Solutions for Midterm Quiz

November 21, 2024

1. Prove the following statements.

- (a) If $x \cap y = \emptyset$ and $x \cup y \preccurlyeq y$, then $\omega \times x \preccurlyeq y$.
- (b) If $x \cap y = \emptyset$ and $\omega \times x \leq y$, then $x \cup y \approx y$.

SOLUTION:

(a) Intuitively speaking, $x \cup y \preccurlyeq y$ means if we insert x into y we still get y, then we can insert another copy of *x* into *y* and the result will still be *y*, repeat this process, we can insert ω many *x* into *y*. Formally, from the definition of $x \cup y \preccurlyeq y$, there is an injection $f : x \cup y \rightarrow y$. Define the function

$$
g: \omega \times x \to y
$$

$$
(n, a) \mapsto f^{n+1}(a)
$$

where f^{n+1} denotes the *n* times composition of *f*. One can check that *g* is an injection from $\omega \times x$ to *y*.

(b) Intuitively speaking, $\omega \times x \leq y$ means we can insert ω many x into y, then we can move the *n*-th copy of x in y to $n + 1$ -th, thus leave a place for one x . Formally, from the definition of $\omega \times x \leq y$, there is an injection $f : \omega \times x \to y$. Define the function

$$
g: x \cup y \to y
$$

\n
$$
a \mapsto f(0, a), \text{ if } a \in x
$$

\n
$$
f(n + 1, b), \text{ if } \exists (n, b) \in \omega \times x, a = f(n, b)
$$

\n
$$
a, \text{ otherwise}
$$

Then one can check that *g* is a bijection from $x \cup y$ to *y*.

Ex.3.1 (a) A subset of a finite set is finite.

- (b) The union of a finite set of finite sets is finite.
- (c) The power set of a finite set is finite.
- (d) The image of a finite set(under a mapping) is finite.

SOLUTION:

- (a) By definition, *X* is finite iff $|X| < \omega$. Suppose $Y \subset X$, then it follows that $Y \preccurlyeq X$. Thus *Y* can be well-ordered and $|Y| \leq |X| < \omega$. So *Y* is finite.
- (b) Let $X = \{x_1, x_2, \ldots, x_n\}$ ($n \in \mathbb{N}$), where $|x_i| < \omega$ for $i = 1, 2, \ldots, n$. Let

$$
A = \bigcup_{i=1}^{n} (\{i\} \times x_i)
$$

Then A can be well-ordered and $|A| = |x_1| + |x_2| + \cdots + |x_n| < \omega$. For any $x \in \bigcup X$, let $f(x) =$ (the least *i* s.t. $x \in x_i, x$) $\in A$. It is clear that *f* is an injection from $\bigcup X$ to *A*, which implies that $\bigcup X$ is finite.

(c) There is a bijection *f* from *X* to some $n < \omega$. Define *F* by $F(E) = f(E)$ for any $E \subset X$. *F* is a bijection from $\mathscr{P}(X)$ onto $\mathscr{P}(n)$. Since $|\mathscr{P}(n)| = 2^n < \omega$, $\mathscr{P}(X)$ is finite.

- (d) Denote the finite set by *X* and the mapping *f*. *g* is the bijection from *X* onto $n < \omega$. Then $f \circ g^{-1}$ is a mapping from *n* to ran(*f*). For any $y \in \text{ran}(f)$, let $F(y) = m \in n$, where *m* is the least element s.t $f \circ g^{-1}(m) = y$. *F* is a 1-1 mapping from ran(*f*) into *m*. So ran(*f*) is finite.
- Ex.3.2 (a) A subset of a countable set is at most countable.
	- (b) The union of a finite set of countable sets is countable.
	- (c) The image of a countable set (under a mapping) is at most countable.

SOLUTION:

- (a) By definition, *X* is countable iff $|X| = \omega$. Suppose $Y \subset X$, then it follows that $Y \preccurlyeq X$. Thus *Y* can be well-ordered and $|Y| \leq |X| \leq \omega$. So *Y* is at most countable.
- (b) Let $X = \{x_1, x_2, \ldots, x_n\}$ $(n \in \mathbb{N})$, where $|x_i| = \omega$ (the bijection is f_i) for $i = 1, 2, \ldots, n$. Let

$$
A = \bigcup_{i=1}^{n} (\{i\} \times x_i)
$$

Let $F(i, y) = n \cdot f_i(y) + i - 1$. Then *F* is a bijection from *A* onto ω . So *A* can be well-ordered $A \approx \omega$. For any $x \in \bigcup X$, let $f(x) =$ (the least *i* s.t. $x \in x_i, x \in A$. It is clear that *f* is an injection from $\bigcup X$ into *A*, which implies that $|\bigcup X| \leq \omega$. On the other hand, $|\bigcup X| \geq \omega$ since $\bigcup X$ has a countable subset x_1 . So $\bigcup X$ is countable.

(c) Denote the finite set by *X* and the mapping *f*. *g* is the bijection from *X* onto ω . Then $f \circ g^{-1}$ is a mapping from ω to ran(f). For any $y \in \text{ran}(f)$, let $F(y) = m \in \omega$, where m is the least element s.t $f \circ g^{-1}(m) = y$. *F* is a 1-1 mapping from ran(*f*) into ω . So ran(*f*) is at most countable.

Ex.3.3 N × N is countable. $[f(m, n) = 2^m(2n + 1) - 1]$

SOLUTION: Define $f : \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ by $f(m, n) = 2^m(2n + 1) - 1$. For any $s \in \mathbb{N}$, let

$$
m = \max\{k \in \mathbb{N} \mid 2^k | (s+1)\}, n = \frac{(s+1)2^{-m} - 1}{2} \in \mathbb{N}
$$

Then $f(m, n) = s$. On the other hand, suppose $2^{m_1}(2n_1 + 1) - 1 = 2^{m_2}(2n_2 + 1) - 1(m_1 \leq m_2)$, then $(2n_1 + 1) = 2^{m_2 - m_1} (2n_2 + 1)$, which implies $2^{m_2 - m_1} = 1$, i.e $m_1 = m_2$. Then we have $n_1 = n_2$. So *f* is a bijection. It follows that $\mathbb{N} \times \mathbb{N}$ is countable.

3. Prove that $\kappa^{\kappa} \leq 2^{\kappa \cdot \kappa}$.

SOLUTION: For any mapping f from κ to κ , f is a subset of $\kappa \times \kappa$, i.e. $f \in \mathscr{P}(\kappa \times \kappa)$. From this we have $\mathscr{P}(\kappa \times \kappa)$. It follows that $\kappa \leq \mathscr{P}(\kappa \times \kappa)$, i.e. $\kappa^{\kappa} \leq 2^{\kappa \cdot \kappa}$.

4. If $A \preccurlyeq B$, then $A \preccurlyeq^* B$.

SOLUTION: If $A = \emptyset$, then $A \preccurlyeq^* B$. Otherwise there is a $x_0 \in A$. Denote the one-to-one mapping for *A* into *B* by *f*. Let

$$
g = \{(y, x) \mid (x, y) \in f\} \cup \{(y, x_0) \mid y \in B \setminus \text{ran}(f)\}\
$$

Then *g* is a function. First, $dom(q) = ran(f) \cup (B \setminus ran(f)) = B$, i.e. for any $y \in B$, there exists an *x* such that $(y, x) \in g$. Second, suppose $(y, x_1), (y, x_2) \in g$. If $y \notin ran(f)$, then $x_1 = x_0 = x_2$. If $y \in ran(f)$, then (x_1, y) , $(x_2, y) \in f$. Since f is 1-1, we have $x_1 = x_2$.

Furthermore, *g* is a surjection, since $\text{ran}(g) = \text{dom}(f) \cup \{x_0\} = \text{dom}(f) = A$.

5. If $A \preccurlyeq^* B$, then $\mathscr{P}(A) \preccurlyeq \mathscr{P}(B)$.

SOLUTION: If $A = \emptyset$, then $\mathscr{P}(A) = {\emptyset} \subseteq \mathscr{P}(B)$. Otherwise let $f : B \to A$ be a surjection. For any $x \subset A$, let $F(x) = f^{-1}[x] \subset B$. Then F is a function from $\mathscr{P}(A)$ into $\mathscr{P}(B)$. F is injection, since if $x_1 \neq x_2$, say $t \in x_1 \setminus x_2$, then $\emptyset \neq f^{-1}[\{t\}] \subseteq f^{-1}[x_1] \setminus f^{-1}[x_2]$ (f being onto ensures that $f^{-1}[\{t\}] \neq \emptyset$), thus $F(x_1) \neq F(x_2)$.

6. Let *X* be a set. If there is an injective function $f: X \longrightarrow X$ s.t ran($f \subseteq X$, then *X* is infinite. (Dedekind infinite is infinite)

SOLUTION: *Method I.* Suppose NOT, *X* is finite. There is a bijection from *X* to some $n \in \mathbb{N}$, denote it by *g*. Then $F = g \circ f \circ g^{-1}$ is an injection from *n* into *n*, s.t ran(*F*) $\subsetneq n$. But this contradicts to the fact that every $n \in \omega$ has no proper subsets of the same cardinality.

We show by induction that no $n \in \omega$ has proper subsets of the same cardinality. We go from *n* to $n + 1$. Let $h: n+1 \to n+1$ be a non-surjective injection and $h' = h \upharpoonright n$. We modify h' to get an $f: n \to n$. Consider $n,$ if $n \notin \text{ran}(h'),$ let $f = h'$; if $n \in \text{ran}(h'),$ then let $f(h^{-1}(n)) = h(n)$ and for $i \in n \setminus h^{-1}(n), f(i) = h'(i)$. In either case $f : n \to n$ is a non-surjective injection.

Method II. (AC). We shall construct an injection $g: \omega \to X$. Let $X_0 = X$ and $X_{n+1} = f[X_n]$ for all *n* ∈ ω . Since ran(*f*) \subset *X*, by induction, one can see that for each *n* ∈ ω , $X_{n+1} - X_n \neq \emptyset$, hence can select $g(n) \in X_{n+1} - X_n$ for each $n \in \omega$. These $g(n)$'s are clearly distinct, hence $g: \omega \to X$ is an injection. This shows that *X* is infinite.