Solutions for Assignment # 1

October 20, 2025

- 1. Using only $\hat{\in}$ and $\hat{=}$ to express the following formulas:
 - (a) z = ((x, y), (u, v))
 - (b) $\forall x [\neg (x = \emptyset) \to (\exists y \in x)(x \cap y = \emptyset)]$
 - (c) $\forall u [\forall x \exists y(x,y) \in u \rightarrow \exists f \forall x(x,f(x)) \in u]$

SOLUTION:

(a) Note that $(x,y) = \{\{x\}, \{x,y\}\}$. The formula z = (x,y) can be expressed as:

$$\varphi(z,x,y) \equiv \forall u(u \mathbin{\hat{\in}} z \leftrightarrow \forall v(v \mathbin{\hat{\in}} u \leftrightarrow v \mathbin{\hat{=}} x) \vee \forall v(v \mathbin{\hat{\in}} u \leftrightarrow v \mathbin{\hat{=}} x \vee v \mathbin{\hat{=}} y))$$

So z = ((x, y), (u, v)) can be expressed as:

$$\exists z_1 \exists z_2 (\varphi(z_1, x, y) \land \varphi(z_2, u, v) \land \varphi(z, z_1, z_2))$$

(b) Note that $x \cap y = \emptyset$ iff $\neg \exists z (z \in y \land z \in x)$, $\exists y \in x$ means $\exists y (y \in x)$. This formula can be expressed as:

$$\forall x (\exists v (v \in x) \to \exists y (y \in x \land \neg \exists u (u \in x \land u \in y))$$

(c) Note that function f is a binary relation and $(\forall (x,y),(x,z) \in f)(y = z)$. "f is a binary relation" can be expressed as:

$$\varphi_1(f) \equiv \forall z (z \in f \leftrightarrow \exists x \exists y \varphi(z, x, y))$$

 $\varphi(z, x, y)$ means z = (x, y) defined in (a).

"f is a function" can be expressed as:

$$\varphi_2(f) \equiv \varphi_1(f) \land \forall x \forall y \forall z \exists u \exists v (\varphi(x,y,u) \land \varphi(x,z,v) \land (u \in f \land v \in f \rightarrow y = z))$$

So the formula $\forall u [\forall x \exists y (x, y) \in u \rightarrow \exists f \forall x (x, f(x)) \in u]$ can be expressed as:

$$\forall u(\forall x \exists y \exists z (\varphi(z, x, y) \land z \in u) \rightarrow \exists f(\varphi_2(f) \land \forall x \exists y \exists z (\varphi(z, x, y) \land z \in f \land z \in u)))$$

2. Suppose that R, S are two relations. Show that R_{-1} and $S \circ R$ exist.

SOLUTION: Since dom(R) and ran(R) are two sets, so are $ran(R) \times dom(R)$. By Comprehension Schema,

$$R_{-1} = \{(u, v) \in ran(R) \times dom(R) \mid (v, u) \in R\}$$

exists. $R_{-1} \subset \mathscr{P}(\mathscr{P}(\bigcup \bigcup R))$ with Comprehension also shows R_{-1} is a set.

Since dom(R) and ran(S) are two sets, so does $dom(R) \times ran(S)$. By Comprehension Schema,

$$S \circ R = \{(u, v) \in \text{dom}(R) \times \text{ran}(S) \mid \exists w ((u, w) \in R \land (w, v) \in S)\}$$

exists. $S \circ R \subset \mathcal{P}(\mathcal{P}(\bigcup \bigcup (R \cup S)))$ with Comprehension also shows $S \circ R$ is a set.

3. There is no set X such that $\mathscr{P}(X) \subseteq X$.

SOLUTION: Suppose NOT. There exists a set X s.t. $\mathscr{P}(X) \subseteq X$.

Method I We have $X \in X \in X \cdots$, since X is a subset of itself $X \in \mathcal{P}(X) \subseteq X$. But it contradicts Regularity/Well-foundedness axioms.

Method II Let $W = \{x \in X \mid x \notin x\}$. $W \subset X$, thus $W \in \mathscr{P}(X) \subseteq X$. But $W \in W \leftrightarrow W \notin W$. Contradiction!

Let $N = \bigcap \{X \mid X \text{ is inductive}\}$. N is the smallest inductive set. Let us use the following notation:

$$0 = \emptyset, \quad 1 = \{0\}, \quad 2 = \{0, 1\}, \quad 3 = \{0, 1, 2\}$$

If $n \in N$, let $n + 1 = n \cup \{n\}$. And for $n, m \in N$,

$$n < m \leftrightarrow n \in m$$

A set T is *transitive* if $x \in T$ implies $x \subseteq T$.

4. If X is inductive, then the set

$${x \in X \mid x \subseteq X}$$

is inductive. Hence N is transitive, and for each $n, n = \{m \in N \mid m < n\}$.

Solution: Let $E = \{x \in X \mid x \subseteq X\}.$

- (a) It is clear that $\emptyset \in X(X \text{ is inductive})$ and $\emptyset \subseteq X$ (trivial). So \emptyset belongs to E.
- (b) For all $x \in E$, $x \cup \{x\} \in X$ because x is an element of X and X is inductive. Since both x and $\{x\}$ are subsets of X, we have $x \cup \{x\} \subseteq X$. Hence $x \cup \{x\} \in E$.

According to (a) and (b), $\{x \in X \mid x \subseteq X\}$ is inductive.

Let $E_0 = \{x \in N \mid x \subseteq N\} \subseteq N$. But E_0 is inductive, so N is a subset of E_0 . That means $\{x \in N \mid x \subseteq N\} = N$, thus N is transitive.

It is obvious that $\{m \in N \mid m < n\} = \{m \in N \mid m \in n\} \subseteq n$. On the other hand, since $n \in N$ and N is transitive, we have $n \subseteq N$. Then $m \in n \to m \in N$ which equals $n \subseteq \{m \in N \mid m < n\}$. Hence $n = \{m \in N \mid m < n\}$.

5. If X is inductive, then the set

$$\{x \in X \mid x \text{ is transitive}\}$$

is inductive. Hence every $n \in N$ is transitive.

SOLUTION: Let $E = \{x \in X \mid x \text{ is transitive}\}.$

- (a) $\varnothing \in E$ since \varnothing is transitive.
- (b) For all $x \in X$, x is transitive. Our goal is to show that $x \cup \{x\}$ is transitive, too. For all $y \in x \cup \{x\}$, no matter wether $y \in x$ or $y \in \{x\}$, we have $y \subseteq x \cup \{x\}$. Thus $x \cup \{x\}$ is transitive.

According to (a) and (b), $\{x \in X \mid x \text{ is transitive}\}\$ is inductive.

Since N is the smallest inductive set, $N \subseteq \{x \in N \mid x \text{ is transitive}\}$. Thus every element n of N is transitive.

6. If X is inductive, then the set

$$\{x \in X \mid x \text{ is transitive and } x \notin x\}$$

is inductive. Hence $n \notin n$ and $n \neq n+1$ for each $n \in N$.

SOLUTION: According to the conclusion above, it is sufficient to prove that $x \cup \{x\} \notin x \cup \{x\}$ if x is transitive and $x \notin x$. Suppose NOT, we have $x \cup \{x\} \in x$ or $x \cup \{x\} \in \{x\}$. Both of them lead to $x \cup \{x\} \subseteq x$ (x is transitive). But

$$x \cup \{x\} \subseteq x \to \{x\} \subseteq x \to x \in x$$

It is a contradiction.

Since N is the smallest inductive set, $N \subseteq \{x \in X \mid x \text{ is transitive and } x \notin x\}$. Thus $n \notin n$. $n+1 = n \cup \{n\}$ by definition. Since there is n s.t. $n \notin n$ but $n \in n+1$, we have $n \neq n+1$.

7. If X is inductive, then the set $\{x \in X \mid x \text{ is transitive and every nonempty } z \subseteq x \text{ has an } \in -\text{minimal element}\}$ is inductive. $(t \text{ is } \in -\text{minimal in } z \text{ if there is no } s \in z \text{ such that } s \in t.)$

SOLUTION: It is sufficient to show that every nonempty $z \subseteq x \cup \{x\}$ has an \in -minimal element if x belongs to the above set. For any nonempty $z \subseteq x \cup \{x\}$, Suppose $z = \{x\}$, x is the \in -minimal element in z (Otherwise $x \in x$, but then $\{x\}$, as a nonempty subset of x, has no \in -minimal element). Otherwise, $z \subseteq x$, there would exist a $y \in z \setminus \{x\} \subseteq x$ is a \in -minimal element in $z \setminus \{x\}$. Meanwhile, $x \notin y$ (Otherwise $x \in y \in x \to x \in x$, since x is transitive). That implies y is an \in -minimal element in z.

8. Every nonempty $X \subseteq N$ has an \in -minimal element.

SOLUTION: Since N is the smallest inductive set, $N \subseteq \{x \in N \mid x \text{ is transitive and every nonempty } z \subseteq x \text{ has an } \in \text{-minimal element}\}$. For all $X \subseteq N$, pick $n \in X$. If $X \cap n = \emptyset$, $(\forall m < n)(m \notin X)$. So n is an \in -minimal element. If $X \cap n \neq \emptyset$, $X \cap n \subseteq n$ has an \in -minimal element. It is an \in -minimal element in X.

9. If X is inductive then so is $\{x \in X \mid x = \emptyset \lor x = y \cup \{y\} \text{ for some } y\}$. Hence each $n \neq \emptyset$ is m+1 for some m.

SOLUTION: Let $E = \{x \in X \mid x = \emptyset \lor x = y \cup \{y\} \text{ for some } y\}$. Suppose an nonempty set $x \in E$. Then $x \cup \{x\} = y \cup \{y\}$ for y = x. Thus $x \cup \{x\} \in E$. So the above set is inductive.

Since $N \subseteq \{x \in N \mid x = \emptyset \lor x = y \cup \{y\} \text{ for some } y\}$, each $n \neq 0$ is m+1 for some m.

10. (Induction) Let A be a subset of N such that $0 \in A$, and if $n \in A$ then $n+1 \in A$. Then A = N.

<u>Solution</u>: By definition, A is inductive. So N is a subset of A. But $A \subseteq N$ naturally. Hence A = N.

11. Show that the function f given in the proof of Theorem 11 is an isomorphism.

SOLUTION:

$$f = \{(x, y) \mid x \in U \land y \in V \land (U_x, (<_U)_x) \cong (V_y, (<_V)_y)\}$$

It suffices to show that $x_1 <_U x_2 \Leftrightarrow f(x_1) <_V f(x_2)$, since this implies that f is an injective function as well as order-preserving. We only need to consider the case $x_1 <_U x_2$ and $x_1 = x_2$.

Suppose $x_1 = x_2$. Then $U_{x_1} \cong V_{f(x_1)} \cong V_{f(x_2)}$, since there are no two distinct initial segments of $(V, <_V)$ are isomorphic, it must be that $f(x_1) = f(x_2)$. This implies that f is a (well-defined) function between its domain and range.

Suppose $x_1 <_U x_2$. Since U_{x_1} is an initial segment of U_{x_2} , $V_{f(x_1)}$ is isomorphic to an initial segment of $V_{f(x_2)}$, say V_y , $y < f(x_2)$. Since no well-ordering is isomorphic to its proper initial segments, it must be that $f(x_1) = y < f(x_2)$.

12. The relation " $(P, <) \cong (Q, <)$ " is an equivalence relation (on the class of all partially ordered sets).

SOLUTION:

- (a) (reflexive) For any partially ordered sets P, id is the natural automorphism.
- (b) (symmetric) Suppose $f: P \to Q$ is an isomorphism, then so does $f^{-1}: Q \to P$, since

$$y_1 < y_2 \Rightarrow f^{-1}(y_1) < f^{-1}(y_2)$$

- (c) (transitive) For any partially ordered sets P, Q, R, Suppose $f: P \to Q$ and $g: Q \to R$ are isomorphisms, then $g \circ f$ is an isomorphism between P and R.
- 13. Let \mathcal{A} denote the class of all well orderings. For any $a, b \in \mathcal{A}$, $a \prec b$ iff a is isomorphic to an initial segment of b. Show that \prec is a well ordering on $\mathcal{A}/_{\cong}$, where \cong is the equivalence relation given in Ex.2.

SOLUTION:

It is obvious that $a \prec b \Leftrightarrow [a] \prec [b]$, in which [a] denotes the equivalence class containing a.

- (a) (irreflexive) $a \not\prec a$ since any a is isomorphic to itself, therefore, can't be isomorphic to its own initial segment.
- (b) (transitive) For any $a, b, c \in \mathcal{A}$, suppose $a \prec b$ and $b \prec c$. It follows that a is isomorphic to an initial segment of a initial segment of a, which is still an initial segment of a.
- (c) (trichotomous) For any $a, b \in \mathcal{A}$, by theorem 2. 3, we have $a \prec b$, a = b (actually, $a \cong b$) or $a \succ b$
- (d) (well-ordering) Suppose NOT, there is a nonempty subclass $P \subseteq \mathcal{A}$, such that P has no least element, i.e. there exists a infinite sequence $\{U^i\} \subseteq P$

$$U^0 \succ U^1 \succ U^2 \succ \dots$$

By definition, for every $i \in \mathbb{N}^*$, there exist a $x_i \in U^0$ such that $U^i \cong U^0_{x_i}$. It is obvious that $\{x_i\}$ is an infinite decreasing sequence of U^0 (Contradict to the fact that U^0 is well-ordering).

14. Prove Proposition 6.

- (a) If (W, <) is a well ordering and $U \subseteq W$, then $(U, < \cap (U \times U))$ is a well ordering.
- (b) If $(W_1, <_1)$ and $(W_2, <_2)$ are two well orderings, $W_1 \cap W_2 = \emptyset$, then $W_1 \oplus W_2 = (W_1 \cup W_2, \prec)$ is a well ordering, where

$$\prec = <_1 \cup <_2 \cup \{(a,b) \mid a \in W_1 \land b \in W_2\}$$

(c) If $(W_1, <_1)$ and $(W_2, <_2)$ are two well orderings, then $W_1 \otimes W_2 = (W_1 \times W_2, \prec)$ is a well ordering, where

$$(a_1, b_1) \prec (a_2, b_2) \leftrightarrow b_1 <_2 b_2 \lor (b_1 = b_2 \land a_1 <_1 a_2)$$

SOLUTION:

- (a) Let $<_1$ denote $< \cap (U \times U)$. Notice the fact that for any $p, q \in U$, $p <_1 q \Leftrightarrow p < q$.
 - (irreflexive) For any $p \in U$, $p \nleq_1 p$ because $p \nleq p$.
 - (transitive) For any $p, q, r \in U$, $p <_1 q \land q <_1 r \Rightarrow p < q \land q < r \Rightarrow p < r \Rightarrow p <_1 r$
 - (trichotomous) For any $p, q \in U$, $p < q \lor p = q \lor q < p \Rightarrow p <_1 q \lor p = q \lor q <_1 p$
 - (well-ordered) For any nonempty subset $P \subseteq U$, it is also a nonempty subset of W. Since W is a well-ordering, P has a least element p. For all element $x \in P$, $p \le x$, which implies that $p \le_1 x$. So p is the least element in $(P, <_1)$.
- (b) (irreflexive) For any $a \in W_1 \cup W_2$, $a \in W_1$ or $a \in W_2$. In either case, $a \not\prec a$.
 - (transitive) Suppose $a, b, c \in W_1 \cup W_2$ are such that $a \prec b \prec c$. We show that $a \prec c$. Two cases:

CASE 1: $a, c \in W_i$, i = 1 or 2. Then $a \prec c$ follows from $a <_i b <_i c$ and the transitivity of $<_i$.

CASE 2: $a \in W_1$, $c \in W_2$. Then $a \prec c$ follows from the definition of \prec .

- (trichotomous) For any $a, b \in W_1 \cup W_2$, if $a \in W_1$, $b \in W_2$ or $a \in W_2$, $b \in W_1$, then a, b are comparable according to the definition of \prec ; otherwise if $a, b \in W_i$ (i = 1 or 2), then a, b are comparable by the trichotomy of $<_i$.
- (well-ordered) Let P be a nonempty subset of $W_1 \cup W_2$. If $P \cap W_1 \neq \emptyset$, then $<_1$ -min of $P \cap W_1$ gives the <-min element of P. Otherwise $P \subset W_2$, hence the <-min element of P is in fact its $<_2$ -min.
- (c) It is trivial to prove that $W_1 \otimes W_2$ is a linear order. So it suffices to show that for any nonempty subset $P \subseteq W_1 \times W_2$, P has a least element. Let

$$U = \{a \in W_1 \mid (a, b) \in P\}$$

U is a nonempty subset of W_1 , therefore has a least element a_0 . Let

$$V = \{ b \in W_1 \mid (a_0, b) \in P \}$$

V is a nonempty subset of W_2 , therefore has a least element b_0 . Then (a_0, b_0) is a least element of P.

15. Show that the following are equivalent:

(a) T is transitive;

- (b) $\bigcup T \subseteq T$;
- (c) $T \subseteq \mathscr{P}(T)$.

SOLUTION:

- $(a)\Rightarrow (b).$ For any $x\in\bigcup T$, let $y\in T$ be s.t. $x\in y$. Since T is transitive, $y\subseteq T$ thus $x\in T$. Hence $\bigcup T\subseteq T$.
- $(b)\Rightarrow (c).$ For any $x\in T.$ By (b), $x\subseteq\bigcup T\subseteq T,$ thus x is an element of $\mathscr{P}(T).$ Hence $T\subseteq\mathscr{P}(T).$
- $(c) \Rightarrow (a)$. For any $x \in T$, we have $x \in \mathcal{P}(T)$, i.e. x is a subset of T. Hence T is transitive by definition.