Mathematical Logic

Xianghui Shi

School of Mathematical Science Beijing Normal University

Spring, 2025

GÖDEL'S INCOMPLETENESS THEOREM

- AN OVER-SIMPLIFIED INTRODUCTION -

Hilbert's 2-nd problem, 1900

Is it possible to prove that arithmetic is consistent – free of any internal contradictions? (Need a finitistic proof)

Hilbert's 2-nd problem, 1900

Is it possible to prove that arithmetic is consistent – free of any internal contradictions? (Need a finitistic proof)

Gödel's Incompleteness Theorem, 1931

The answer is No.

Set A_E of Axioms

$$\forall x (Sx \neq 0)$$

$$\forall x \forall y (Sx = Sy \to x = y)$$
 S2

$$\forall x \forall y (x < Sy \iff x \leqslant y)$$
 L1

$$\forall x(x \neq 0) \qquad \qquad L2$$

$$\forall x \forall y (x < y \lor x = y \lor y < x)$$
 L3

$$\forall x(x+0=x) \tag{A1}$$

$$\forall x \forall y (x + Sy = S(x + y))$$
 A2

$$\forall x(x \cdot 0 = 0) \tag{M1}$$

$$\forall x \forall y (x \cdot Sy = x \cdot y + x)$$
 M2

$$\forall x(x^0 = S0) \qquad \qquad E1$$

$$\forall x \forall y (x^{Sy} = x^y \cdot x) \tag{E2}$$

Representable in $Cn(A_E)$

Definition 6.1

Let T be any theory in a language \mathcal{L} containing $\{\hat{0}, \hat{S}\}$. Let $\varphi(\bar{x}) \in \mathcal{L}$ and a set $R \subseteq \mathbb{N}^n$. Then φ represents R in T iff for every $\bar{a} \in \mathbb{N}^n$,

- $\bar{a} \in R \implies T \vdash \varphi(\bar{a})$,
- $\bar{a} \notin R \implies T \vdash \neg \varphi(\bar{a}).$

A set R on \mathbb{N} is **representable** in T if the above φ exists.

Thus φ represent R in Th(\mathcal{N}) iff φ defines R in \mathcal{N} .

We shall be interested in objects representable in $Cn(A_E)$, where $Cn(T) =_{def} \{ \sigma \in S_{A_E} \mid T \vdash \sigma \}.$

Gödelnumbering

Assign numbers to symbols:

Parameters		Logical symbols	
0.	A	1.	(
2.	Ô	3.)
4.	\hat{S}	5.	_
6.	Ŝ	7.	\rightarrow
8.	Ĥ	9.	=
10.	Ŷ	11.	x_1
12.	\hat{E}	13.	x_2

For every x_i , $x_i = 9 + 2i$. Define

$$[s_0 \cdots s_n] = p_0^{[s_0]+1} \cdots p_n^{[s_n]+1}$$

where p_i is the *i*-th prime number.

The following sets are representable in $Cn(A_E)$.

•
$$T_1 = \{ x_i \mid x_i \text{ is a variable} \}$$

- $T_2 = \{ \tau \mid \tau \text{ is a term} \}$
- $T_3 = \{ \varphi \mid \varphi \text{ is a well formed formula} \}$
- $T_4 = \{ \varphi \mid \varphi \text{ is a sentence} \}$
- $T_5 = \{ \varphi \mid \varphi \text{ is a logical axiom} \}$
- $T_6 = \{ \langle \theta_0^{\neg}, \cdots, \theta_n^{\neg} \rangle \mid \langle \theta_0, \cdots, \theta_n \rangle \text{ is a proof from } A \}$, where A is a set of formulas such that $\sharp A =_{\text{def}} \{ \sigma^{\neg} \mid \sigma \in A \}$ is representable in $Cn(A_E)$.

Hierarchy of formulas

Let

$$\Sigma_{k} =_{def} \{ \exists x_{1} \forall x_{2} \cdots \Box x_{k} \varphi \mid \varphi \text{ is quantifier free} \}$$
$$\Pi_{k} =_{def} \{ \forall x_{1} \exists x_{2} \cdots \Box x_{k} \varphi \mid \varphi \text{ is quantifier free} \}$$

where \square is \exists when k is odd, and \forall when k is even.

We say a set R on \mathbb{N} is Σ_k when R can be defined by a Σ_k formula. Similar for Π_k sets. If a set is both Σ_k and Π_k , we call it Δ_k . A set is **definable** iff it has a Σ_k (Π_k) definition for some k.

We shall not distinguish sets and their definitions. So $\Sigma_k, \Pi_k, \Delta_k$ often refer to the collections of Σ_k -relations, Π_k -relations, Δ_k -relations, respectively.

Definability and Representability

Informally, given a countable set A, if there is an "effective procedure" to decide its membership, we say A is **recursive/computable**.

Definability and Representability

Informally, given a countable set A, if there is an "effective procedure" to decide its membership, we say A is **recursive/computable**.

Church's Thesis

A set R on \mathbb{N} is decidable iff R is recursive^a iff R is representable in $Cn(A_E)$.

^aR is Δ_1 iff R is recursive.

Definability and Representability

Informally, given a countable set A, if there is an "effective procedure" to decide its membership, we say A is **recursive/computable**.

Church's Thesis

A set R on \mathbb{N} is decidable iff R is recursive^a iff R is representable in $Cn(A_E)$.

^{*a*}R is Δ_1 iff R is recursive.

So all the *T*'s in the previous slide are recursive, Δ_1 . Given a set of axioms *A* with #A recursive, #Cn(A) is a Σ_1 subset of \mathbb{N} . If Cn(A) is complete, then #Cn(A) is Δ_1 , i.e. recursive.

A_E is Σ_1 -correct

Theorem

For every
$$\Sigma_1$$
 sentence $\exists x \varphi, \mathcal{N} \models \exists x \varphi \implies A_E \vdash \exists x \varphi$.

<u>OBSERVATION</u>. For every quantifier free sentence σ ,

$$\mathcal{N} \models \sigma \implies A_E \vdash \sigma.$$

¹In other word, $Con(A_E + GC) \implies N \models GC$. However, this doesn't reduce the difficulty of the problem, since \mathbb{N} is the standard part of every model of A_E .

A_E is Σ_1 -correct

Theorem

For every
$$\Sigma_1$$
 sentence $\exists x \varphi, \mathcal{N} \models \exists x \varphi \implies A_E \vdash \exists x \varphi$.

<u>OBSERVATION</u>. For every quantifier free sentence σ ,

$$\mathcal{N} \models \sigma \implies A_E \vdash \sigma.$$

If $\mathcal{N} \models \exists x \varphi$, then for some $m \in \mathbb{N}$, $\mathcal{N} \models \varphi(\hat{S}^m \hat{0})$. $\varphi(\hat{S}^m \hat{0})$ is quantifier free, therefore $A_E \vdash \varphi(\hat{S}^m \hat{0})$, hence $A_E \vdash \exists x \varphi$.

 \times

¹ In other word, $Con(A_E + GC) \implies N \models GC$. However, this doesn't reduce the difficulty of the problem, since \mathbb{N} is the standard part of every model of A_E .

A_E is Σ_1 -correct

Theorem

For every
$$\Sigma_1$$
 sentence $\exists x \varphi, \mathcal{N} \models \exists x \varphi \implies A_E \vdash \exists x \varphi$.

<u>OBSERVATION</u>. For every quantifier free sentence σ ,

$$\mathcal{N} \models \sigma \implies A_E \vdash \sigma.$$

If $\mathcal{N} \models \exists x \varphi$, then for some $m \in \mathbb{N}$, $\mathcal{N} \models \varphi(\hat{S}^m \hat{0})$. $\varphi(\hat{S}^m \hat{0})$ is quantifier free, therefore $A_E \vdash \varphi(\hat{S}^m \hat{0})$, hence $A_E \vdash \exists x \varphi$.

Note that Goldbach's Conjecture (GC) is a Π_1 sentence. So if GC is false, then one can prove \neg GC from A_E .¹

 \times

¹ In other word, $Con(A_E + GC) \implies N \models GC$. However, this doesn't reduce the difficulty of the problem, since \mathbb{N} is the standard part of every model of A_E .

Fix-point Lemma

Lemma 6.0

Given any $\varphi(x) \in \mathcal{L}_{A_E}$, there is a $\sigma \in \mathcal{S}_{A_E}$ such that $A_E \vdash \sigma \leftrightarrow \varphi(\sigma).$

Fix-point Lemma

Lemma 6.0

Given any
$$\varphi(x) \in \mathcal{L}_{A_E}$$
, there is a $\sigma \in \mathcal{S}_{A_E}$ such that
$$A_E \vdash \sigma \leftrightarrow \varphi(\ulcorner \sigma \urcorner).$$

Let $\vartheta(x, y, z)$ represent in $\operatorname{Cn}(A_E)$ the function $f(\ulcorner \alpha \urcorner, n) = \ulcorner \alpha(n) \urcorner$. Consider $\tau(x) =_{\operatorname{def}} \forall z [\vartheta(x, x, z) \to \varphi(z)]$. Let σ be $\tau(\ulcorner \tau)$. We show that $\mathcal{N} \models \sigma \leftrightarrow \varphi(\ulcorner \sigma)$: " \rightarrow ": $\sigma \vdash \vartheta(\ulcorner \tau \urcorner, \ulcorner \tau \urcorner, \ulcorner \sigma) \to \varphi(\ulcorner \sigma)$. (let $z = \ulcorner \sigma \urcorner)$ $A_E \vdash \vartheta(\ulcorner \tau \urcorner, \ulcorner \tau \urcorner, \ulcorner \sigma)$, thus $A_E \cup \{\sigma\} \vdash \varphi(\ulcorner \sigma)$. " \leftarrow ": By definition of ϑ , $A_E \vdash \forall z [\vartheta(\ulcorner \tau \urcorner, \ulcorner \tau \urcorner, z) \to z = \ulcorner \sigma]$. Therefore $A_E \cup \{\varphi(\ulcorner \sigma)\} \vdash \forall z [\vartheta(\urcorner \tau \urcorner, \urcorner \tau \urcorner, z) \to \varphi(z)]$.

Undefinability and Incompleteness

Tarski Undefinability Theorem, 1933

The set $\sharp Th(\mathcal{N})$ is not definable in \mathcal{N} .

As a corollary, $\sharp \mathsf{Th}(\mathcal{N})$ is not recursive.

Undefinability and Incompleteness

Tarski Undefinability Theorem, 1933

The set $\sharp Th(\mathcal{N})$ is not definable in \mathcal{N} .

As a corollary, $\sharp Th(\mathcal{N})$ is not recursive.

Towards a contradiction assume $\varphi \in \mathcal{L}_{A_E}$ defines $\sharp \text{Th}(\mathcal{N})$. Apply Fix-point Lemma to $\neg \varphi$, there is a $\sigma \in \mathcal{S}_{A_E}$ s.t. $\mathcal{N} \models \sigma \leftrightarrow \neg \varphi(\ulcorner \sigma \urcorner).^a$ Then

$$\mathcal{N}\models\sigma\quad\Leftrightarrow\quad\mathcal{N}\models\neg\varphi(\Bar{\sigma}\)\quad\Leftrightarrow\quad\mathcal{N}\not\models\sigma$$

Contradiction!

°So σ says " φ is false of me", i.e. "I am false".

 \mathbf{X}

Gödel's Incompleteness Theorem, 1931

If $A \subseteq \mathsf{Th}(\mathcal{N})$ and $\sharp A$ is recursive, then $\mathrm{Cn}(A)$ is not a complete theory.

If Cn(A) is complete, $Cn(A) = Th(\mathcal{N})$. $\sharp A$ is recursive, so is $\sharp Cn(A)$. Therefore $\sharp Th(\mathcal{N})$ is definable in \mathcal{N} . Contradiction!

Gödel's Incompleteness Theorem, 1931

If $A \subseteq \mathsf{Th}(\mathcal{N})$ and $\sharp A$ is recursive, then $\mathrm{Cn}(A)$ is not a complete theory.

If Cn(A) is complete, $Cn(A) = Th(\mathcal{N})$. $\sharp A$ is recursive, so is $\sharp Cn(A)$. Therefore $\sharp Th(\mathcal{N})$ is definable in \mathcal{N} . Contradiction!

Another way to put this:

 $\mathsf{Th}(\mathcal{N})$ can not have a recursive set of axioms.

The next theorem says that one can not extend A_E to a complete theory by adding axioms recursively.

 $\left|\times\right|$

Let T be a theory such that $T \cup A_E$ is consistent. Then $\sharp T$ is not recursive.

As a corollary, if $\sharp \Sigma$ is recursive, then $Cn(\Sigma)$ is not complete.

Let T be a theory such that $T\cup A_E$ is consistent. Then $\sharp T$ is not recursive.

As a corollary, if $\sharp \Sigma$ is recursive, then $Cn(\Sigma)$ is not complete.

<u>NOTE.</u> $\sharp Cn(\Sigma)$ is recursive $\implies \sharp Cn(\Sigma \cup \{\sigma\})$ is recursive.

Let T be a theory such that $T\cup A_E$ is consistent. Then $\sharp T$ is not recursive.

As a corollary, if $\sharp \Sigma$ is recursive, then $Cn(\Sigma)$ is not complete.

<u>NOTE.</u> $\[\] Cn(\Sigma) \]$ is recursive $\implies \[\] Cn(\Sigma \cup \{\sigma\}) \]$ is recursive.

Let $T' = Cn(T \cup A_E)$. If $\sharp T$ is recursive, since A_E is finite, $\sharp T'$ is recursive. Thus $\sharp T'$ is represented in $Cn(A_E)$, say by φ .

Let T be a theory such that $T\cup A_E$ is consistent. Then $\sharp T$ is not recursive.

As a corollary, if $\sharp \Sigma$ is recursive, then $Cn(\Sigma)$ is not complete.

<u>NOTE.</u> $\[\] Cn(\Sigma) \]$ is recursive $\implies \[\] Cn(\Sigma \cup \{\sigma\}) \]$ is recursive.

Let $T' = \operatorname{Cn}(T \cup A_E)$. If $\sharp T$ is recursive, since A_E is finite, $\sharp T'$ is recursive. Thus $\sharp T'$ is represented in $\operatorname{Cn}(A_E)$, say by φ . By Fix-point, there is a σ such that $A_E \vdash \sigma \iff \neg \varphi(\ulcorner\sigma)$.

Let T be a theory such that $T\cup A_E$ is consistent. Then $\sharp T$ is not recursive.

As a corollary, if $\sharp \Sigma$ is recursive, then $Cn(\Sigma)$ is not complete.

<u>NOTE.</u> $\sharp Cn(\Sigma)$ is recursive $\implies \sharp Cn(\Sigma \cup \{\sigma\})$ is recursive.

Let $T' = \operatorname{Cn}(T \cup A_E)$. If $\sharp T$ is recursive, since A_E is finite, $\sharp T'$ is recursive. Thus $\sharp T'$ is represented in $\operatorname{Cn}(A_E)$, say by φ . By Fix-point, there is a σ such that $A_E \vdash \sigma \iff \neg \varphi(\ulcorner\sigma)$.

•
$$\sigma \in T' \implies A_E \vdash \varphi(\[\sigma]\]) \implies A_E \vdash \neg \sigma \implies (\neg \sigma) \in T'$$

Let T be a theory such that $T\cup A_E$ is consistent. Then $\sharp T$ is not recursive.

As a corollary, if $\sharp \Sigma$ is recursive, then $Cn(\Sigma)$ is not complete.

<u>NOTE.</u> $\[\] Cn(\Sigma) \]$ is recursive $\implies \[\] Cn(\Sigma \cup \{\sigma\}) \]$ is recursive.

Let $T' = \operatorname{Cn}(T \cup A_E)$. If $\sharp T$ is recursive, since A_E is finite, $\sharp T'$ is recursive. Thus $\sharp T'$ is represented in $\operatorname{Cn}(A_E)$, say by φ . By Fix-point, there is a σ such that $A_E \vdash \sigma \iff \neg \varphi(\sigma)$.

•
$$\sigma \in T' \implies A_E \vdash \varphi(\[\sigma]\]) \implies A_E \vdash \neg \sigma \implies (\neg \sigma) \in T'$$

• $\sigma \notin T' \implies A_E \vdash \neg \varphi(\[\sigma]\]) \implies A_E \vdash \sigma \implies \sigma \in T'$

Let T be a theory such that $T\cup A_E$ is consistent. Then $\sharp T$ is not recursive.

As a corollary, if $\sharp \Sigma$ is recursive, then $Cn(\Sigma)$ is not complete.

<u>NOTE.</u> $\sharp Cn(\Sigma)$ is recursive $\implies \sharp Cn(\Sigma \cup \{\sigma\})$ is recursive.

Let $T' = \operatorname{Cn}(T \cup A_E)$. If $\sharp T$ is recursive, since A_E is finite, $\sharp T'$ is recursive. Thus $\sharp T'$ is represented in $\operatorname{Cn}(A_E)$, say by φ . By Fix-point, there is a σ such that $A_E \vdash \sigma \iff \neg \varphi(\sigma)$.

•
$$\sigma \in T' \implies A_E \vdash \varphi(\neg \sigma) \implies A_E \vdash \neg \sigma \implies (\neg \sigma) \in T'$$

• $\sigma \notin T' \implies A_E \vdash \neg \varphi(\neg \sigma) \implies A_E \vdash \sigma \implies \sigma \in T'$

Contradiction!

 $\left| \times \right|$