Solutions for Assignment # 3

December 1, 2025

1. Write an explicit formula for this bijection.

SOLUTION:

The area in the picture is $\kappa \times \kappa$ affine transformation $A = \{(\alpha, \beta) \in \kappa \times \kappa \mid \beta \leq \alpha\}$. And there is a nature bijection

$$f: \kappa \times \kappa \to A$$

 $(\alpha, \beta) \mapsto (\beta + \alpha, \beta)$

The picture give us a well-ordering of A:

$$g: A \to \kappa$$

 $(\alpha, \beta) \mapsto \sum_{\gamma < \alpha} (\gamma + 1) + \beta$

Where $\sum_{\gamma<\alpha}(\gamma+1)$ is the sum of all ordinals $<\alpha$, which can be defined recursively: For all ordinal number α ,

- (a) $\sum_{\gamma < 0} (\gamma + 1) = 0$.
- (b) $\sum_{\gamma < \alpha + 1}^{\gamma < \alpha} (\gamma + 1) = \sum_{\gamma < \alpha} (\gamma + 1) + \alpha + 1.$
- (c) $\sum_{\gamma < \alpha} \gamma = \lim_{\xi \to \alpha} \sum_{\gamma < \xi} \gamma$, for limit $\alpha > 0$.

And one can easily verify that g is a bijection. So the bijection from $\kappa \times \kappa \to \kappa$ should be

$$g \circ f : \kappa \times \kappa \to \kappa$$

$$(\alpha, \beta) \mapsto \sum_{\gamma < \beta + \alpha} (\gamma + 1) + \beta$$

- 2. Instructions: State the value of the following expressions.
 - (i) $\aleph_0 + \aleph_0$
 - (ii) $\aleph_0 \cdot \aleph_0$
 - (iii) $\mathfrak{c} + \mathfrak{c}$
 - (iv) $\mathfrak{c} \cdot \mathfrak{c}$
 - (v) 2^{\aleph_0}
 - (vi) \mathfrak{c}^{\aleph_0} Where $\mathfrak{c} = |\mathbb{R}| = 2^{\aleph_0}$.

SOLUTION:

- (i) ℵ₀
- (ii) \aleph_0
- (iii) c
- (iv) c
- (v) c

- (vi) c
- 3. Assuming the Generalized Continuum Hypothesis (GCH), which states that $2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$ for all ordinals α , evaluate the following expressions.
 - (i) 2°
 - (ii) $\aleph_1^{\aleph_0}$
 - (iii) c^{ℵ1}

SOLUTION:

- (a) \aleph_2
- (b) ℵ₁
- (c) \aleph_2
- 4. Determine the relationship between the two cardinal number $(\leq, \geq, =)$. You may use the fact that for infinite cardinals κ and λ , if $\kappa \leq \lambda$, then $\kappa + \lambda = \lambda$ and $\kappa \cdot \lambda$.
 - (i) $\aleph_0 + \mathfrak{c} \underline{\hspace{1cm}} \mathfrak{c}$
 - (ii) $\aleph_0 \cdot \mathfrak{c} \underline{\hspace{1cm}} \mathfrak{c}$
 - (iii) $2^{\mathfrak{c}}$ _____2 $^{\aleph_0}$ + \mathfrak{c}
 - (iv) $(\aleph_0 + \mathfrak{c})^{\aleph_0}$ _______

SOLUTION:

- (i) =
- (ii) =
- $(iii) \geq$
- (iv) =
- 5. Prove the following statements.
 - (a) If $x \cap y = \emptyset$ and $x \cup y \leq y$, then $\omega \times x \leq y$.
 - (b) If $x \cap y = \emptyset$ and $\omega \times x \leq y$, then $x \cup y \approx y$.

SOLUTION:

(a) Intuitively speaking, $x \cup y \leq y$ means if via an injective function one can get a copy of (a disjoint union of) x and y inside y. Iterating this process ω many times, one can get ω many disjoint copies of x inside y, i.e. $\omega \times x \leq y$.

Formally, let $f: x \cup y \to y$ be an injection. Define the function

$$g: \omega \times x \to y$$

 $(n,a) \mapsto f^{n+1}(a)$

where f^{n+1} denotes the n times composition of f. One can check that g is an injection from $\omega \times x$ to y.

(b) Intuitively speaking, $\omega \times x \preccurlyeq y$ means we can insert ω many x into y, then we can move the n-th copy of x in y to n+1-th, thus leave a place for one x.

Formally, from the definition of $\omega \times x \leq y$, there is an injection $f: \omega \times x \to y$. Define the function

$$g: x \cup y \to y$$

$$a \mapsto f(0,a), \text{ if } a \in x$$

$$f(n+1,b), \text{ if } \exists (n,b) \in \omega \times x, a = f(n,b)$$
 $a, \text{ otherwize}$

Then one can check that g is a bijection from $x \cup y$ to y.

- Ex.3.1 (a) A subset of a finite set is finite.
 - (b) The union of a finite set of finite sets is finite.
 - (c) The power set of a finite set is finite.
 - (d) The image of a finite set(under a mapping) is finite.

SOLUTION:

- (a) By definition, X is finite iff $|X| < \omega$. Suppose $Y \subset X$, then it follows that $Y \preceq X$. Thus Y can be well-ordered and $|Y| \leq |X| < \omega$. So Y is finite.
- (b) Let $X = \{x_1, x_2 ... x_n\} (n \in \mathbb{N})$, where $|x_i| < \omega$ for i = 1, 2, ..., n. Let

$$A = \bigcup_{i=1}^{n} (\{i\} \times x_i)$$

Then A can be well-ordered and $|A| = |x_1| + |x_2| + \cdots + |x_n| < \omega$. For any $x \in \bigcup X$, let f(x) = (the least i s.t. $x \in x_i, x$) $\in A$. It is clear that f is an injection from $\bigcup X$ to A, which implies that $\bigcup X$ is finite.

- (c) There is a bijection f from X to some $n < \omega$. Define F by F(E) = f(E) for any $E \subset X$. F is a bijection from $\mathscr{P}(X)$ onto $\mathscr{P}(n)$. Since $|\mathscr{P}(n)| = 2^n < \omega$, $\mathscr{P}(X)$ is finite.
- (d) Denote the finite set by X and the mapping f. g is the bijection from X onto $n < \omega$. Then $f \circ g^{-1}$ is a mapping from n to $\operatorname{ran}(f)$. For any $y \in \operatorname{ran}(f)$, let $F(y) = m \in n$, where m is the least element s.t $f \circ g^{-1}(m) = y$. F is a 1-1 mapping from $\operatorname{ran}(f)$ into m. So $\operatorname{ran}(f)$ is finite.
- Ex.3.2 (a) A subset of a countable set is at most countable.
 - (b) The union of a finite set of countable sets is countable.
 - (c) The image of a countable set (under a mapping) is at most countable.

SOLUTION:

- (a) By definition, X is countable iff $|X| = \omega$. Suppose $Y \subset X$, then it follows that $Y \preceq X$. Thus Y can be well-ordered and $|Y| \leq |X| \leq \omega$. So Y is at most countable.
- (b) Let $X = \{x_1, x_2 \dots x_n\} (n \in \mathbb{N})$, where $|x_i| = \omega$ (the bijection is f_i) for $i = 1, 2, \dots, n$. Let

$$A = \bigcup_{i=1}^{n} (\{i\} \times x_i)$$

Let $F(i,y) = n \cdot f_i(y) + i - 1$. Then F is a bijection from A onto ω . So A can be well-ordered $A \approx \omega$. For any $x \in \bigcup X$, let f(x) = (the least i s.t. $x \in x_i, x$) $\in A$. It is clear that f is an injection from $\bigcup X$ into A, which implies that $|\bigcup X| \leq \omega$. On the other hand, $|\bigcup X| \geq \omega$ since $\bigcup X$ has a countable subset x_1 . So $\bigcup X$ is countable.

(c) Denote the finite set by X and the mapping f. g is the bijection from X onto ω . Then $f \circ g^{-1}$ is a mapping from ω to $\operatorname{ran}(f)$. For any $g \in \operatorname{ran}(f)$, let $F(g) = m \in \omega$, where m is the least element s.t $f \circ g^{-1}(m) = g$. F is a 1-1 mapping from $\operatorname{ran}(f)$ into ω . So $\operatorname{ran}(f)$ is at most countable.

Ex.3.3 $\mathbb{N} \times \mathbb{N}$ is countable. $[f(m,n) = 2^m(2n+1) - 1.]$

Solution: Define $f: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ by $f(m,n) = 2^m(2n+1) - 1$. For any $s \in \mathbb{N}$, let

$$m = \max\{k \in \mathbb{N} \mid 2^k | (s+1)\}, n = \frac{(s+1)2^{-m} - 1}{2} \in \mathbb{N}$$

Then f(m,n) = s. On the other hand, suppose $2^{m_1}(2n_1+1) - 1 = 2^{m_2}(2n_2+1) - 1(m_1 \le m_2)$, then $(2n_1+1) = 2^{m_2-m_1}(2n_2+1)$, which implies $2^{m_2-m_1} = 1$, i.e $m_1 = m_2$. Then we have $n_1 = n_2$. So f is a bijection. It follows that $\mathbb{N} \times \mathbb{N}$ is countable.

3

7 Prove that $\kappa^{\kappa} < 2^{\kappa \cdot \kappa}$.

SOLUTION: For any mapping f from κ to κ , f is a subset of $\kappa \times \kappa$, i.e. $f \in \mathscr{P}(\kappa \times \kappa)$. From this we have $\kappa \subset \mathscr{P}(\kappa \times \kappa)$. It follows that $\kappa \prec \mathscr{P}(\kappa \times \kappa)$, i.e. $\kappa \prec \sim 2^{\kappa \cdot \kappa}$.

8 If $A \leq B$, then $A \leq^* B$.

SOLUTION: If $A = \emptyset$, then $A \preceq^* B$. Otherwise there is a $x_0 \in A$. Denote the one-to-one mapping for A into B by f. Let

$$g = \{(y, x) \mid (x, y) \in f\} \cup \{(y, x_0) \mid y \in B \setminus ran(f)\}$$

Then g is a function. First, $dom(g) = ran(f) \cup (B \setminus ran(f)) = B$, i.e. for any $y \in B$, there exists an x such that $(y,x) \in g$. Second, suppose $(y,x_1), (y,x_2) \in g$. If $y \notin ran(f)$, then $x_1 = x_0 = x_2$. If $y \in ran(f)$, then $(x_1,y), (x_2,y) \in f$. Since f is 1-1, we have $x_1 = x_2$.

Furthermore, g is a surjection, since $ran(g) = dom(f) \cup \{x_0\} = dom(f) = A$.

9 If $A \leq^* B$, then $\mathscr{P}(A) \leq \mathscr{P}(B)$.

SOLUTION: If $A = \emptyset$, then $\mathscr{P}(A) = \{\emptyset\} \subseteq \mathscr{P}(B)$. Otherwise let $f : B \to A$ be a surjection. For any $x \in A$, let $F(x) = f^{-1}[x] \subset B$. Then F is a function from $\mathscr{P}(A)$ into $\mathscr{P}(B)$. F is injection, since if $x_1 \neq x_2$, say $t \in x_1 \setminus x_2$, then $\emptyset \neq f^{-1}[\{t\}] \subseteq f^{-1}[x_1] \setminus f^{-1}[x_2]$ (f being onto ensures that $f^{-1}[\{t\}] \neq \emptyset$), thus $F(x_1) \neq F(x_2)$.

10 Let X be a set. If there is an injective function $f: X \longrightarrow X$ s.t ran $(f) \subsetneq X$, then X is infinite. (Dedekind infinite is infinite)

SOLUTION: Method I. Suppose NOT, X is finite. There is a bijection from X to some $n \in \mathbb{N}$, denote it by g. Then $F = g \circ f \circ g^{-1}$ is an injection from n into n, s.t ran $(F) \subseteq n$. But this contradicts to the fact that every $n \in \omega$ has no proper subsets of the same cardinality.

We show by induction that no $n \in \omega$ has proper subsets of the same cardinality. We go from n to n+1. Let $h: n+1 \to n+1$ be a non-surjective injection and $h'=h \upharpoonright n$. We modify h' to get an $f: n \to n$. Consider n, if $n \notin \operatorname{ran}(h')$, let f=h'; if $n \in \operatorname{ran}(h')$, then let $f(h^{-1}(n))=h(n)$ and for $i \in n \setminus h^{-1}(n)$, f(i)=h'(i). In either case $f: n \to n$ is a non-surjective injection.

Method II. (AC). We shall construct an injection $g:\omega\to X$. Let $X_0=X$ and $X_{n+1}=f[X_n]$ for all $n\in\omega$. Since $\operatorname{ran}(f)\subsetneq X$, by induction, one can see that for each $n\in\omega$, $X_{n+1}-X_n\neq\varnothing$, hence can select $g(n)\in X_{n+1}-X_n$ for each $n\in\omega$. These g(n)'s are clearly distinct, hence $g:\omega\to X$ is an injection. This shows that X is infinite.

- 1. Calculate the result of the cardinal operation $\aleph_0 + \aleph_2$.
 - (a) \aleph_0
 - (b) \aleph_2
 - (c) ℵ₃
 - (d) $2\aleph_2$

SOLUTION: (b)

- 2. Calculate the confinality of the ordinal $\alpha = \omega^4 + 1$.
 - (a) ω
 - (b) 1
 - (c) 7
 - (d) 4

SOLUTION: (b)

- 3. Which of the following cardinal numbers is singular?
 - (a) \aleph_1

	(c) \aleph_{ω} (d) \aleph_{5}
	SOLUTION: (c)
4.	Caculate the cofinality of the ordinal product $\alpha = \omega_1 \cdot \omega^2$
	(a) ω^2
	(b) ω_1
	(c) 1
	(d) ω
	Solution: (d)
5.	What is the value of the cardinal exponentiation 2^{\aleph_1} under the Generalized Continuum Hypothesis (GCH)?
	(a) \aleph_1
	(b) \aleph_0
	(c) \aleph_2
	(d) c
	SOLUTION: (c)
6.	If κ is a regular infinite cardinal, what is the cofinality of the sum $\kappa + \kappa$ (cardinal sum)?
	(a) 2
	(b) \aleph_0
	(c) κ
	(d) κ^+
	SOLUTION: (c)
7.	Caculate the cofinality of the ordinal $\beta = \omega^{\omega} + 1$.
	(a) ω
	(b) 1
	(c) ω^{ω}
	(d) 2
	Solution: (b)
8.	Let κ be a regular cardinal. What is the value of κ^{λ} when $\lambda < \kappa$?
	(a) κ
	(b) 2^{λ}
	(c) λ
	(d) $\kappa^{\mathrm{cf}(\kappa)}$
	Solution: (a) if $\forall \delta < \kappa (\delta^{\lambda} \leq \kappa)$, (b) if $2^{\lambda} \geq \kappa$
9.	What is the cofinality of the limit cardinal \aleph_{ω^2} ?
	(a) \aleph_{ω^2}
	(b) \aleph_0

(b) \(\cdot\)0

- (c) ℵ₂
- (d) ω^2

SOLUTION: (b)

- 10. Which statement about the cofinality $cf(\kappa)$ of the infinite cardinal κ is always true?
 - (a) $cf(\kappa) = \aleph_0$
 - (b) $cf(\kappa) = \kappa$
 - (c) $cf(\kappa)$ is a regular cardinal.
 - (d) $cf(\kappa) < \kappa$

SOLUTION: (c)