Elementary Set Theory

Xianghui Shi

School of Mathematical Sciences Beijing Normal University

Fall 2025

Additional Topic

Games on Reals¹

 $^{^{1}\}text{Cf.}\ \textit{The Higher Infinite},\ \text{by\ A.\ Kanamori,\ }\S27$

Infinite Games

For $A \subseteq {}^{\omega}\omega$, G(A) denotes the following two-person game:

where each $x_i \in \omega$.

- Each choice is a **move** of the game.
- ▶ The result $x = \langle x_i : i < \omega \rangle \in {}^{\omega}\omega$ is a **play** of the game.
- ightharpoonup A is called the **payoff** for the game G(A).
- ▶ Rule: I wins if $x \in A$, otherwise II wins.

For $s \in {}^{<\omega}\omega$, let $G_s(A)$ be G(A) restricted to O_s , i.e.

▶ I wins if $s^{\hat{}}x \in O_s \cap A$, and II wins if $s^{\hat{}}x \in O_s - A$.

► A **strategy** for *I* is a function

$$\sigma: \bigcup_n {}^{2n}\omega \to \omega$$

that tells him what to play next given the previous moves.

Given II's moves $y=\langle y_n=x_{2n+1}:n<\omega\rangle\in {}^\omega\omega$, σ produces a play $\sigma*y\in {}^\omega\omega$.

 $ightharpoonup \sigma$ is a winning strategy (w.s.) for I iff

$$\{\sigma * y \mid y \in {}^{\omega}\omega\} \subseteq A,$$

i.e. no matter what moves II makes, plays according to σ always yield members of A.

Analogously,

- ▶ a strategy for II is a function $\tau: \bigcup_n 2n+1\omega \to \omega$.
- ightharpoonup au is a winning strategy for II iff

$$\{z * \tau \mid z \in {}^{\omega}\omega\} \cap A = \emptyset,$$

where $z*\tau$ is the result of applying τ to a move sequence z played by I.

Analogously,

- ▶ a strategy for II is a function $\tau: \bigcup_n {}^{2n+1}\omega \to \omega$.
- ightharpoonup au is a winning strategy for Π iff

$$\{z * \tau \mid z \in {}^{\omega}\omega\} \cap A = \varnothing,$$

where $z*\tau$ is the result of applying τ to a move sequence z played by I.

G(A) is **determined** iff a player has a winning strategy.

Note that the players cannot both have winning strategies.

A is **determined** iff G(A) is determined.

Determined Sets

Theorem 1

- 1. If $|A| < \mathfrak{c} = |^{\omega}\omega|$, then I cannot have a winning strategy. Similarly, II cannot have a w.s., if $|^{\omega}\omega A| < \mathfrak{c}$.
- 2. (Gale-Stewart). If $A\subseteq {}^\omega\omega$ is either open or closed then G(A) is determined.
- 3. (Gale-Stewart). AC implies that there is a set of reals which is not determined.

Proof

- 1. Each w.s. induces an injective function from ${}^{\omega}\omega$ to ${}^{\omega}\omega$.
- 2. Let $A_s = A \cap O_s$. Consider $s \in {}^{2n}\omega$. Note that
 - If I has no w.s. in $G_s(A)$ then $\forall i \exists j \ (I \text{ has no w.s. in } G_{s^{\frown}(ij)}(A)).$

In this case, let $\tau(s^{\hat{}}\langle i\rangle) = least j$ as above.

If I has no w.s. in $G_s(A)$ then $|O_s \cap A^c| > 1$. So every play produced by τ is a limit point of A^c .

Suppose A is open and I has no w.s, then every play produced by τ are in A^c , thus II has a w.s.

Proof

- 1. Each w.s. induces an injective function from ${}^{\omega}\omega$ to ${}^{\omega}\omega$.
- 2. Let $A_s = A \cap O_s$. Consider $s \in {}^{2n}\omega$. Note that
 - If I has no w.s. in $G_s(A)$ then $\forall i \exists j \ (I \text{ has no w.s. in } G_{s^{\frown}(ij)}(A)).$

In this case, let $\tau(s^{\hat{}}\langle i\rangle) = least j$ as above.

If I has no w.s. in $G_s(A)$ then $|O_s \cap A^c| > 1$. So every play produced by τ is a limit point of A^c .

Suppose A is open and I has no w.s, then every play produced by τ are in A^c , thus II has a w.s.

3. By AC, there are $\mathfrak c$ many strategies. And for each strategy σ (or τ), the corresponding set R_{σ} (or R_{τ}) of plays $\{\sigma*x\mid x\in {}^{\omega}\omega\}$ (for I) or $\{x*\tau\mid x\in {}^{\omega}\omega\}$ (for II) has size $\mathfrak c$. Choose a play (without repetition) from each R_{σ} (or R_{τ}). This gives two disjoint sets, one from R_{σ} 's, the other from R_{τ} 's. They are non-determined.

Regularity Properties

Donald A. Martin (1975) showed that

Every Borel set is determined.

Mycielski and Steinhaus (1962) proposed the following axiom, now known as the **Axiom of Determinacy** (AD):

Every set of reals is determined.

Theorem 2

Assume AD. Then every set of reals is Lebesgue measurable, has the property of Baire, and has the perfect set property.

Mazur Game

- Let G(A,X) denote the game on ${}^{\omega}X$. Then $G(A)=G(A,\omega)$.
- ▶ G(A,X) for an X with $|X| = \omega$ and $A \subset {}^\omega X$ is "equivalent to" a $G(A^*)$ for some $A^* \subset {}^\omega \omega$.

The game for the property of Baire is the Mazur game $G_{\mathcal{M}}(A)$ formulated as follows:

where $s_i \in {}^{<\omega}\omega - \{\varnothing\}$. Let $x = s_0 {}^{\smallfrown} s_1 {}^{\smallfrown} s_2 {}^{\smallfrown} s_3 {}^{\smallfrown} \cdots$, then I wins if $x \in A$, and II wins otherwise.

Proposition 3 (Mazur, Banach)

For $A \subseteq {}^{\omega}\omega$,

- 1. A is meager iff II has a w.s. in $G_{\mathcal{M}}(A)$.
- 2. $O_s A$ is meager for some $s \in {}^{<\omega}\omega$ iff I has a w.s. in $G_{\mathcal{M}}(A)$.

Corollary 4

For $A \subseteq {}^{\omega}\omega$, let $C_A = \bigcup \{O_s \mid O_s - A \text{ is meager}\}$. If $G_{\mathcal{M}}(A - C_A)$ is determined then A has the property of Baire.

1. " \Rightarrow ". Suppose $\{C_i \mid i < \omega\}$ are (decreasing) dense open sets such that $A \cap (\bigcap_i C_i) = \varnothing$. Suppose $p = s_0 \cap \cdots \cap s_{n-1}$ is an n-round play. For each $s \in {}^{<\omega}\omega$, let $\tau(p \cap s)$ be a $t \in {}^{<\omega}\omega$ such that $O_{p \cap s \cap t} \subseteq C_n$.

1. "\(\Rightarrow\)". Suppose $\{C_i \mid i < \omega\}$ are (decreasing) dense open sets such that $A \cap (\bigcap_i C_i) = \varnothing$. Suppose $p = s_0 \cap \cdots \cap s_{n-1}$ is an n-round play. For each $s \in {}^{<\omega}\omega$, let $\tau(p \cap s)$ be a $t \in {}^{<\omega}\omega$ such that $O_{p \cap s \cap t} \subseteq C_n$. "\(\Rightarrow\)". Let τ be a w.s. for II. For each play p, let $D_p = \{x \in {}^{\omega}\omega \mid p \not\sqsubset x\} \cup (\bigcup \{O_{p \cap s \cap t} \mid t = \tau(p \cap s), s \in {}^{<\omega}\omega\})$. Then $A \cap \bigcap_p D_p = \varnothing$. Since τ is winning for II, D_p is open dense.

- 1. "\(\Rightarrow\)". Suppose $\{C_i \mid i < \omega\}$ are (decreasing) dense open sets such that $A \cap (\bigcap_i C_i) = \varnothing$. Suppose $p = s_0 \cap \cdots \cap s_{n-1}$ is an n-round play. For each $s \in {}^{<\omega}\omega$, let $\tau(p \cap s)$ be a $t \in {}^{<\omega}\omega$ such that $O_{p \cap s \cap t} \subseteq C_n$. "\((\Lefta\)". Let τ be a w.s. for II. For each play p, let $D_p = \{x \in {}^{\omega}\omega \mid p \not\sqsubset x\} \cup (\bigcup \{O_{p \cap s \cap t} \mid t = \tau(p \cap s), s \in {}^{<\omega}\omega\})$. Then $A \cap \bigcap_p D_p = \varnothing$. Since τ is winning for II, D_p is open dense.
- 2. " \Rightarrow ". Let $\sigma(\emptyset)$ be that s.

- 1. "\(\Rightarrow\)". Suppose $\{C_i \mid i < \omega\}$ are (decreasing) dense open sets such that $A \cap (\bigcap_i C_i) = \varnothing$. Suppose $p = s_0 \cap \cdots \cap s_{n-1}$ is an n-round play. For each $s \in {}^{<\omega}\omega$, let $\tau(p \cap s)$ be a $t \in {}^{<\omega}\omega$ such that $O_{p \cap s \cap t} \subseteq C_n$. "\(\Leftarrow\)". Let τ be a w.s. for II. For each play p, let $D_p = \{x \in {}^{\omega}\omega \mid p \not\sqsubset x\} \cup (\bigcup \{O_{p \cap s \cap t} \mid t = \tau(p \cap s), s \in {}^{<\omega}\omega\})$. Then $A \cap \bigcap_p D_p = \varnothing$. Since τ is winning for II, D_p is open dense.
- 2. " \Rightarrow ". Let $\sigma(\emptyset)$ be that s.
 - " \Leftarrow ". Given σ , winning for I. $\sigma(\emptyset)$ is a such s.

1. Note that $C_A - A$ is meager. If II wins, then $A - C_A$ is meager, and then $A \Delta C_A = (C_A - A) \cup (A - C_A)$ is meager, therefore A has the property of Baire.

- 1. Note that $C_A A$ is meager. If II wins, then $A C_A$ is meager, and then $A \Delta C_A = (C_A A) \cup (A C_A)$ is meager, therefore A has the property of Baire.
- 2. If I wins. For some $s \in {}^{<\omega}\omega$, $O_s (A C_A)$ is meager.

$$O_s - (A - C_A) \supseteq O_s - A.$$

Thus O_s-A is meager, and hence $O_s\subseteq C_A$. Then $O_s\cap (A-C_A)=(O_s\cap A)-(O_s\cap O_A)=\varnothing$, therefore $O_s-(A-C_A)=O_s$. This contradicts to the fact that O_s is not meager.

- 1. Note that $C_A A$ is meager. If II wins, then $A C_A$ is meager, and then $A \Delta C_A = (C_A A) \cup (A C_A)$ is meager, therefore A has the property of Baire.
- 2. If I wins. For some $s \in {}^{<\omega}\omega$, $O_s (A C_A)$ is meager.

$$O_s - (A - C_A) \supseteq O_s - A.$$

Thus O_s-A is meager, and hence $O_s\subseteq C_A$. Then $O_s\cap (A-C_A)=(O_s\cap A)-(O_s\cap O_A)=\varnothing$, therefore $O_s-(A-C_A)=O_s$. This contradicts to the fact that O_s is not meager.

So I can not win!

An embedding

We shall present the other two games as games over ${}^\omega 2$. The following embedding $\pi:{}^\omega \omega \to {}^\omega 2$ can transfer the results back to the Baire space ${}^\omega \omega$.

$$\pi(x) = s_{x(0)} \hat{s}_{x(1)} \hat{s}_{x(2)} \cdots$$
 where $s_{x(k)} = \underbrace{1 \cdots 1}_{x(k)} 0$ for even k , and $\underbrace{0 \cdots 0}_{x(k)} 1$ for odd k .

An embedding

We shall present the other two games as games over $^\omega 2$. The following embedding $\pi: ^\omega \omega \to ^\omega 2$ can transfer the results back to the Baire space $^\omega \omega$.

$$\pi(x) = s_{x(0)} \hat{s}_{x(1)} \hat{s}_{x(2)} \cdots$$

$$1 \cdots 1 0 \text{ for even } k. \text{ and } 0 \cdots 0 1 \text{ for even } k.$$

where $s_{x(k)} = \underbrace{1 \cdots 1}_{x(k)} 0$ for even k, and $\underbrace{0 \cdots 0}_{x(k)} 1$ for odd k.

It's easy to check that ${}^\omega 2 - \mathrm{ran}(\pi)$ is countable, and for $\varphi \in \{\mathsf{BP},\,\mathsf{PSP},\,\mathsf{LM}\}$, for every set $X \subseteq {}^\omega 2$,

 $\varphi(X)$ is true in ${}^\omega 2$ iff $\varphi(\pi^{-1}(X))$ is true in ${}^\omega \omega$.

Davis game

Davis game $G_{\mathcal{C}}(A)$ is formulated as follows:

where
$$s_i \in {}^{<\omega}2 - \{\varnothing\}$$
, $k_i \in \{0,1\}$. Let
$$x = s_0 {}^{\smallfrown} \langle k_1 \rangle {}^{\smallfrown} s_2 {}^{\smallfrown} \langle k_3 \rangle {}^{\smallfrown} \cdots.$$

I wins if $x \in A$, otherwise II wins.

Davis game

Davis game $G_{\mathcal{C}}(A)$ is formulated as follows:

where
$$s_i \in {}^{<\omega}2 - \{\varnothing\}$$
, $k_i \in \{0,1\}$. Let
$$x = s_0 {}^{\smallfrown} \langle k_1 \rangle {}^{\smallfrown} s_2 {}^{\smallfrown} \langle k_3 \rangle {}^{\smallfrown} \cdots.$$

I wins if $x \in A$, otherwise II wins.

Proposition 5 (Davis)

For any $A \subseteq {}^{\omega}2$,

- 1. A is countable iff II has a w.s. in $G_{\mathcal{C}}(A)$.
- 2. A contains a perfect subset iff I has a w.s. in $G_{\mathcal{C}}(A)$.

1. " \Rightarrow " is easy. Argue for " \Leftarrow ". Let τ be a w.s. for II. Let $R_{\tau} = \{y * \tau \mid y \in {}^{\omega}2\}$, i.e. all the plays produced by τ . Then $A \cap R_{\tau} = \varnothing$. Thus for each $x \in A$, there is a play $p_x = \langle s_0, k_0, \ldots, s_n, k_n \rangle$ such that

$$p_x^* = s_0^{\widehat{}}\langle k_0 \rangle^{\widehat{}} \cdots s_n^{\widehat{}}\langle k_n \rangle \sqsubseteq x,$$

and no matter what I plays with along x, he is defeated by τ , i.e. for every $i \geq |p^*|$, $x(i) = 1 - \tau(x \! \upharpoonright \! i)$.

1. " \Rightarrow " is easy. Argue for " \Leftarrow ". Let τ be a w.s. for II. Let $R_{\tau} = \{y * \tau \mid y \in {}^{\omega}2\}$, i.e. all the plays produced by τ . Then $A \cap R_{\tau} = \varnothing$. Thus for each $x \in A$, there is a play $p_x = \langle s_0, k_0, \ldots, s_n, k_n \rangle$ such that

$$p_x^* = s_0^{\smallfrown} \langle k_0 \rangle^{\smallfrown} \cdots s_n^{\smallfrown} \langle k_n \rangle \sqsubset x,$$

and no matter what I plays with along x, he is defeated by τ , i.e. for every $i \geq |p^*|$, $x(i) = 1 - \tau(x \restriction i)$.

2. Let $T\subseteq {}^{<\omega}2$ be a perfect tree such that $[T]\subseteq A$. Suppose p is an n-round play, let $\sigma(p)$ to be the next splitting node extending p^* . Then σ is a w.s. for I.

Harrington Game

For $A \subset {}^{\omega}2$ and $\varepsilon \in \mathbb{R}^+$, $G_{\mathcal{N}}(A,\varepsilon)$ is

where $i_k\in\{0,1\}$, $\bar{s}_k\in[{}^{<\omega}2-\{\varnothing\}]^{<\omega}$ with the additional requirement

$$\mu(N_{\bar{s}_k}) < \varepsilon/2^{2(n+1)}, \quad N_{\bar{s}_k} = \bigcup_j O_{\bar{s}_k(j)}.$$

Let $x = \langle i_0 i_1 \cdots \rangle$. I wins iff $x \in A - \bigcup_k N_{\bar{s}_k}$, otherwise II wins.

(Here
$$\mu(O_s) = 1/2^{\text{dom}(s)}$$
 for each $s \in {}^{<\omega}2$.)

Proposition 6

In $G_{\mathcal{N}}(A,\varepsilon)$, $A \subset {}^{\omega}2$ and $\varepsilon \in \mathbb{R}^+$,

- 1. If I has a w.s. then there is a Lebesgue measurable $B \subseteq A$ such that $\mu(B) > 0$.
- 2. If II has a w.s. then there is an open set $O \supseteq A$ s.t. $\mu(O) < \varepsilon$.

Proposition 6

In $G_{\mathcal{N}}(A,\varepsilon)$, $A\subset {}^{\omega}2$ and $\varepsilon\in\mathbb{R}^+$,

- 1. If I has a w.s. then there is a Lebesgue measurable $B \subseteq A$ such that $\mu(B) > 0$.
- 2. If II has a w.s. then there is an open set $O \supseteq A$ s.t. $\mu(O) < \varepsilon$.

Corollary 7

For $A \subseteq {}^{\omega}\omega$, let $Q_A \supseteq A$ be Lebesgue measurable and with $\mu(Q_A)$ minimal. Then if $G_{\mathcal{N}}(Q_A - A, \varepsilon)$ is determined for every $\varepsilon > 0$, then A is Lebesgue measurable.

By choice of Q_A , II must have a winning strategy in $G_{\mathcal{N}}(Q_A-A,1/n)$ for each $n<\omega$. Hence

$$Q_A - A \subseteq \bigcap_n C_n$$

where $\mu(C_n) < 1/n$, for each n. Therefore $\mu(Q_A - A) = 0$ and A is Lebesgue measurable with $\mu(A) = \mu(Q_A)$.