Solutions for Assignment # 3

October 28, 2025

1. Let $\alpha, \beta, \gamma \in \text{Ord}$ and let $\alpha < \beta$. Then

- (a) $\alpha + \gamma \leq \beta + \gamma$
- (b) $\alpha \cdot \gamma \leq \beta \cdot \gamma$
- (c) $\alpha^{\gamma} \leq \beta^{\gamma}$

Given examples to show that \leq cannot be replaced by < in either inequality.

SOLUTION: We prove the proposition by induction on γ . In order to use the conclusion later, we only suppose that $\alpha \leq \beta$.

- (a) i. $\gamma = 0$, it is obvious that $\alpha + 0 \le \beta + 0$.
 - ii. Suppose the inequality holds for γ , i.e. $\alpha + \gamma \leq \beta + \gamma$, then we have

$$\alpha + \gamma < (\beta + \gamma) + 1 = \beta + (\gamma + 1)$$

Noting that

$$\alpha + (\gamma + 1) = (\alpha + \gamma) + 1 = \inf\{\xi \in \text{Ord} \mid \alpha + \gamma < \xi\}$$

it follows that

$$\alpha + (\gamma + 1) \le \beta + (\gamma + 1)$$

iii. Suppose γ is a limit ordinal and the inequality holds for any ordinal less than γ . Then by definition,

$$\alpha + \gamma = \lim_{\xi \to \gamma} (\alpha + \xi) = \sup \{ \alpha + \xi \mid \xi < \gamma \}$$

$$\beta + \gamma = \lim_{\xi \to \gamma} (\beta + \xi) = \sup \{ \beta + \xi \mid \xi < \gamma \}$$

By induction, for any $\xi < \gamma$, $\alpha + \xi \le \beta + \xi \le \beta + \gamma$, then

$$\alpha + \gamma \le \beta + \gamma$$

Example: 1 < 2, but $1 + \omega = \omega = 2 + \omega$

- (b) i. $\gamma = 0$, it is obvious that $\alpha \cdot 0 = 0 = \beta \cdot 0$.
 - ii. Suppose the inequality holds for γ , i.e. $\alpha \cdot \gamma \leq \beta \cdot \gamma$, then we have

$$\begin{array}{lll} \alpha \cdot (\gamma + 1) & = & \alpha \cdot \gamma + \alpha & \text{ (definition)} \\ & \leq & \alpha \cdot \gamma + \beta & \text{ (Lemma 2.25)} \\ & \leq & \beta \cdot \gamma + \beta & \text{ (induction+(a))} \\ & = & \beta \cdot (\gamma + 1) & \end{array}$$

iii. Suppose γ is a limit ordinal and the inequality holds for any ordinal less than γ . Then by definition,

$$\alpha \cdot \gamma = \lim_{\xi \to \gamma} (\alpha \cdot \xi) = \sup \{\alpha \cdot \xi \mid \xi < \gamma\}$$

$$\beta \cdot \gamma = \lim_{\xi \to \gamma} (\beta \cdot \xi) = \sup \{\beta \cdot \xi \mid \xi < \gamma\}$$

By induction, for any $\xi < \gamma$, $\alpha \cdot \xi \le \beta \cdot \xi \le \beta \cdot \gamma$, then

$$\alpha \cdot \gamma < \beta \cdot \gamma$$

Example: 1 < 2, but $1 \cdot \omega = \omega = 2 \cdot \omega$

- (c) i. $\gamma = 0$, it is obvious that $\alpha^0 = 1 = \beta^0$.
 - ii. Suppose the inequality holds for γ , i.e. $\alpha^{\gamma} \leq \beta^{\gamma}$, then we have

$$\begin{array}{lll} \alpha^{\gamma+1} & = & \alpha^{\gamma} \cdot \alpha & \quad \text{(definition)} \\ & \leq & \alpha^{\gamma} \cdot \beta & \quad \text{(Lemma 2.25, if } \alpha^{\gamma} = 0 \text{ or } \alpha = \beta, \text{ ``='' holds)} \\ & \leq & \beta^{\gamma} \cdot \beta & \quad \text{(induction+(b))} \\ & = & \beta^{\gamma+1} \end{array}$$

iii. Suppose γ is a limit ordinal and the inequality holds for any ordinal less than γ . Then by definition,

$$\alpha^{\gamma} = \lim_{\xi \to \gamma} (\alpha^{\xi}) = \sup \{ \alpha^{\xi} \mid \xi < \gamma \}$$

$$\beta^{\gamma} = \lim_{\xi \to \gamma} (\beta^{\xi}) = \sup \{ \beta^{\xi} \mid \xi < \gamma \}$$

By induction, for any $\xi < \gamma$, $\alpha^{\xi} \leq \beta^{\xi} \leq \beta^{\gamma}$, then

$$\alpha^{\gamma} \leq \beta^{\gamma}$$

Example: 2 < 3, but $2^{\omega} = \omega = 3^{\omega}$

- 2. Show that the following rules do not hold for all. $\alpha, \beta, \gamma \in \text{Ord}$:
 - (a) If $\alpha + \gamma = \beta + \gamma$ then $\alpha = \beta$.
 - (b) If $\gamma > 0$ and $\alpha \cdot \gamma = \beta \cdot \gamma$ then $\alpha = \beta$.
 - (c) $(\beta + \gamma) \cdot \alpha = \beta \cdot \alpha + \gamma \cdot \alpha$

SOLUTION:

- (a) $1 + \omega = \omega = 2 + \omega$, but 1 < 2.
- (b) If $\omega > 0$ and $1 \cdot \omega = \omega = 2 \cdot \omega$, but 1 < 2.
- (c) $(1+1) \cdot \omega = 2 \cdot \omega = \omega < \omega + 1 \le \omega + \omega = 1 \cdot \omega + 1 \cdot \omega$
- 3. Find a set $A \subset \mathbb{Q}$, such that $(A, <_{\mathbb{Q}}) \cong (\alpha, \in)$, where
 - (a) $\alpha = \omega + 1$
 - (b) $\alpha = \omega \cdot 2$
 - (c) $\alpha = \omega \cdot \omega$
 - (d) $\alpha = \omega^{\omega}$

SOLUTION:

(a) $A = \{-1, -\frac{1}{2}, \cdots, -\frac{1}{2^n}, \cdots, 0\}$. The isomorphism $f: A \to \omega + 1$ is:

$$f(-\frac{1}{2^n}) = n, f(0) = \omega$$

(b) $A = \{-1, -\frac{1}{2}, \cdots, -\frac{1}{2^n}, \cdots, 0, \frac{1}{2}, \frac{3}{4}, \cdots, 1 - \frac{1}{2^n}, \cdots \}$. The isomorphism $f: A \to \omega + 2$ is:

$$f(-\frac{1}{2^n}) = n, f(1 - \frac{1}{2^n}) = \omega + n$$

(c) $A = \{m - \frac{1}{2^n} \mid m, n \in \mathbb{N}\}$. The isomorphism $f : A \to \omega \cdot \omega$ is:

$$f(m - \frac{1}{2^n}) = \omega \cdot m + n$$

(d) By Cantor's Normal form Theorem, for any ordinal $\alpha \in \omega^{\omega}$,

$$\alpha = k_n + \omega \cdot k_{n-1} + \dots + \omega^n \cdot k_0 (k_0 \neq 0)$$

Let

$$g(\alpha) = n - 2^{-k_0} - 2^{-k_0 - (k_1 + 1)} - \dots - 2^{-k_0 - (k_1 + 1) - \dots - (k_n + 1)}$$

Then g is an isomorphism from ω^{ω} to $g(\omega^{\omega}) \subset \mathbb{Q}$

4. An ordinal α is a limit ordinal iff $\alpha = \omega \cdot \beta$ for some $\beta \in \text{Ord} \setminus \{0\}$

<u>SOLUTION</u>: Suppose α is a limit ordinal, then there exists a unique β and n, such that $\alpha = \omega \cdot \beta + n$, and $n < \omega$. If $n \neq 0$, it must be m + 1 for some $m < \omega$. But then $\alpha = (\omega \cdot \beta + m) + 1$, which contradicts to that α is limit.

(Method I). Suppose $\alpha = \alpha' + 1$ for some α' , then there exists a unique β' and n', such that $\alpha' = \omega \cdot \beta' + n'$, and $n' < \omega$. Let $\beta = \beta'$, n = n' + 1, we have $\alpha = \omega \cdot \beta + n$, where $n < \omega$. By the uniqueness of β and n, α can't be written as $\alpha = \omega \cdot \beta$ for some $\beta \in \text{Ord}$.

(Method II). There are two cases for β . (a) $\beta = \gamma + 1$ for some γ . Then $\alpha = \omega(\gamma + 1) = \sup\{(\omega \cdot \gamma + n \mid n < \omega\}$ is a limit ordinal. (b) β is a limit ordinal. Then $\alpha = \sup\{\omega \cdot \gamma \mid \gamma < \beta\}$ is also a limit ordinal.

5. Find the first three $\alpha > 0$ s.t. $\xi + \alpha = \alpha$ for all $\xi < \alpha$.

<u>SOLUTION</u>: The least α is 1. The only ordinal less than 1 is 0, which satisfies that 0+1=1. On the other hand, 1 is the least ordinal > 0.

If we suppose $\alpha > 1$, the least ordinal is ω . For any $n < \omega$, $n + \omega = \lim_{m \to \omega} (n + m) = \omega$. On the other hand, for any $1 < m < \omega$, there exists an m' such that m = m' + 1 and m' > 0, thus m' + m > m.

Suppose $\alpha > \omega$, the least ordinal is ω^2 . For any $\beta < \omega^2$, $\beta = \omega \cdot m + n$ and $m, n < \omega$. $\beta + \omega^2 = \omega \cdot m + n + \omega \cdot \omega = \omega^2$. On the other hand, for any $\omega < \beta = \omega \cdot m + n < \omega^2$, there exists β' such that $\beta = \beta' + \omega + n$ and $\beta' > 0$; thus $\beta' + \beta > \beta$.

6. Find the least ξ such that

- (a) $\omega + \xi = \xi$
- (b) $\omega \cdot \xi = \xi, \, \xi \neq 0$
- (c) $\omega^{\xi} = \xi$

(Hint for (1): Consider a sequence $\langle \xi_n \rangle$ s.t. $\xi_{n+1} = \omega + \xi_n$.)

Solution:

(a) Construct a sequence $\langle \xi_n \rangle$: $\xi_1 = \omega$, $\xi_{n+1} = \omega + \xi_n$. Then $\langle \xi_n \rangle$ is a set belongs to Ord. In fact, $\xi_n = \omega \cdot n$, let

$$\xi = \lim_{n \to \omega} \xi_n = \omega \cdot \omega$$

It is easy to verify that $\omega + \xi = \xi$. On the other hand, for any $\alpha < \xi$, $\alpha = \omega \cdot k_1 + k_2$, where $k_1, k_2 < \omega$. Then

$$\omega + \alpha = \omega + \omega \cdot k_1 + k_2 = \omega \cdot (k_1 + 1) + k_2 > \omega \cdot k_1 + k_2 = \alpha$$

(b) Construct a sequence $\langle \xi_n \rangle$: $\xi_1 = \omega$, $\xi_{n+1} = \omega \cdot \xi_n$. Then $\langle \xi_n \rangle$ is a set belongs to Ord. In fact, $\xi_n = \omega^n$, let

$$\xi = \lim_{n \to \omega} \xi_n = \omega^{\omega}$$

It is easy to verify that $\omega \cdot \xi = \xi$. On the other hand, for any $\alpha < \omega^{\omega}$, there exists an n such that

$$\omega^n < \alpha < \omega^{n+1}$$

Actually, $n = \sup\{m \in \omega \mid x \ge \omega^m\}$, where $\{m \in \omega \mid x \ge \omega^m\}$ is an initial segment of ω . Thus we have

$$\omega \cdot \alpha \ge \omega \cdot \omega^n = \omega^{n+1} > \alpha$$

(c) Construct a sequence $\langle \xi_n \rangle$: $\xi_1 = \omega$, $\xi_{n+1} = \omega^{\xi_n}$. Then $\langle \xi_n \rangle$ is a set belongs to Ord. Let

$$\xi = \lim_{n \to \omega} \xi_n$$

It is easy to verify that $\omega^{\xi} = \xi$. On the other hand, for any $\alpha < \xi$, there exists an n such that

$$\xi_n \le \alpha < \xi_{n+1}$$

Actually, $n = \sup\{m \in \omega \mid x \geq \xi_m\}$, where $\{m \in \omega \mid x \geq \xi_m\}$ is an initial segment of ω . Thus we have

$$\omega^{\alpha} \ge \omega^{\xi_n} = \xi_{n+1} > \alpha.$$

Exercises in About V

By transfinite recursion, define

$$V_0 = \emptyset,$$

$$V_{n+1} = \mathcal{P}(V_n),$$

$$V_{\omega} = \bigcup_{n < \omega} V_n.$$

1. Every $x \in V_{\omega}$ is finite.

SOLUTION: Fix $x \in V_{\omega}$. There is an n such that $x \in V_n$.

Claim. For each n, V_n is transitive, and $|V_{n+1}| = 2^n$.

Proof of the Claim. We prove by induction on n. This is clearly true for n=0. We proceed from n to n+1. Clearly $|V_{n+2}|=2^{n+1}$ by induction and simple calculation. Let y be any element of V_{n+1} . Then $y\subseteq V_n$, by definition. Since V_n is transitive, $\forall z(z\in V_n\to z\subseteq V_n)$, we have $V_n\subseteq V_{n+1}$. Thus $y\subseteq V_{n+1}$. This shows that for every n, V_n is transitive, and $|V_{n+1}|=2^n$.

By the claim, $x \subseteq V_n$, and $|x| \leq |V_n|$. Therefore x is finite.

2. V_{ω} is transitive.

SOLUTION: This follows from the above claim. Let $x \in V_{\omega}$, then $x \in V_n$ for some n. By the transitivity of V_n and the definition of V_{ω} , $x \subseteq V_n \subseteq V_{\omega}$.

3. V_{ω} is an inductive set.

SOLUTION: First $\emptyset \in V_1 \subseteq V_\omega$. Now fix $x \in V_\omega$ and an n such that $x \in V_n$. Then $x \cup \{x\} \subseteq V_n \cup V_{n+1} \subseteq V_{n+1}$. The last step follows from the claim that every V_n is transitive. Hence $x \cup \{x\} \in V_{n+2} \subseteq V_\omega$.

1. If $x, y \in V_{\omega}$ then $\{x, y\} \in V_{\omega}$.

SOLUTION: Suppose $x \in V_m$ and $y \in V_n$. We may assume that $m \le n$. By the transitivity of V_n 's, $x, y \in V_n$, and hence $\{x, y\} \in V_{n+1} \subseteq V_{\omega}$.

2. If $x \in V_{\omega}$, then $\bigcup x \in V_{\omega}$ and $\mathcal{P}(x) \in V_{\omega}$.

SOLUTION: Fix an n such that $x \in V_n$. Since V_n is transitive, $x \subseteq V_n$. Then $\bigcup x \subseteq \bigcup \{V_n \mid z \in x\} = V_n$ and $\mathcal{P}(x) \subseteq \mathcal{P}(V_n)$. These implies that $\bigcup x \in V_{n+1}$ and $\mathcal{P}(x) \in V_{n+2}$, therefore both in V_{ω} .

3. If $A \in V_{\omega}$ and f is a function on A such that $f(x) \in V_{\omega}$ for each $x \in A$, then $f[A] \in V_{\omega}$.

SOLUTION: If $A \in V_{\omega}$, by (61), A is finite. Then f[A] is a finite subset of V_{ω} , so the conclusion follows from (64).

4. If x is a finite subset of V_{ω} , then $x \in V_{\omega}$.

SOLUTION: Suppose $x = \{a_i \mid i = 1, ..., n\}$. Let $C = \{k_i \mid a_i \in V_{k_i}\}$. C is finite set of numbers and has a largest number K. Since V_n 's are all transitive, $x \subseteq V_K$, hence $x \in V_{K+1} \subseteq V_{\omega}$.