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The Compactness Theorem

Gödel’s Incompleteness Theorem

– An over-simplified introduction –
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The Compactness Theorem

Hilbert’s 2-nd problem, 1900
Is it possible to prove that arithmetic is consistent – free of any
internal contradictions? (Need a finitistic proof)

Gödel’s Incompleteness Theorem, 1931
The answer is No.
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The Compactness Theorem

Set AE of Axioms

@x(Sx ‰ 0) S1

@x@y(Sx = Sy Ñ x = y) S2

@x@y(x ă Sy ðñ x ď y) L1

@x(x ă 0) L2

@x@y(x ă y _ x = y _ y ă x) L3

@x(x+ 0 = x) A1

@x@y(x+ Sy = S(x+ y)) A2

@x(x ¨ 0 = 0) M1

@x@y(x ¨ Sy = x ¨ y + x) M2

@x(x0 = S0) E1

@x@y(xSy = xy ¨ x) E2
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The Compactness Theorem

Representable in Cn(AE)

Definition 6.1
Let T be any theory in a language L containing t0̂, Ŝu. Let
φ(x̄) P L and a set R Ď Nn. Then φ represents R in T iff for
every ā P Nn,

ā P R ùñ T $ φ(ā),
ā R R ùñ T $ ␣φ(ā).

A set R on N is representable in T if the above φ exists.

Thus φ represent R in Th(N ) iff φ defines R in N .

We shall be interested in objects representable in Cn(AE), where
Cn(T ) =def tσ P SAE

| T $ σu.
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The Compactness Theorem

Gödelnumbering

Assign numbers to symbols:
Parameters Logical symbols
0. @ 1. (

2. 0̂ 3. )

4. Ŝ 5. ␣

6. ă̂ 7. Ñ

8. +̂ 9. =
10. ˆ̂ 11. x1

12. Ê 13. x2

For every xi, xxiy = 9 + 2i. Define
xs0 ¨ ¨ ¨ sny = p

xs0y+1
0 ¨ ¨ ¨ pxsny+1

n

where pi is the i-th prime number.
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The Compactness Theorem

The following sets are representable in Cn(AE).
T1 = txxiy | xi is a variableu
T2 = txτy | τ is a termu
T3 = txφy | φ is a well formed formulau
T4 = txφy | φ is a sentenceu
T5 = txφy | φ is a logical axiomu
T6 = txxθ0y, ¨ ¨ ¨ , xθnyy | xθ0, ¨ ¨ ¨ , θny is a proof from Au, where
A is a set of formulas such that 7A=def txσy | σ P Au is
representable in Cn(AE).
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The Compactness Theorem

Hierarchy of formulas
Let

Σk =def tDx1@x2 ¨ ¨ ¨ ˝ xk φ | φ is quantifier freeu
Πk =def t@x1Dx2 ¨ ¨ ¨ ˝ xk φ | φ is quantifier freeu

where ˝ is D when k is odd, and @ when k is even.

We say a set R on N is Σk when R can be defined by a Σk formula.
Similar for Πk sets. If a set is both Σk and Πk, we call it ∆k. A set is
definable iff it has a Σk (Πk) definition for some k.

We shall not distinguish sets and their definitions. So Σk,Πk,∆k often
refer to the collections of Σk-relations, Πk-relations, ∆k-relations,
respectively.
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The Compactness Theorem

Definability and Representability

Informally, given a countable set A, if there is an “effective
procedure” to decide its membership, we say A is
recursive/computable.

Church’s Thesis
A set R on N is decidable iff R is recursivea iff R is representable
in Cn(AE).

aR is ∆1 iff R is recursive.

So all the T ’s in the previous slide are recursive, ∆1. Given a set of
axioms A with 7A recursive, 7Cn(A) is a Σ1 subset of N. If Cn(A)
is complete, then 7Cn(A) is ∆1, i.e. recursive.
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The Compactness Theorem

AE is Σ1-correct

Theorem
For every Σ1 sentence Dxφ, N |ù Dxφ ùñ AE $ Dxφ.

Observation. For every quantifier free sentence σ,
N |ù σ ùñ AE $ σ.

If N |ù Dxφ, then for some m P N, N |ù φ(Ŝm0̂). φ(Ŝm0̂) is
quantifier free, therefore AE $ φ(Ŝm0̂), hence AE $ Dxφ. b

Note that Goldbach’s Conjecture (GC) is a Π1 sentence. So if GC
is false, then one can prove ␣GC from AE .1

1In other word, Con(AE + GC) ùñ N |ù GC. However, this doesn’t reduce the difficulty of the problem,
since N is the standard part of every model of AE .
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The Compactness Theorem

Fix-point Lemma

Lemma 6.0
Given any φ(x) P LAE

, there is a σ P SAE
such that

AE $ σ Ø φ(xσy).

Let ϑ(x, y, z) represent in Cn(AE) the function f(xαy, n) = xα(n)y.
Consider τ(x) =def @z [ϑ(x, x, z)Ñ φ(z)]. Let σ be τ(xτy). We show that
N |ù σ Ø φ(xσy):
“Ñ”: σ $ ϑ(xτy, xτy, xσy)Ñ φ(xσy). (let z = xσy) AE $ ϑ(xτy, xτy, xσy),
thus AE Y tσu $ φ(xσy).
“Ð”: By definition of ϑ, AE $ @z [ϑ(xτy, xτy, z)Ñ z = xσy].

Therefore AE Y tφ(xσy)u $ @z[ϑ(xτy, xτy, z)Ñ φ(z)]. b
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The Compactness Theorem

Undefinability and Incompleteness

Tarski Undefinability Theorem, 1933
The set 7Th(N ) is not definable in N .

As a corollary, 7Th(N ) is not recursive.

Towards a contradiction assume φ P LAE
defines 7Th(N ). Apply

Fix-point Lemma to ␣φ, there is a σ P SAE
s.t. N |ù σ Ø ␣φ(xσy).a

Then
N |ù σ ô N |ù ␣φ(xσy) ô N * σ

Contradiction! b

aSo σ says “φ is false of me”, i.e. “I am false”.
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The Compactness Theorem

Gödel’s Incompleteness Theorem, 1931
If A Ď Th(N ) and 7A is recursive, then Cn(A) is not a complete
theory.

If Cn(A) is complete, Cn(A) = Th(N ). 7A is recursive, so is 7Cn(A).
Therefore 7Th(N ) is definable in N . Contradiction! b

Another way to put this:

Th(N ) can not have a recursive set of axioms.

The next theorem says that one can not extend AE to a complete
theory by adding axioms recursively.
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The Compactness Theorem

Strong Undecidability of Cn(AE)

Let T be a theory such that T YAE is consistent. Then 7T is not
recursive.

As a corollary, if 7Σ is recursive, then Cn(Σ) is not complete.

Note. 7Cn(Σ) is recursive ùñ 7Cn(ΣY tσu) is recursive.

Let T 1 = Cn(T YAE). If 7T is recursive, since AE is finite, 7T 1 is
recursive. Thus 7T 1 is represented in Cn(AE), say by φ. By Fix-point,
there is a σ such that AE $ σ ðñ ␣φ(xσy).

σ P T 1 ùñ AE $ φ(xσy) ùñ AE $ ␣σ ùñ (␣σ) P T 1

σ R T 1 ùñ AE $ ␣φ(xσy) ùñ AE $ σ ùñ σ P T 1

Contradiction! b
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