Elementary Set Theory

Xianghui Shi

School of Mathematical Sciences Beijing Normal University

Fall 2024

Axioms of Set Theory

Need to know:

- ▶ 9 axioms, expressed by the formulas of Set Theory.
- Applications of axioms: defining new sets, deriving contradictions, etc.
- Concepts: set/class, partition/equivalence relation

Need to know:

- Concepts: partial/linear/well ordering, order type, ordinal, successor/limit ordinal, addition/multiplication/exponentiation of ordinals, etc.
- Techniques: transfinite recursion (for definition), transfinite induction, argument with least element.

Cardinal Numbers

Need to know:

• Concepts: $|X| \le |Y|$, |X| = |Y|, cardinal, cardinal addition/multiplication/exponentiation, cofinality

Techniques:

- Cantor's diagonalization argument
- verify properties of cardinal arithmetic
- do transfinite counting
- Theorems: Cantor-Bernstein, Theorem 3.8 (Cantor), 3.31 (König)

Real Numbers

Need to know:

- Concepts: open/closed/perfect subsets of \mathbb{R} (and ω^{ω})
- Techniques:
 - Tree representation of Baire space, \mathcal{N} .
- Theorems:
 - Theorem 4.3 (Cantor-Dedekind)¹
 - Cantor-Bendixson,
 - Baire Category Theorem

 $^{{}^1\}mathbb{R}$ is the unique complete dense unbounded separable linear order.

The Axiom of Choice

Need to know:

- Concepts:
 - Statements of AC, WO, ZL, MP, AC, DC;
- Theorems:
 - Implications among AC, WO, ZL, MP, AC, DC;
 - König Theorem ($\Sigma_i \kappa_i < \prod_i \lambda_i$) and its consequences:
 - $\triangleright 2^{\kappa} > \kappa$
 - $\blacktriangleright \kappa^{\mathrm{cf}(\kappa)} > \kappa$
 - $\operatorname{cf}(2^{\kappa}) > \kappa$.

(simple version of König)

Exercises

- There are arbitrarily large singular cardinals.
- There are arbitrarily large singular cardinals \aleph_{α} such that $\aleph_{\alpha} = \alpha$.
- About cofinality

$$\blacktriangleright \operatorname{cf}(\alpha + \beta) = \operatorname{cf}(\beta).$$

• $cf(\aleph_{\alpha}) = cf(\alpha)$, α is a limit ordinal.

•
$$\operatorname{cf}(\aleph_{\alpha+1}) = \aleph_{\alpha+1}.$$

• Cardinal exponentiations under GCH: for any $\kappa, \lambda \ge \omega$, $\kappa^{\lambda} = \kappa$, if $\lambda < cf(\kappa)$; $\kappa^{\lambda} = \kappa^{+}$, if $cf(\kappa) \le \lambda \le \kappa$; and $\kappa^{\lambda} = \lambda^{+}$, if $\kappa < \lambda$.

Cardinality

- ▶ If a linearly ordered set P has a countable dense subset, then $|P| \le 2^{\aleph_0}$.
- The cardinality of the set of all null sets.
- The set of all 1-1 function from \mathbb{N} to \mathbb{N} is uncountable.

A set or a proper class?

- Ord =_{def} { $\alpha \mid \alpha$ is an ordinal}
- Card =_{def}{ $\alpha \mid \alpha$ is a cardinal}
- $\blacktriangleright \{X \mid X \text{ is a wellordered set}\}\$
- $\blacktriangleright \{X \subseteq \mathbb{R} \mid X \text{ is wellordered}\}\$
- $\{P \mid P \text{ is a partially ordered set and } |P| < \aleph_{\omega}\}$
- ► the range of ℵ-function : ℵ(i) = the i-th cardinal in ordinals.
- ► Assume $\kappa \in Ord$ is a strongly inaccessible cardinal. The collection of wellordered sets in V_{κ} .

Assume ZFC, determine the truth of the following statement, if you can.

• Every dense subset of \mathbb{R} has cardinality 2^{\aleph_0}

$$\blacktriangleright \operatorname{cf}(2^{\aleph_{\omega}}) = \aleph_{\omega}$$

- \blacktriangleright Every real in (0,1) is uniquely represented by a $\{0,1\}\text{-sequence of length }\omega$
- Every real in (0, 1) is uniquely represented by a continuous fraction
- Every wellordering has no nontrivial automorphism.

Assume ZFC, determine the truth of the following statement, if you can.

• Every dense subset of \mathbb{R} has cardinality 2^{\aleph_0}

$$\blacktriangleright \operatorname{cf}(2^{\aleph_{\omega}}) = \aleph_{\omega}$$

- Every real in (0,1) is uniquely represented by a $\{0,1\}\text{-sequence of length }\omega$
- Every real in (0, 1) is uniquely represented by a continuous fraction
- Every wellordering has no nontrivial automorphism.

F, F, F, T, T

- Every linear order L with the following property is a well order: if $f: L \to L$ is ordering preserving, then $f(x) \ge x$ for every $x \in L$.
- There are more than \aleph_1 many reals.
- There is no Suslin line, i.e. a linear ordering that is dense, unbounded, complete and has the countable chain condition but is not nonseparable.
- ► There is a unique complete ordered field.
- For any set A, $\bigcap A \subset A$.
- For any set A, $\bigcup A \supset A$.

- Every linear order L with the following property is a well order: if $f: L \to L$ is ordering preserving, then $f(x) \ge x$ for every $x \in L$.
- There are more than \aleph_1 many reals.
- There is no Suslin line, i.e. a linear ordering that is dense, unbounded, complete and has the countable chain condition but is not nonseparable.
- ► There is a unique complete ordered field.
- For any set A, $\bigcap A \subset A$.
- For any set A, $\bigcup A \supset A$.

F, I (for Indepedent), I, T, F, T

Counting

Compute the cardinalities of the following sets.

- $\blacktriangleright \ \{F \mid F = (A, +, \cdot, 0, 1, <) \text{ is a complete ordered field} \}$
- $\blacktriangleright\,$ The collection of comeager subsets of the Baire space ${\cal N}$
- ► The collection of all Lebesgue measure zero sets of reals.
- The collection of all Borel sets that are of Lebesgue measure zero.
- The collection of all meager sets of reals [Hint: The Cantor set is nowhere dense.]

Cofinality

- ► $cf(\aleph_{\omega})$
- $\blacktriangleright \operatorname{cf}(\aleph_{\omega+\omega^2+3})$
- Given continuous increasing ordinal function f, for $A \subset \text{Ord}$ with no maximal element,

$$\operatorname{cf}(f(\sup A)) = \operatorname{cf}(A).$$

For instance, the cofinality of (ω₁)^{ω^ω} (as ordinal exponentiation) is ω.

$$(\omega_1)^{\omega^{\omega}} = \sup_{n < \omega} (\omega_1)^{\omega^n}$$

But as cardinal exponentiation,

$$\operatorname{cf}((\aleph_1)^{\aleph_0^{\aleph_0}}) > \aleph_0^{\aleph_0}.$$

Miscellaneous

- Every comeager set of reals is dense.
- Every comeager set of reals contains a perfect subset.
- ▶ The Cantor set C is nowhere dense and null.
 - C is closed. C contains no intervals, so its interior is empty.
 - Given $\varepsilon > 0$, let $n < \omega$ be such that $(\frac{2}{3})^n < \varepsilon$, then the collection $\bigcup \{O_s \mid s \in {}^{<\omega}\omega \land |s| = n\}$ is an open set containing \mathbb{C} .