x_2(E(F(x_3,x_2),x_1) \rightarrow (\forall x_4(E(x_4,x_2) \rightarrow E(x_4,x_1)))))) \end{array}$ 

# Construction tree for an $\mathcal{L}$ -formula



## Construction sequence for an *L*-formula

### Definition 1.3

Suppose  $\vec{\varphi} = \langle \psi_1, \cdots, \psi_n \rangle$  is a finite sequence of finite sequences. We say  $\vec{\varphi}$  is a formula-witness if for all  $i \leq n$ , one of the following holds:

**1**  $\psi_i$  is an atomic formula,

2 For some 
$$j < i$$
,  $\psi_i = (\neg \psi_j)$ ,

3 For some 
$$j_1, j_2 < i$$
,  $\psi_i = (\psi_{j_1} \to \psi_{j_2})$ ,

• For some j < i and some  $k \in \mathbb{N}$ ,  $\psi_i = (\forall x_k \psi_j)$ .

## Construction sequence for an *L*-formula

### Lemma 3

Suppose that  $\vec{\varphi} = \langle \psi_1, \cdots, \psi_n \rangle$  is a formula-witness (for  $\psi_n$ ). Then for all  $i \leq n$ ,  $\psi_i \in \mathcal{L}$ .

### Lemma 4

Suppose  $\varphi$  is a finite sequence. Then the following are equivalent.

- $\bigcirc \varphi$  is a formula,
- **2** There is a formula witness for  $\varphi$ .

### Lemma 5

Suppose  $\varphi, \psi \in \mathcal{L}$ . Then the following are equivalent.

- **1**  $\psi$  is a subformula of  $\varphi$ ,
- 2 Suppose  $\langle \psi_1, \cdots, \psi_n \rangle$  is a formula-witness for  $\varphi$ , then  $\psi = \psi_k$  for some  $k \leq n$ .

Each occurrence of  $\forall x_i$  in a formula  $\sigma$  defines a unique subformula of  $\varphi.$ 

### Lemma 6

Suppose  $\varphi \in \mathcal{L}$ ,  $x_i \in \mathfrak{X}$ , s, t are finite sequences such that  $\varphi = s + \langle (\forall x_i \rangle + t)$ . Then there is a unique formula  $\psi \in \mathcal{L}$  such that  $s + \psi$  is an initial segment of  $\varphi$ .

We call the occurrence of this  $\psi$  in  $\varphi$  the scope of  $x_i$  in  $\varphi$ .

# Proof of Lemma 2

- The uniqueness follows from Lemma 2.
- We show the existence. Prove by induction on  $|\varphi|$ .
- The case  $|\varphi|=1$  is vacuous. Assume the conclusion holds for all formulas of length  $<|\varphi|.$
- Three cases:
  - $\varphi$  is atomic: no occurrence of  $\langle (\forall x_i \rangle$ .

• 
$$\varphi = (\neg \varphi_1)$$
: reduce  $\varphi$  to  $\varphi_1$ .

- $\varphi = (\varphi_1 \rightarrow \varphi_2)$ : reduce  $\varphi$  to  $\varphi_1$  or  $\varphi_2$ .
- $\varphi = (\forall x_j \varphi_1)$ : either reduce  $\varphi$  to  $\varphi_1$ , or  $s = \langle \rangle$  (in which case  $\psi = \varphi$ ).

Define the scope function  $scope(n, \forall x_i, \varphi)$   $(n \ge 1)$ , the scope of the *n*-th occurrence of  $\forall x_i$  in  $\varphi$ , by recursion on  $\varphi$ :

- If  $\varphi$  is an atomic formula, then scope $(n, \forall x_i, \varphi) = \langle \rangle$ .
- If  $\varphi = (\neg \psi)$ , then scope $(n, \forall x_i, \varphi) = scope(n, \forall x_i, \psi)$ .

• If  $\varphi = (\psi_1 \rightarrow \psi_2)$ , then

• If the n-th occurrence of  $\forall x_i$  is in  $\psi_1$ ,

 $scope(n, \forall x_i, \varphi) = scope(n, \forall x_i, \psi_1).$ 

• If the *n*-th occurrence of  $\forall x_i$  is in  $\psi_2$ ,

 $scope(n, \forall x_i, \varphi) = scope(n - k, \forall x_i, \psi_2),$ 

where k is the number of occurrences of  $\forall x_i$  in  $\psi_1$ .

• Otherwise,  $scope(n, \forall x_i, \varphi) = \langle \rangle$ .

• If 
$$\varphi = (\forall x_j \psi)$$
, then

$$\begin{split} \operatorname{scope}(n, \forall x_i, \varphi) \\ &= \begin{cases} \varphi, & \text{if } n = 1 \text{ and } i = j; \\ \operatorname{scope}(n - 1, \forall x_i, \psi), & \text{if } n > 1 \text{ and } i = j; \\ \operatorname{scope}(n, \forall x_i, \psi), & \text{if } i \neq j. \end{cases} \end{split}$$

## Definition 1.4

- An occurrence of x<sub>i</sub> in φ is free if x<sub>i</sub> does not occur within the scope of any occurrence of ∀x<sub>i</sub> in φ. Otherwise, the occurrence is called bounded.
- 2  $x_i$  is a free variable if there is a free occurrence of  $x_i$  in  $\varphi$ .
- **(3)**  $x_i$  is bounded variable if it occurs in  $\varphi$  but no free occurrence.

### Definition 1.5

A formula  $\varphi$  is a sentence iff it has no free variables.

- $\lor$ ,  $\land$ ,  $\leftrightarrow$  and  $\exists$  are used as abbreviations.
- Parentheses may be dropped whenever it causes no confusion, for instance, the outmost parentheses can always be dropped.
- When parentheses are dropped, connectives and quantifiers subject to the following priorities:

$$(\neg, \forall x_i, \exists x_j) \qquad (\lor, \land) \qquad (\rightarrow, \leftrightarrow).$$

• Symbols of the same priority group are ordered according to their occurrence, the one appears at the right has higher priority. For example,

$$\exists x_1 \neg P(x_1, x_2) \rightarrow \forall x_2 Q(x_1, x_2)$$

abbreviates

 $(((\neg(\forall x_1(\neg(\neg P(x_1, x_2)))))) \rightarrow (\forall x_2Q(x_1, x_2)))$ 

### Exercise 1.1

- **9** Prove the Unique Readability Theorem for  $\mathcal{L}$  (Theorem 1.4).
- Consider the set of sequences defined as in Definition 1.2 except that the last clause is changed to read,

"If  $\varphi \in L$  and  $x_i \in \mathfrak{X}$ , then  $\forall x_i \varphi \in L$ "

in which the parentheses are omitted. Is this set uniquely readable?

 Consider the set of sequences defined as in Definition 1.2 except that the last clause is changed to read,

"If  $\varphi_1, \varphi_2 \in L$ , then  $\varphi_1 \to \varphi_2 \in L$ "

in which the parentheses are omitted. Is this set uniquely readable?