Solutions for Midterm Quiz

November 21, 2024

1. Prove the following statements.

- (a) If $x \cap y = \emptyset$ and $x \cup y \preccurlyeq y$, then $\omega \times x \preccurlyeq y$.
- (b) If $x \cap y = \emptyset$ and $\omega \times x \preccurlyeq y$, then $x \cup y \approx y$.

SOLUTION:

(a) Intuitively speaking, x ∪ y ≤ y means if we insert x into y we still get y, then we can insert another copy of x into y and the result will still be y, repeat this process, we can insert ω many x into y.
 Formally, from the definition of x ∪ y ≤ y, there is an injection f : x ∪ y → y. Define the function

$$g: \omega \times x \to y$$
$$(n, a) \mapsto f^{n+1}(a)$$

where f^{n+1} denotes the *n* times composition of *f*. One can check that *g* is an injection from $\omega \times x$ to *y*.

(b) Intuitively speaking, $\omega \times x \preccurlyeq y$ means we can insert ω many x into y, then we can move the *n*-th copy of x in y to n + 1-th, thus leave a place for one x.

Formally, from the definition of $\omega \times x \preccurlyeq y$, there is an injection $f: \omega \times x \rightarrow y$. Define the function

$$g: x \cup y \to y$$

$$a \mapsto f(0, a), \text{ if } a \in x$$

$$f(n+1, b), \text{ if } \exists (n, b) \in \omega \times x, a = f(n, b)$$

$$a, \text{ otherwize}$$

Then one can check that g is a bijection from $x \cup y$ to y.

Ex.3.1 (a) A subset of a finite set is finite.

- (b) The union of a finite set of finite sets is finite.
- (c) The power set of a finite set is finite.
- (d) The image of a finite set(under a mapping) is finite.

SOLUTION:

- (a) By definition, X is finite iff $|X| < \omega$. Suppose $Y \subset X$, then it follows that $Y \preccurlyeq X$. Thus Y can be well-ordered and $|Y| \le |X| < \omega$. So Y is finite.
- (b) Let $X = \{x_1, x_2 \dots x_n\} (n \in \mathbb{N})$, where $|x_i| < \omega$ for $i = 1, 2, \dots, n$. Let

$$A = \bigcup_{i=1}^{n} (\{i\} \times x_i)$$

Then A can be well-ordered and $|A| = |x_1| + |x_2| + \cdots + |x_n| < \omega$. For any $x \in \bigcup X$, let f(x) = (the least *i* s.t. $x \in x_i, x) \in A$. It is clear that *f* is an injection from $\bigcup X$ to *A*, which implies that $\bigcup X$ is finite.

(c) There is a bijection f from X to some $n < \omega$. Define F by F(E) = f(E) for any $E \subset X$. F is a bijection from $\mathscr{P}(X)$ onto $\mathscr{P}(n)$. Since $|\mathscr{P}(n)| = 2^n < \omega$, $\mathscr{P}(X)$ is finite.

- (d) Denote the finite set by X and the mapping f. g is the bijection from X onto $n < \omega$. Then $f \circ g^{-1}$ is a mapping from n to ran(f). For any $y \in \operatorname{ran}(f)$, let $F(y) = m \in n$, where m is the least element s.t $f \circ g^{-1}(m) = y$. F is a 1-1 mapping from ran(f) into m. So ran(f) is finite.
- Ex.3.2 (a) A subset of a countable set is at most countable.
 - (b) The union of a finite set of countable sets is countable.
 - (c) The image of a countable set (under a mapping) is at most countable.

SOLUTION:

- (a) By definition, X is countable iff $|X| = \omega$. Suppose $Y \subset X$, then it follows that $Y \preccurlyeq X$. Thus Y can be well-ordered and $|Y| \le |X| \le \omega$. So Y is at most countable.
- (b) Let $X = \{x_1, x_2 \dots x_n\} (n \in \mathbb{N})$, where $|x_i| = \omega$ (the bijection is f_i) for $i = 1, 2, \dots, n$. Let

$$A = \bigcup_{i=1}^{n} (\{i\} \times x_i)$$

Let $F(i, y) = n \cdot f_i(y) + i - 1$. Then F is a bijection from A onto ω . So A can be well-ordered $A \approx \omega$. For any $x \in \bigcup X$, let f(x) = (the least i s.t. $x \in x_i, x) \in A$. It is clear that f is an injection from $\bigcup X$ into A, which implies that $|\bigcup X| \leq \omega$. On the other hand, $|\bigcup X| \geq \omega$ since $\bigcup X$ has a countable subset x_1 . So $\bigcup X$ is countable.

(c) Denote the finite set by X and the mapping f. g is the bijection from X onto ω . Then $f \circ g^{-1}$ is a mapping from ω to ran(f). For any $y \in \operatorname{ran}(f)$, let $F(y) = m \in \omega$, where m is the least element s.t $f \circ g^{-1}(m) = y$. F is a 1-1 mapping from ran(f) into ω . So ran(f) is at most countable.

Ex.3.3 $\mathbb{N} \times \mathbb{N}$ is countable. $[f(m, n) = 2^m(2n+1) - 1.]$

<u>SOLUTION</u>: Define $f : \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ by $f(m, n) = 2^m (2n + 1) - 1$. For any $s \in \mathbb{N}$, let

$$m = \max\{k \in \mathbb{N} \mid 2^k | (s+1)\}, n = \frac{(s+1)2^{-m} - 1}{2} \in \mathbb{N}$$

Then f(m,n) = s. On the other hand, suppose $2^{m_1}(2n_1+1) - 1 = 2^{m_2}(2n_2+1) - 1(m_1 \leq m_2)$, then $(2n_1+1) = 2^{m_2-m_1}(2n_2+1)$, which implies $2^{m_2-m_1} = 1$, i.e. $m_1 = m_2$. Then we have $n_1 = n_2$. So f is a bijection. It follows that $\mathbb{N} \times \mathbb{N}$ is countable.

3. Prove that $\kappa^{\kappa} \leq 2^{\kappa \cdot \kappa}$.

SOLUTION: For any mapping f from κ to κ , f is a subset of $\kappa \times \kappa$, i.e. $f \in \mathscr{P}(\kappa \times \kappa)$. From this we have $\kappa \in \mathscr{P}(\kappa \times \kappa)$. It follows that $\kappa \preccurlyeq \mathscr{P}(\kappa \times \kappa)$, i.e. $\kappa^{\kappa} \leq 2^{\kappa \cdot \kappa}$.

4. If $A \preccurlyeq B$, then $A \preccurlyeq^* B$.

SOLUTION: If $A = \emptyset$, then $A \preccurlyeq^* B$. Otherwise there is a $x_0 \in A$. Denote the one-to-one mapping for A into B by f. Let

$$g = \{(y, x) \mid (x, y) \in f\} \cup \{(y, x_0) \mid y \in B \setminus ran(f)\}$$

Then g is a function. First, $dom(g) = ran(f) \cup (B \setminus ran(f)) = B$, i.e. for any $y \in B$, there exists an x such that $(y, x) \in g$. Second, suppose $(y, x_1), (y, x_2) \in g$. If $y \notin ran(f)$, then $x_1 = x_0 = x_2$. If $y \in ran(f)$, then $(x_1, y), (x_2, y) \in f$. Since f is 1-1, we have $x_1 = x_2$.

Furthermore, g is a surjection, since $ran(g) = dom(f) \cup \{x_0\} = dom(f) = A$.

5. If $A \preccurlyeq^* B$, then $\mathscr{P}(A) \preccurlyeq \mathscr{P}(B)$.

SOLUTION: If $A = \emptyset$, then $\mathscr{P}(A) = \{\emptyset\} \subseteq \mathscr{P}(B)$. Otherwise let $f : B \to A$ be a surjection. For any $x \subset A$, let $F(x) = f^{-1}[x] \subset B$. Then F is a function from $\mathscr{P}(A)$ into $\mathscr{P}(B)$. F is injection, since if $x_1 \neq x_2$, say $t \in x_1 \setminus x_2$, then $\emptyset \neq f^{-1}[\{t\}] \subseteq f^{-1}[x_1] \setminus f^{-1}[x_2]$ (f being onto ensures that $f^{-1}[\{t\}] \neq \emptyset$), thus $F(x_1) \neq F(x_2)$.

6. Let X be a set. If there is an injective function $f: X \longrightarrow X$ s.t ran $(f) \subsetneq X$, then X is infinite. (Dedekind infinite is infinite)

SOLUTION: Method I. Suppose NOT, X is finite. There is a bijection from X to some $n \in \mathbb{N}$, denote it by g. Then $F = g \circ f \circ g^{-1}$ is an injection from n into n, s.t ran $(F) \subsetneq n$. But this contradicts to the fact that every $n \in \omega$ has no proper subsets of the same cardinality.

We show by induction that no $n \in \omega$ has proper subsets of the same cardinality. We go from n to n + 1. Let $h: n + 1 \to n + 1$ be a non-surjective injection and $h' = h \upharpoonright n$. We modify h' to get an $f: n \to n$. Consider n, if $n \notin \operatorname{ran}(h')$, let f = h'; if $n \in \operatorname{ran}(h')$, then let $f(h^{-1}(n)) = h(n)$ and for $i \in n \setminus h^{-1}(n)$, f(i) = h'(i). In either case $f: n \to n$ is a non-surjective injection.

Method II. (AC). We shall construct an injection $g: \omega \to X$. Let $X_0 = X$ and $X_{n+1} = f[X_n]$ for all $n \in \omega$. Since $\operatorname{ran}(f) \subsetneq X$, by induction, one can see that for each $n \in \omega$, $X_{n+1} - X_n \neq \emptyset$, hence can select $g(n) \in X_{n+1} - X_n$ for each $n \in \omega$. These g(n)'s are clearly distinct, hence $g: \omega \to X$ is an injection. This shows that X is infinite.