Elementary Set Theory

Xianghui Shi

School of Mathematical Sciences Beijing Normal University

Fall 2025

Advanced Topic

RAMSEY THEORY

Finite Ramsey Theorem

Theorem 1 (Finite Ramsey Theorem)

For any $n, k, m \in \mathbb{N}$, there is an l such that $l \to (m)_k^n$, i.e. for any k-coloring (function) $f:[l]^n \to k$, there is an $H \subseteq l$ of size m such that $|f''[H]^n| = 1.$

¹Such H is called f-homogeneous

Remark

- ► Such *H* is called a homogeneous set (for *f*).
- ► The notation $l \to (m)_k^n$ is called Erdős arrow. k is omitted if k = 2.
- ▶ A variation for k colors: $l \to (m_1, ..., m_k)^n$.
- For n=2, the least such l is denoted as $R(m_1,\ldots,m_k)$, called the Ramsey number for (m_1,\ldots,m_k) .
- ightharpoonup R(3,3) = 6, R(4,4) = 18, R(4,5) = 25, R(3,3,3) = 17
- k = 2, $R(r,s) \le R(r-1,s) + R(r,s-1)$
- k > 2, $R(n_1, \ldots, n_k) \le R(n_1, \ldots, n_{k-2}, R(n_{k-1}, n_k))$.
- $[1 + o(1)] \frac{\sqrt{2s}}{e} 2^{\frac{s}{2}} \le R(s, s) \le s^{-(c \log s)/(\log \log s)} 4^s$

Values / known bounding ranges for Ramsey numbers R(r,s) (sequence A212954 in the OEIS)

rs	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1	1
2		2	3	4	5	6	7	8	9	10
3			6	9	14	18	23	28	36	40-42
4				18	25 ^[5]	36-41	49–61	59 ^[10] _84	73–115	92-149
5					43-48	58-87	80-143	101–216	133–316	149 ^[10] -442
6						102-165	115 ^[10] -298	134 ^[10] _495	183-780	204-1171
7							205-540	217-1031	252-1713	292-2826
8								282-1870	329-3583	343-6090
9									565-6588	581-12677
10										798-23556

From https://en.wikipedia.org/wiki/Ramsey%27s_theorem#Ramsey_numbers

Infinite Ramsey Theorem

Theorem 2 (Infinite Ramsey Theorem)

$$\omega \to (\omega)_k^n$$
, for any $n, k \in \omega$.

Proof.

Suffices to prove for k=2. Prove by induction on n. Fix a coloring $c: [\omega]^{n+1} \to \{0,1\}$. Define $\langle A_n, a_n : n < \omega \rangle$ as follows:

- $ightharpoonup A_0 = \omega$ and $a_n = \min A_n$,
- $ightharpoonup A_{n+1} = A_{n,i_n}$, where for i < 2,

$$\{a_n\} \times [A_{n,i}]^n = c^{-1}(\{i\}) \cap \{a_n\} \times [A_n]^n$$

and i_n is least such that $|A_{n,i_n}| = \omega$.

 $c^*: a_n \mapsto i_n$, for $n < \omega$, is a 2-coloring of $B = \{a_n \mid n < \omega\}$. By the case n = 1, there is an infinite c^* -homogeneous $H \subset B$. This H is also c-homogeneous.

IRT implies FRT

Theorem 3

Infinite Ramsey Theorem ⇒ *Finite* Ramsey Theorem.

Proof.

Use Compactness, prove by contradiction. Take k=n=2

- Suppose m is such that $l \to (m)_2^2$ fails at (l,m) for any $l < \omega$.
- In the language of graph, for each l, there is a graph (model) G such that φ_l holds in G:

$$\varphi_l \equiv \neg (\exists x_0 \cdots x_{m-1}) [\bigwedge_{i < j < m} \neg R(x_i, x_j) \lor \bigwedge_{i < j < l} R(x_i, x_j)]$$

▶ The set $\{\varphi_l \mid l < \omega\}$, by Compactness, is realizable by some infinite G^* .

This G^* witnesses that $\omega \not\to (m)_2^2$, contradicting to $\omega \to (\omega)_2^2$.

A stronger form of FRT

Theorem 4 (Paris-Harrington, 1977)

For any $n,k,m\in\mathbb{N}$, there is an l such that for any k-coloring (function) $f:[l]^n\to k$, there is an $H\subseteq l$ such that $|f''[H]^n|=1$ and $|H|\geq \max\{m,\min H\}$.

Remark

Paris-Harrington Theorem (PH) is a statement that can be expressed in the $1^{\rm st}$ -order language of arithmetic. It is

- provable in the 2nd-order arithmetic, but
- ▶ unprovable in the 1st-order (Peano) arithmetic.

 $IRT \implies PH \implies {}^{2}FRT.$

²by an argument similar to that of IRT.

More infinite Ramsey theorems

Theorem 5

1. $\beth_n^+ \to (\omega_1)_{\omega_0}^{n+1}$.

(Erdős-Rado)

2. $2^{\kappa} \nrightarrow (\kappa^+)^2$.

(Sierpiński)

- 3. $2^{\kappa} \not\rightarrow (3)^2_{\kappa}$.
- 4. $\kappa \to (\kappa, \omega_0)^2$.

(Erdős-Dushnik-Miller)

Remarks

- 1. This implies that $(2^{\omega})^+ \to (\omega_1)^2$.
- 2. Consider $(^{\kappa}2,<_{\mathrm{lex}})$. $\{f,g\}\mapsto 0$ if $f(\delta)< g(\delta)$, where $\delta=$ least ξ such that $f(\xi)\neq g(\xi)$. This implies that there is no κ^+ -ascending or κ^+ -descending sequence.
- 3. Color $[^{\kappa}2]^2$ by $\{A,B\}\mapsto \lambda_{A,B}$, the ordertype of $\delta_{A,B}$. $\lambda_{A,B}=\lambda_{B,C}=\lambda_{A,C}$ is impossible!
- 4. An weaker variant.

Theorem 6

If $\kappa > \omega$ and $\kappa \to (\kappa)^2$, then κ is strongly inaccessible.

Proof.

 κ is regular. Suppose not.

- ▶ Let $\kappa = \bigcup_{i < \lambda} X_i$, where $\lambda < \kappa$ and each $|X_i| < \kappa$.
- ▶ Define $f: [\kappa]^2 \to \{0,1\}$ as follows:

$$f(\alpha, \beta) = \begin{cases} 1, & \alpha, \beta \text{ are in the same } X_i; \\ 0, & \text{otherwise.} \end{cases}$$

There is no f-homogeneous set.

 κ is a strong limit: if $\lambda < \kappa$ is such that $\kappa \leq 2^{\lambda}$, then $\kappa \to (\kappa)^2$ implies $2^{\lambda} \to (\lambda^+)^2$, contradicting to Theorem 5-2.

Erdős arrows and Large cardinals

Definition 7

Let κ be an uncountable cardinal.

- \blacktriangleright κ is weakly compact if $\kappa \to (\kappa)^2$.
- $ightharpoonup \kappa$ is α -Erdős if $\kappa \to (\alpha)^{<\omega}$.
- $ightharpoonup \kappa$ is a Ramsey cardinal if $\kappa \to (\kappa)^{<\omega}$.

Erdős arrows and Large cardinals

Definition 7

Let κ be an uncountable cardinal.

- \blacktriangleright κ is weakly compact if $\kappa \to (\kappa)^2$.
- $ightharpoonup \kappa$ is α -Erdős if $\kappa \to (\alpha)^{<\omega}$.
- $ightharpoonup \kappa$ is a Ramsey cardinal if $\kappa \to (\kappa)^{<\omega}$.

 ω is weakly compact, but not Ramsey.

Erdős arrows and Large cardinals

Definition 7

Let κ be an uncountable cardinal.

- \blacktriangleright κ is weakly compact if $\kappa \to (\kappa)^2$.
- $ightharpoonup \kappa$ is α -Erdős if $\kappa \to (\alpha)^{<\omega}$.
- $ightharpoonup \kappa$ is a Ramsey cardinal if $\kappa \to (\kappa)^{<\omega}$.

 ω is weakly compact, but not Ramsey.

Hint: consider the coloring $f:[\omega]^{<\omega}\to 2$ defined by $f(\{m_1,\ldots,m_n\})=0$ if $m_1< n$, and 1 otherwise.

Infinite exponents

Theorem 8

- 1. $\omega \nrightarrow (\omega)^{<\omega}$.
- 2. Assume AC, then $\kappa \nrightarrow (\omega)^{\omega}$, for any $\kappa \ge \omega$.
- 3. Assume AD, then $\omega_1 \to (\omega_1)^{\omega_1}$. (D. Martin)

A Ramsey-type theorem with structures

Theorem 9 (Hindman)

Given any finite coloring $c:\mathbb{N}\to k$, some $k<\omega$, there exists an infinite $A\subseteq\mathbb{N}$ such that c is constant on the set

$$A^* = \{ \sum F \mid F \subset A \text{ is finite} \}.$$

Theorem 10 (Pigeonhole Principle for tree)

Given any finite coloring $c: T=2^{<\omega} \to k$, some $k<\omega$, there exists a strong subtree $S\subset T$ such that c is constant on S.