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The Compactness Theorem

GODEL’S INCOMPLETENESS THEOREM

— AN OVER-SIMPLIFIED INTRODUCTION —
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The Compactness Theorem

Hilbert's 2-nd problem, 1900

Is it possible to prove that arithmetic is consistent — free of any
internal contradictions? (Need a finitistic proof)

Spring, 2025 Xianghui Shi Mathematical Logic 3/ 14



The Compactness Theorem

Hilbert's 2-nd problem, 1900

Is it possible to prove that arithmetic is consistent — free of any
internal contradictions? (Need a finitistic proof)

Godel's Incompleteness Theorem, 1931

The answer is NO.
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The Compactness Theorem
Set Ap of Axioms

Va(Sz # 0) S1
VaVy(Sz = Sy >z =vy) S2
VaVy(z < Sy < x <y) L1

Vz(z < 0) L2
VeVy(zr <yvez=yvy<z) L3

Vo(r +0=x) Al
VaVy(x + Sy = S(z +y)) A2

Va(z-0=0) M1
VaVy(z - Sy =2 -y + x) M2

V(2 = S0) E1

(

VaVy(zSY = 2¥ - x) E2
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The Compactness Theorem

Representable in Cn(Ag)

Definition 6.1

Let T be any theory in a language £ containing {0, 5}. Let
©(Z) € L and a set R < N". Then ¢ represents R in T iff for
every a € N,

eacR = T+ p(a),

ea¢ R = T+ —p(a).
A set R on N is representable in 7' if the above ¢ exists.

.

Thus ¢ represent R in Th(N) iff ¢ defines R in N.

We shall be interested in objects representable in Cn(Ag), where
Cn(T) =def {O’ € SAE | T+ O’}.
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The Compactness Theorem
Godelnumbering

Assign numbers to symbols:

Parameters Logical symbols

0. N 1. (

2. 0 3. )

4. S 5. -

6. < 7. —

8. + 9. =
10. X 11. 1
12 E 13, a9

For every x;, ;' = 9 + 2i. Define

r Bl S0 +1
S0+ Sn =DPg .

where p; is the i-th prime number.

.. p;?f—&-l
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The Compactness Theorem

The following sets are representable in Cn(Ag).
o T = {"z; | z; is a variable}
To = {7 |7 is a term}
T3 ={'¢ | ¢ is a well formed formula}
Ty ={'¢ | ¢ is a sentence}
T5 = {'¢ | ¢ is a logical axiom}
Te = {00, - ,0, )| b, ,0y)is a proof from A}, where
A is a set of formulas such that fA =g {0’ | 0 € A} is
representable in Cn(Ag).
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The Compactness Theorem

Hierarchy of formulas

Let ) »
Yk =def {31 Vo - - - o2 @ | @ is quantifier free}

Iy, =ger {V21312 - - 02 0 | @ is quantifier free}

where o is 3 when k is odd, and V when k is even.

We say a set R on N is ¥ when R can be defined by a ¥, formula.
Similar for IIj, sets. If a set is both X, and IIj, we call it A,. A set is
definable iff it has a X (II;) definition for some k.

We shall not distinguish sets and their definitions. So X, I, Ay often

refer to the collections of Xj-relations, II,-relations, Ag-relations,
respectively.
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The Compactness Theorem
Definability and Representability

Informally, given a countable set A, if there is an “effective
procedure” to decide its membership, we say A is
recursive/computable.
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The Compactness Theorem
Definability and Representability

Informally, given a countable set A, if there is an “effective
procedure” to decide its membership, we say A is
recursive/computable.

A set R on N is decidable iff R is recursive? iff R is representable
in Cn(Ag).

R is Ay iff R is recursive.
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The Compactness Theorem
Definability and Representability

Informally, given a countable set A, if there is an “effective
procedure” to decide its membership, we say A is
recursive/computable.

A set R on N is decidable iff R is recursive? iff R is representable
in Cn(Ag).

R is Ay iff R is recursive.

So all the T's in the previous slide are recursive, A;. Given a set of
axioms A with $A recursive, Cn(A) is a X1 subset of N. If Cn(A)
is complete, then §Cn(A) is Ay, i.e. recursive.
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The Compactness Theorem

Apg is Yq-correct

For every 1 sentence 3x o, N | Iz p = Ap+ Jz .

OBSERVATION. For every quantifier free sentence o,
NEo = Agt o.

1In other word, Con(Ag + GC) == N |= GC. However, this doesn't reduce the difficulty of the problem,
since N is the standard part of every model of A .
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The Compactness Theorem
Apg is Yq-correct

For every 1 sentence 3x o, N | Iz p = Ap+ Jz .

OBSERVATION. For every quantifier free sentence o,
NEo = Agt o.

If N |= 3z ¢, then for some m e N, N |= ©(8™m0). p(S™0) is
quantifier free, therefore Ag - ¢(S™0), hence Ag - Jx .

1In other word, Con(Ag + GC) == N |= GC. However, this doesn't reduce the difficulty of the problem,
since N is the standard part of every model of A .
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The Compactness Theorem
Apg is Yq-correct

For every 1 sentence 3x o, N | Iz p = Ap+ Jz .

OBSERVATION. For every quantifier free sentence o,
NEo = Agt o.

If N |= 3z ¢, then for some m e N, N |= ©(8™m0). p(S™0) is
quantifier free, therefore Ag - ¢(S™0), hence Ag - Jx .

Note that Goldbach's Conjecture (GC) is a II; sentence. So if GC
is false, then one can prove —GC from Apt

1In other word, Con(Ag + GC) == N |= GC. However, this doesn't reduce the difficulty of the problem,
since N is the standard part of every model of A .
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The Compactness Theorem
Fix-point Lemma

Given any p(z) € L4, there is a 0 € Su,, such that

Ap koo p(7).
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The Compactness Theorem
Fix-point Lemma

Lemma 6.0

Given any p(z) € L4, there is a 0 € Su,, such that

Ap koo p(7).

A

Let ¥(x,y, z) represent in Cn(Ag) the function f(‘a’,n) = 'a(n).
Consider 7(x) =gt V2 [¥(x, 2, 2) — ©(2)]. Let o be 7(7). We show that
NEoop(d):
"o (T, T, ) = (7). (let z="0") Ag = 9(7,7,79),
thus Ap U {o} - (7).
“«": By definition of ¥, Ag - Vz [3(7,7T,2) - 2z = 7.

Therefore Ag U {p(0)} - Vz[3(7T, T, 2) — p(z)].

v

Spring, 2025 Xianghui Shi Mathematical Logic 11 / 14



The Compactness Theorem
Undefinability and Incompleteness

Tarski Undefinability Theorem, 1933

The set §Th(N) is not definable in N.

As a corollary, $Th(N) is not recursive.
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The Compactness Theorem
Undefinability and Incompleteness

Tarski Undefinability Theorem, 1933

The set Th(N) is not definable in AV,

As a corollary, $Th(N) is not recursive.

Towards a contradiction assume ¢ € L4, defines §Th(N). Apply
Fix-point Lemma to —, there is a 0 € S4, s.t. N |Eo < —p(7).2
Then

Nbo & NE-¢%) < Nio
Contradiction!

?So o says “ip is false of me”, i.e. “I am false”.
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The Compactness Theorem

Godel's Incompleteness Theorem, 1931

If A< Th(N) and £A is recursive, then Cn(A) is not a complete
theory.

A

If Cn(A) is complete, Cn(A) = Th(N). $A4 is recursive, so is £Cn(A).
Therefore §Th(N) is definable in N. Contradiction!

v
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The Compactness Theorem

Godel's Incompleteness Theorem, 1931

If A< Th(N) and £A is recursive, then Cn(A) is not a complete
theory.

A

If Cn(A) is complete, Cn(A) = Th(N). $A4 is recursive, so is £Cn(A).
Therefore §Th(N) is definable in N. Contradiction!

v

Another way to put this:
Th(N) can not have a recursive set of axioms.

The next theorem says that one can not extend Ag to a complete
theory by adding axioms recursively.
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The Compactness Theorem

Strong Undecidability of Cn(Ag)

Let T be a theory such that T'u A is consistent. Then 7" is not
recursive.

As a corollary, if % is recursive, then Cn(X) is not complete.
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The Compactness Theorem
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Let T be a theory such that T'u A is consistent. Then 7" is not
recursive.

As a corollary, if % is recursive, then Cn(X) is not complete.

NOTE. fCn(Y) is recursive = Cn(X u {o}) is recursive.

Spring, 2025 Xianghui Shi Mathematical Logic 14 / 14



The Compactness Theorem

Strong Undecidability of Cn(Ag)

Let T be a theory such that T'u A is consistent. Then 7" is not
recursive.

As a corollary, if % is recursive, then Cn(X) is not complete.

NOTE. fCn(Y) is recursive = Cn(X u {o}) is recursive.

Let 7" = Cn(T u Ag). If T is recursive, since A is finite, {7” is
recursive. Thus 7" is represented in Cn(Ag), say by ¢.
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The Compactness Theorem

Strong Undecidability of Cn(Ag)

Let T' be a theory such that T'u Ag is consistent. Then #7 is not
recursive.

As a corollary, if % is recursive, then Cn(X) is not complete.

NOTE. fCn(Y) is recursive = Cn(X u {o}) is recursive.

Let 7" = Cn(T u Ag). If T is recursive, since A is finite, {7” is
recursive. Thus §7” is represented in Cn(Ag), say by ¢. By Fix-point,
there is a o such that Ag - 0 <= —p(7).
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The Compactness Theorem

Strong Undecidability of Cn(Ag)

Let T' be a theory such that T'u Ag is consistent. Then #7 is not
recursive.
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The Compactness Theorem

Strong Undecidability of Cn(Ag)

Let T' be a theory such that T'u Ag is consistent. Then #7 is not
recursive.
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NOTE. fCn(Y) is recursive = Cn(X u {o}) is recursive.

Let 7" = Cn(T u Ag). If T is recursive, since A is finite, {7” is
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The Compactness Theorem

Strong Undecidability of Cn(Ag)

Let T' be a theory such that T'u Ag is consistent. Then #7 is not
recursive.

As a corollary, if % is recursive, then Cn(X) is not complete.

NOTE. fCn(Y) is recursive = Cn(X u {o}) is recursive.

Let 7" = Cn(T u Ag). If T is recursive, since A is finite, {7” is
recursive. Thus §7” is represented in Cn(Ag), say by ¢. By Fix-point,
there is a o such that Ag - 0 <= —p(7).

@oceT = Apt p(7) = Agt+ —0 = (—o)eT’
00¢T = At —p(d) = Agtoc = oceT

Contradiction!
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