\pm 京师范大学 $2023 \sim 2024$ 学年第一学期期末考试试卷 (A 卷)

阅卷老师(签字):

1. [8 + 8pts] Let *M* denote the set of all meager sets of reals. For $x, y \in \mathcal{N}$, define $x \subseteq^* y$ if $x \setminus y \in \mathcal{M}$. (a) Write $x \equiv^* y$ when $x \subseteq^* y$ and $y \subseteq^* x$. Show that \equiv^* is an equivalence relation.

解答. Omitted. □

(b) Let X be the quotient set $\{[x]_{\equiv^*} \mid x \in \mathcal{N}\}\$ and $[x]_{\equiv^*} \prec [y]_{\equiv^*}$ be the induced relation on the equivalence classes. Show that \prec is well defined and is a partial order on X.

解答. omitted. □

2. [10pts] Show that if (A, \prec) is a well-order, then $\mathcal{P}(A)$ can be linearly ordered.

解答. For *X ̸*= *Y* in *P*(*A*), define *X ≺ Y* iff min(*X* ∆ *Y*) *∈ X*. Clearly *≺* is irreflective and trichotomous. Suppose that $X \prec Y \prec Z$. Say $x_0 = \min(X \Delta Y) \in X \backslash Y$, and $y_0 = \min(Y \Delta Z) \in Y \backslash Z$. If $x_0 \in X \cap Z$, then $(Y \Delta Z) \ni x_0 \prec y_0 = \min(Y \Delta Z)$, contradiction! Thus $x_0 \in X \setminus Z$ and $x_0 = \min((X \Delta Y) \cup (Y \Delta Z)) \leqslant \min(X \Delta Z) \leqslant x_0$. And so $x_0 = \min(X \Delta Z) \in X$ and $X \prec Z$. □

- 3. [5 *×* 7pts] Compute the cardinality of the following sets. No justication is needed. Answers are a finite cardinal number, or in the forms of $\aleph_*, 2^{\aleph_*}$ or even $2^{2^{\aleph_*}}$.
	- (a) The set $\{m/2^n \mid m \in \mathbb{Z} \land n \in \mathbb{N}\}.$

- (b) The set of all closed sets of reals that contain no perfect subset. 解答. 2 *ℵ*0 . □
- (c) The set of all countable subset of \aleph_{ω} , assuming GCH.

4. [5 *×* 3pts] Compute the cofinalities of the following ordinals. The additions, multiplications and exponentiations below are ordinal operations. No justification is needed.

(a) $\aleph_{\omega^2+\omega+1}$.

$$
\mathbf{R}^{\prime} \mathbf{A}^{\prime} \mathbf{B}.
$$

(b) $\aleph_{\omega^{\omega}+1} + (\aleph_1)^{\omega \cdot \omega}$.

$$
\mathbf{\mathfrak{M}}\mathbf{\mathbf{\mathfrak{S}}.}\qquad \qquad \qquad \qquad \omega.
$$

(c) *η*, the least $\eta \in \text{Ord}$ such that $\omega^{\eta} = \eta$.

$$
\mathfrak{M}'^{\mathbf{2}} \mathbf{S}.
$$

5. [10pts] Show that $\prod_{n<\omega} \aleph_{\omega \cdot n^2+1} = (\aleph_{\omega^2})^{\aleph_0}$.

$$
\mathbb{H}^{\mathbb{X}}\mathbb{A}^{\mathbb{N}}_{\omega} = \prod_{n<\omega} \aleph_n \leq \prod_{n<\omega} \aleph_{\omega \cdot n^2 + 1} \leq (\sup_n \aleph_{\omega \cdot n^2 + 1})^{\aleph_0} = (\aleph_{\omega^2})^{\aleph_0}.
$$

- 6. [6 \times 4pts] Let $\mathcal{N} = \omega_{\omega}$ denote the Baire space.
	- (a) Please write down
		- (i) the characterization of a closed subset of N in terms of subtree of $\langle \omega_{\omega}$.
		- (ii) the definition of perfect subtree of $\langle \omega_{\mu} \rangle$.
	- (b) Write down the characterization of a perfect subset of N in terms of perfect subtree of ^{$\lt \omega$} ω and prove it.
- (c) Show that if $P \subset \mathcal{N}$ is perfect and $P \cap O_s \neq \emptyset$ for some $s \in \langle \omega, \omega \rangle$, then $P \cap O_s$ is perfect. Here $O_s = \{ f \in \mathcal{N} \mid s \sqsubset f \}.$
- (d) Suppose that $P_1, P_2 \subset \mathcal{N}$ are perfect. Show that if $P_1 \setminus P_2 \neq \emptyset$, then $P_1 \setminus P_2$ contains a perfect subset.

 $#$ 答. (a),(b) are omitted. We prove (c) and (d).

- (c) Let T_P be the tree associated to *P*. Suppose $f \in P \cap O_s$. Then $s \subset f$, so $s \in T_P$. Let $T_P[s] = \{t \in T_P \mid s \sqsubset t\}$. $T_P[s]$ is perfect and $[T_P[s]] = P \cap O_s$. So $P \cap O_s$ is perfect.
- (d) Suppose $f \in P_1 \setminus P_2$. As $f \in P_2$, let $n \in \omega$ be least such that $s = f \mid n \notin T_{P_2}$, then $P_2 \cap O_s = \emptyset$. But $f \in P_1 \cap O_s$, so $P_1 \cap O_s \neq \emptyset$. Use (c), we have $P_1 \cap O_s$ is perfect and is contained in $P_1 \setminus P_2$.

□