Mathematical Logic

Xianghui Shi

School of Mathematical Science Beijing Normal University

Spring, 2025

An abstract logic is a pair $\mathcal{L} = (\mathcal{S}, \models)$, where

- \mathcal{S} is a set (of sentences of \mathcal{L}),
- \models is a relation between arbitrary structure and elements of S (intuitively, a truth predicate),

such that $\mathcal L$ has the following closure properties: letting A be any vocabulary set,

$$\mathcal{S}_{A} = \{ \varphi \mid \varphi \text{ is an } A\text{-sentence} \}$$

$$\operatorname{St}(A) = \{ \mathcal{M} \mid \mathcal{M} \text{ is an } A\text{-structure} \}$$

$$\operatorname{Mod}_{A}^{\mathcal{L}}(\varphi) = \{ \mathcal{M} \in \operatorname{St}(A) \mid \mathcal{M} \models \varphi \}$$

I closed under negation:

- if $\varphi \in \mathcal{S}_A$ then $\neg \varphi \in \mathcal{S}_A$, and
- $\operatorname{Mod}_{A}^{\mathcal{L}}(\varphi) = \operatorname{St}(A) \setminus \operatorname{Mod}_{A}^{\mathcal{L}}(\neg \varphi);$

2 closed under conjunction:

• if
$$\varphi, \psi \in S_A$$
, then $\varphi \land \psi \in S_A$, and

•
$$\operatorname{Mod}_{A}^{\mathcal{L}}(\varphi \wedge \psi) = \operatorname{Mod}_{A}^{\mathcal{L}}(\varphi) \cap \operatorname{Mod}_{A}^{\mathcal{L}}(\psi);$$

closed under existential quantification: for any constant symbol c ∈ A, for any φ ∈ S_A, there is a φ' ∈ S_A s.t. Mod^L_{A\{c}}(φ') = {M | (M, c^M) ∈ Mod^L_A(φ) for some c^M ∈ M}.

- Closed under renaming: suppose π : A → A' is a renaming function, then π can be canonically extended to π' : St(A) → St(A'), and for all φ ∈ S_A there is a φ' ∈ S_{A'}, Mod^L_{A'}(φ) = {π'(M) | M ∈ Mod^L_A(φ)}.
- closed under free expansions: if whenever $A \subseteq A'$ and $\varphi \in S_A$, there is a $\varphi' \in S_{A'}$ such that $Mod_A^{\mathcal{L}}(\varphi) = Mod_{A'}^{\mathcal{L}}(\varphi')$.
- closed under isomorphism: whenever $\varphi \in S_A$, $\mathcal{M} \in \operatorname{Mod}_A^{\mathcal{L}}(\varphi)$ and $f : \mathcal{M} \cong \mathcal{N}$, then $\mathcal{N} \in \operatorname{Mod}_A^{\mathcal{L}}(\varphi)$.

Definition

• An abstract logic $\mathcal{L} = (\mathcal{S}, \models)$ is a **sublogic** of another abstract logic $\mathcal{L}' = (\mathcal{S}', \models')$, denoted as $\mathcal{L} \leq \mathcal{L}'$, if for any $\varphi \in \mathcal{S}$, there is a $\varphi' \in \mathcal{S}'$ such that^a

$$\operatorname{Mod}_{A}^{\mathcal{L}}(\varphi) = \operatorname{Mod}_{A'}^{\mathcal{L}'}(\varphi').$$

• Two logics \mathcal{L} and \mathcal{L}' are **equivalent** if $\mathcal{L} \leq \mathcal{L}'$ and $\mathcal{L}' \leq \mathcal{L}$.

^awriting $A = A(\mathcal{S})$ and $A' = A(\mathcal{S}')$.

Intuitively, this is defining the notion of comparing expressive powers of logics.

Definition

An abstract logic L = (S, ⊨) satisfies the (Countable)
 Compactness Property if for any A, for any (countable)
 Σ ⊆ S_A,

For every finite $\Sigma_0 \subseteq \Sigma$

$${\textstyle\bigcap_{\varphi\in\Sigma_0}}{\rm Mod}_A^{\mathcal L}(\varphi)\neq\varnothing\implies{\textstyle\bigcap_{\varphi\in\Sigma}}{\rm Mod}_A^{\mathcal L}(\varphi)\neq\varnothing.$$

An abstract logic L = (S, ⊨) satisfies the Downward
 Löwenheim-skolem Property if for any countable A, every nonempty Mod^L_A(φ), φ ∈ S, contains a countable model.

$\mathcal{L}_{\omega,\omega}$ is the strongest

Let $\mathcal{L}_{\kappa,\lambda}$ denote the language allowing

- $<\kappa$ many conjunction/disjuctions, and
- $<\lambda$ many universal/exitential quantifications.

Then $\mathcal{L}_{\omega,\omega}$ = the first order logic.

Lindström Theorem, 1969

Let \mathcal{L}^* be an abstract logic such that $\mathcal{L}_{\omega,\omega} \leqslant \mathcal{L}^*$. If \mathcal{L}^* satisfies

- (CCP) the Countable Compactness Property, and
- (DLP) the Downward Löwenheim-Skolem Property,

then $\mathcal{L}^* \equiv \mathcal{L}_{\omega,\omega}$, i.e. \mathcal{L}^* has the same expressive power as first-order logic $\mathcal{L}_{\omega,\omega}$.

Suppose L^{*} = (S^{*}, ⊨^{*}) satisfies CCP and DLP, and some φ ∈ S is not L_{ω,ω}-definable, i.e. for any A, there is no ψ ∈ L_{ω,ω} such that Mod^{L*}_A(φ) = Mod<sup>L_{ω,ω}_A(ψ).
</sup>

- Suppose $\mathcal{L}^* = (\mathcal{S}^*, \models^*)$ satisfies CCP and DLP, and some $\varphi \in \mathcal{S}$ is not $\mathcal{L}_{\omega,\omega}$ -definable, i.e. for any A, there is no $\psi \in \mathcal{L}_{\omega,\omega}$ such that $\operatorname{Mod}_A^{\mathcal{L}*}(\varphi) = \operatorname{Mod}_A^{\mathcal{L}_{\omega,\omega}}(\psi)$.
- We may assume that A is finite and relational.

Proof

- Suppose $\mathcal{L}^* = (\mathcal{S}^*, \models^*)$ satisfies CCP and DLP, and some $\varphi \in \mathcal{S}$ is not $\mathcal{L}_{\omega,\omega}$ -definable, i.e. for any A, there is no $\psi \in \mathcal{L}_{\omega,\omega}$ such that $\operatorname{Mod}_A^{\mathcal{L}*}(\varphi) = \operatorname{Mod}_A^{\mathcal{L}_{\omega,\omega}}(\psi)$.
- We may assume that A is finite and relational.
- For each $n < \omega$, there are only finitely many (logically non-equivalent) first order A-sentences of quantifier rank $\leq n$, ψ_i^n , $i < k_n$.

- Suppose $\mathcal{L}^* = (\mathcal{S}^*, \models^*)$ satisfies CCP and DLP, and some $\varphi \in \mathcal{S}$ is not $\mathcal{L}_{\omega,\omega}$ -definable, i.e. for any A, there is no $\psi \in \mathcal{L}_{\omega,\omega}$ such that $\operatorname{Mod}_A^{\mathcal{L}*}(\varphi) = \operatorname{Mod}_A^{\mathcal{L}_{\omega,\omega}}(\psi)$.
- We may assume that A is finite and relational.
- For each $n < \omega$, there are only finitely many (logically non-equivalent) first order A-sentences of quantifier rank $\leq n$, ψ_i^n , $i < k_n$.
- \bullet Call two A-structures n-equivalent if they satisfy the same ψ_i^n 's.

- Suppose $\mathcal{L}^* = (\mathcal{S}^*, \models^*)$ satisfies CCP and DLP, and some $\varphi \in \mathcal{S}$ is not $\mathcal{L}_{\omega,\omega}$ -definable, i.e. for any A, there is no $\psi \in \mathcal{L}_{\omega,\omega}$ such that $\operatorname{Mod}_A^{\mathcal{L}*}(\varphi) = \operatorname{Mod}_A^{\mathcal{L}_{\omega,\omega}}(\psi)$.
- We may assume that A is finite and relational.
- For each $n < \omega$, there are only finitely many (logically non-equivalent) first order A-sentences of quantifier rank $\leq n$, ψ_i^n , $i < k_n$.
- Call two A-structures *n*-equivalent if they satisfy the same ψ_i^n 's.
- There are only 2^{k_n} many different *n*-equivalence classes and each is first order definable.

• Since φ is not first order definable, for each n, one can find \mathcal{M}_n and \mathcal{N}_n such that

" $\mathcal{M}_n \models^* \varphi$, $\mathcal{N}_n \models^* \neg \varphi$ and they are *n*-equivalent". (†)

- By Ehrenfeucht and Fraisse, two models \mathcal{M}, \mathcal{N} are *n*-equivalent iff there are relations I_i , i < n, such that
 - $\begin{array}{l} \textcircled{0} \quad I_0(\langle \rangle, \langle \rangle); \\ \textcircled{0} \quad I_i(\bar{a}, \bar{b}) \text{ implies that } \bar{a} \in M^i \text{ and } \bar{b} \in N^i; \end{array}$
 - If $I_i(\bar{a}, \bar{b})$, then for every $a_i \in M$ $(b_i \in N)$, there is a $b_i \in N$ $(a_i \in M)$ such that $I_{i+1}(\bar{a} \cap a_i, \bar{b} \cap b_i)$;

If there are such relations I_i , $i < \omega$, then \mathcal{M} and \mathcal{N} are ω -equivalent.

- By a back-and-forth argument, if \mathcal{M} and \mathcal{N} are countable and ω -equivalent, then $\mathcal{M} \cong \mathcal{N}$.
- Code (†) into a $\psi(n) \in \mathcal{S}^*$.
- By CCP, there is a nonstandard model of $\psi(n)$ in which n is nonstandard.
- Via the coding, one gets two other models \mathcal{M} and \mathcal{N} such that $\mathcal{M} \models \varphi$, $\mathcal{N} \models \neg \varphi$ and they are ω -equivalent.
- By DLP, we may assume that they are countable. But then we have a contradiction!