Elementary Set Theory

Xianghui Shi

School of Mathematical Sciences Beijing Normal University

Fall 2025

Axioms of Set Theory

- 9 axioms, expressed by the formulas of Set Theory.
- Applications of axioms: defining new sets, deriving contradictions, etc.
- Concepts: set/class, partition/equivalence relation

Ordinal Numbers

- Concepts: partial/linear/well ordering, order type, ordinal, successor/limit ordinal, addition/multiplication/exponentiation of ordinals, etc.
- Techniques: transfinite recursion (for definition), transfinite induction, argument with least element.

Cardinal Numbers

- ► Concepts: $|X| \le |Y|$, |X| = |Y|, cardinal, cardinal addition/multiplication/exponentiation, cofinality
- ► Techniques:
 - Cantor's diagonalization argument
 - verify properties of cardinal arithmetic
 - do transfinite counting
- ► Theorems: Cantor-Bernstein, Theorem 3.8 (Cantor), 3.31 (König)

Real Numbers

- ightharpoonup Concepts: open/closed/perfect subsets of $\mathbb R$ (and ω^ω)
- Techniques:
 - ▶ Tree representation of Baire space, \mathcal{N} .
- Theorems:
 - ► Theorem 4.3 (Cantor-Dedekind)¹
 - Cantor-Bendixson.
 - Baire Category Theorem

 $^{{}^1\}mathbb{R}$ is the unique complete dense unbounded separable linear order.

The Axiom of Choice

Need to know:

- Concepts:
 - ▶ Statements of AC, WO, ZL, MP, AC $_{\omega}$, DC;
- ► Theorems:
 - ▶ Implications among AC, WO, ZL, MP, AC $_{\omega}$, DC;
 - ▶ König Theorem $(\Sigma_i \kappa_i < \prod_i \lambda_i)$ and its consequences:
 - $ightharpoonup 2^{\kappa} > \kappa$,
 - $ightharpoonup \kappa^{\operatorname{cf}(\kappa)} > \kappa.$

(simple version of König)

Infinite sum and infinite product

▶ If $\lambda \ge \omega$ and $\kappa_i > 0$, for each $i < \lambda$, then

$$\sum_{i<\lambda} \kappa_i = \lambda \cdot \sup_{i<\lambda} \kappa_i$$

▶ Suppose $\lambda \ge \omega$ and $\langle \kappa_i \mid i < \lambda \rangle$ is a nondecreasing sequence of cardinals > 0. Then

$$\prod_{i<\lambda} \kappa_i = (\sup_i \kappa_i)^{\lambda}.$$

Exercises

- There are arbitrarily large singular cardinals.
- ► There are arbitrarily large singular cardinals \aleph_{α} such that $\aleph_{\alpha} = \alpha$.
- About cofinality

 - $ightharpoonup \operatorname{cf}(\aleph_{\alpha}) = \operatorname{cf}(\alpha)$, α is a limit ordinal.
- Cardinal exponentiations under GCH: for any $\kappa, \lambda \geq \omega$, $\kappa^{\lambda} = \kappa$, if $\lambda < \operatorname{cf}(\kappa)$; $\kappa^{\lambda} = \kappa^{+}$, if $\operatorname{cf}(\kappa) \leq \lambda \leq \kappa$; and $\kappa^{\lambda} = \lambda^{+}$, if $\kappa < \lambda$.

Cardinality

- ▶ If a linearly ordered set P has a countable dense subset, then $|P| \leq 2^{\aleph_0}$.
- ▶ The cardinality of the set of all null sets.
- ▶ The set of all 1-1 function from \mathbb{N} to \mathbb{N} is uncountable.

A set or a proper class?

- $ightharpoonup \operatorname{Ord} =_{\mathsf{def}} \{ \alpha \mid \alpha \text{ is an ordinal} \}$
- $ightharpoonup \operatorname{Card} =_{\mathsf{def}} \{ \alpha \mid \alpha \text{ is a cardinal} \}$
- $ightharpoonup \{X \mid X \text{ is a wellordered set}\}$
- $\qquad \qquad \{X \subseteq \mathbb{R} \mid X \text{ is wellordered}\}$
- $\blacktriangleright \ \{P \mid P \text{ is a partially ordered set and } |P| < \aleph_{\omega}\}$
- ▶ the range of \aleph -function : $\aleph(i) =$ the i-th cardinal in ordinals.
- Assume $\kappa \in \operatorname{Ord}$ is a strongly inaccessible cardinal. The collection of wellordered sets in V_{κ} .

Assume ZFC, determine the truth of the following statement, if you can.

- Every dense subset of $\mathbb R$ has cardinality 2^{\aleph_0}
- \blacktriangleright Every real in (0,1) is uniquely represented by a $\{0,1\}\mbox{-sequence}$ of length ω
- ightharpoonup Every real in (0,1) is uniquely represented by a continuous fraction
- Every wellordering has no nontrivial automorphism.

Assume ZFC, determine the truth of the following statement, if you can.

- Every dense subset of $\mathbb R$ has cardinality 2^{\aleph_0}
- \blacktriangleright Every real in (0,1) is uniquely represented by a $\{0,1\}\mbox{-sequence}$ of length ω
- ightharpoonup Every real in (0,1) is uniquely represented by a continuous fraction
- Every wellordering has no nontrivial automorphism.

F, F, F, T, T

Cont'd

- ▶ Every linear order L with the following property is a well order: if $f: L \to L$ is ordering preserving, then $f(x) \ge x$ for every $x \in L$.
- ▶ There are more than \aleph_1 many reals.
- ► There is no Suslin line, i.e. a linear ordering that is dense, unbounded, complete and has the countable chain condition but is not nonseparable.
- ► There is a unique complete ordered field.
- ▶ For any set A, $\bigcap A \subset a$, for all $a \in A$.
- ▶ For any set A, $\bigcup A \supset a$, for all $a \in A$.

Cont'd

- ▶ Every linear order L with the following property is a well order: if $f: L \to L$ is ordering preserving, then $f(x) \ge x$ for every $x \in L$.
- ▶ There are more than \aleph_1 many reals.
- ► There is no Suslin line, i.e. a linear ordering that is dense, unbounded, complete and has the countable chain condition but is not nonseparable.
- ► There is a unique complete ordered field.
- ▶ For any set A, $\bigcap A \subset a$, for all $a \in A$.
- ▶ For any set A, $\bigcup A \supset a$, for all $a \in A$.

F, I (for Indepedent), I, T, F, T

Counting

Compute the cardinalities of the following sets.

- $\{F \mid F = (A, +, \cdot, 0, 1, <) \text{ is a complete ordered field}\}$
- lacktriangle The collection of comeager subsets of the Baire space ${\cal N}$
- ▶ The collection of all Lebesgue measure zero sets of reals.
- ► The collection of all Borel sets that are of Lebesgue measure zero.
- ► The collection of all meager sets of reals [Hint: The Cantor set is nowhere dense.]

Cofinality

- ightharpoonup cf(\aleph_{ω})
- $ightharpoonup cf(\aleph_{\omega+\omega^2+3})$
- ▶ Given continuous increasing ordinal function f, for $A \subset \operatorname{Ord}$ with no maximal element,

$$\operatorname{cf}(f(\sup A)) = \operatorname{cf}(A).$$

For instance, the cofinality of $(\omega_1)^{\omega^{\omega}}$ (as ordinal exponentiation) is ω .

$$(\omega_1)^{\omega^{\omega}} = \sup_{n < \omega} (\omega_1)^{\omega^n}$$

But as cardinal exponentiation,

$$\operatorname{cf}((\aleph_1)^{\aleph_0^{\aleph_0}}) > \aleph_0^{\aleph_0}.$$

Miscellaneous

- Every comeager set of reals is dense.
- ▶ Every comeager set of reals contains a perfect subset.
- ightharpoonup The Cantor set $\mathbb C$ is nowhere dense and null.
 - $ightharpoonup \mathbb{C}$ is closed. \mathbb{C} contains no intervals, so its interior is empty.
 - ▶ Given $\varepsilon > 0$, let $n < \omega$ be such that $(\frac{2}{3})^n < \varepsilon$, then the collection $\bigcup \{O_s \mid s \in {}^{<\omega}\omega \wedge |s| = n\}$ is an open set containing \mathbb{C} .

Cardinal arithmetic

Exercise

Show that
$$\prod_{m,n<\omega}(mn+1)=2^{\aleph_0}$$
.

Proof.

$$\begin{split} 2^{\aleph_0} &= 2^{\aleph_0 \cdot \aleph_0} = \prod_{n,m < \omega} 2 \\ &\leq \prod_{n,m < \omega} (mn+1) \\ &\leq \left(\sup_{m,n} (mn+1)\right)^{\aleph_0 \cdot \aleph_0} \\ &= \aleph_0^{\aleph_0 \cdot \aleph_0} = 2^{\aleph_0}. \end{split}$$

Hausdorff formula

$$\aleph_{\alpha+1}^{\aleph_{\beta}} = \aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+1}$$

Hausdorff formula

$$\aleph_{\alpha+1}^{\aleph_\beta}=\aleph_\alpha^{\aleph_\beta}\cdot\aleph_{\alpha+1}$$

- $\blacktriangleright \text{ For } n < \omega, \ \aleph_{\alpha+n+1}^{\aleph_{\beta}} = \aleph_{\alpha}^{\aleph_{\beta}} \cdot \prod_{i < n} \aleph_{\alpha+i+1} = \aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+n+1}.$
- ightharpoonup For limit ordinal α ,

$$\aleph_{\alpha+\omega}^{\aleph_{\beta}} = \aleph_{\alpha+\omega}^{\aleph_{0}\cdot\aleph_{\beta}} = \left(\aleph_{\alpha+\omega}^{\aleph_{0}}\right)^{\aleph_{\beta}} = \left(\prod_{n<\omega}\aleph_{\alpha+n+1}\right)^{\aleph_{\beta}} \\
= \prod_{n<\omega}\aleph_{\alpha+n+1}^{\aleph_{\beta}} = \prod_{n<\omega}\left(\aleph_{\alpha}^{\aleph_{\beta}}\cdot\aleph_{\alpha+n+1}\right) \\
= \aleph_{\alpha}^{\aleph_{\beta}\cdot\aleph_{0}}\cdot\left(\prod_{n<\omega}\aleph_{\alpha+n+1}\right) = \aleph_{\alpha}^{\aleph_{\beta}}\cdot\aleph_{\alpha+\omega}.$$

Cofinality of a fixed-point ordinal

Exercise

Suppose $f: \mathrm{Ord} \to \mathrm{Ord}$ is increasing and continuous. Show

- 1. The set of fixed-points for f is unbounded in Ord.
- 2. The cofinality of the least fixed-point for f is ω .²

²For any regular cardinal κ , there are fixed-points for f of cofinality κ .

Cofinality of a fixed-point ordinal

Exercise

Suppose $f: \mathrm{Ord} \to \mathrm{Ord}$ is increasing and continuous. Show

- 1. The set of fixed-points for f is unbounded in Ord.
- 2. The cofinality of the least fixed-point for f is ω .²

Proof.

- 1. Let α_0 be any ordinal. For $n < \omega$, define $\alpha_{n+1} = f(\alpha_n)$. Then $\alpha^* = \sup_{n < \omega} \alpha_n$ is a fixed-point for f.
- 2. This is the case $\alpha_0 = 0$.

²For any regular cardinal κ , there are fixed-points for f of cofinality κ .

Cofinality of power sets

Exercise

Show that $cf(2^{\kappa}) > \kappa$, for all infinite cardinal κ .

Cofinality of power sets

Exercise

Show that $cf(2^{\kappa}) > \kappa$, for all infinite cardinal κ .

Proof.

Suppose not, $cf(2^{\kappa}) \leq \kappa$. Then

$$2^{\kappa} < (2^{\kappa})^{\operatorname{cf}(2^{\kappa})} \le (2^{\kappa})^{\kappa} = 2^{\kappa \cdot \kappa} = 2^{\kappa}.$$

Contradiction!

Cofinality of Products of Cardinals

Exercise

Let $\langle \kappa_i \mid i < \mu \rangle$ be a non-decreasing sequence of infinite cardinals. Define $\lambda = \prod_{i < \mu} \kappa_i$. Prove that $cf(\lambda) > \mu$.

Proof.

The point is that $\lambda = (\sup_{i<\mu} \kappa_i)^{\mu}$. Let $\kappa = \sup_{i<\mu} \kappa_i$. Suppose $\mathrm{cf}(\lambda) \leq \mu$. Then by König Theorem,

$$\lambda = \kappa^{\mu} < (\kappa^{\mu})^{\operatorname{cf}(\kappa^{\mu})} \le \kappa^{\mu \cdot \mu} = \kappa^{\mu} = \lambda.$$

Contradiction!

GOOD LUCK!