
Solutions for Assignment # 3

October 16, 2024

1. Show that the following are equivalent:

(a) T is transitive;
(b)

∪
T ⊆ T ;

(c) T ⊆ P(T ).

Solution:

(a) ⇒ (b). For any x ∈
∪
T , let y ∈ T be s.t. x ∈ y. Since T is transitive, y ⊆ T thus x ∈ T . Hence

∪
T ⊆ T .

(b) ⇒ (c). For any x ∈ T . By (b), x ⊆
∪
T ⊆ T , thus x is an element of P(T ). Hence T ⊆ P(T ).

(c) ⇒ (a). For any x ∈ T , we have x ∈ P(T ), i.e. x is a subset of T . Hence T is transitive by definition.

2. Let α, β, γ ∈ Ord and let α < β. Then

(a) α+ γ ≤ β + γ

(b) α · γ ≤ β · γ
(c) αγ ≤ βγ

Given examples to show that ≤ cannot be replaced by < in either inequality.

Solution: We prove the proposition by induction on γ. In order to use the conclusion later, we only suppose
that α ≤ β.

(a) i. γ = 0, it is obvious that α+ 0 ≤ β + 0.
ii. Suppose the inequality holds for γ, i.e. α+ γ ≤ β + γ, then we have

α+ γ < (β + γ) + 1 = β + (γ + 1)

Noting that
α+ (γ + 1) = (α+ γ) + 1 = inf{ξ ∈ Ord | α+ γ < ξ}

it follows that
α+ (γ + 1) ≤ β + (γ + 1)

iii. Suppose γ is a limit ordinal and the inequality holds for any ordinal less than γ. Then by definition,

α+ γ = lim
ξ→γ

(α+ ξ) = sup{α+ ξ | ξ < γ}

β + γ = lim
ξ→γ

(β + ξ) = sup{β + ξ | ξ < γ}

By induction, for any ξ < γ, α+ ξ ≤ β + ξ ≤ β + γ, then

α+ γ ≤ β + γ

Example: 1 < 2, but 1 + ω = ω = 2 + ω

(b) i. γ = 0, it is obvious that α · 0 = 0 = β · 0.
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ii. Suppose the inequality holds for γ, i.e. α · γ ≤ β · γ, then we have

α · (γ + 1) = α · γ + α (definition)
≤ α · γ + β (Lemma 2.25)
≤ β · γ + β (induction+(a))
= β · (γ + 1)

iii. Suppose γ is a limit ordinal and the inequality holds for any ordinal less than γ. Then by definition,

α · γ = lim
ξ→γ

(α · ξ) = sup{α · ξ | ξ < γ}

β · γ = lim
ξ→γ

(β · ξ) = sup{β · ξ | ξ < γ}

By induction, for any ξ < γ, α · ξ ≤ β · ξ ≤ β · γ, then

α · γ ≤ β · γ

Example: 1 < 2, but 1 · ω = ω = 2 · ω
(c) i. γ = 0, it is obvious that α0 = 1 = β0.

ii. Suppose the inequality holds for γ, i.e. αγ ≤ βγ , then we have

αγ+1 = αγ · α (definition)
≤ αγ · β (Lemma 2.25, if αγ = 0 or α = β, “=” holds)
≤ βγ · β (induction+(b))
= βγ+1

iii. Suppose γ is a limit ordinal and the inequality holds for any ordinal less than γ. Then by definition,

αγ = lim
ξ→γ

(αξ) = sup{αξ | ξ < γ}

βγ = lim
ξ→γ

(βξ) = sup{βξ | ξ < γ}

By induction, for any ξ < γ, αξ ≤ βξ ≤ βγ , then

αγ ≤ βγ

Example: 2 < 3, but 2ω = ω = 3ω

3. Show that the following rules do not hold for all. α, β, γ ∈ Ord:

(a) If α+ γ = β + γ then α = β.
(b) If γ > 0 and α · γ = β · γ then α = β.
(c) (β + γ) · α = β · α+ γ · α

Solution:

(a) 1 + ω = ω = 2 + ω, but 1 < 2.
(b) If ω > 0 and 1 · ω = ω = 2 · ω, but 1 < 2.
(c) (1 + 1) · ω = 2 · ω = ω < ω + 1 ≤ ω + ω = 1 · ω + 1 · ω

4. Find a set A ⊂ Q, such that(A,<Q) ∼= (α,∈), where

(a) α = ω + 1

(b) α = ω + 2

(c) α = ω · ω
(d) α = ωω

(e) α = ϵ0
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(f) α is any ordinal < ω1

Solution:

(a) A = {−1,− 1
2 , · · · ,−

1
2n , · · · , 0}. The isomorphism f : A → ω + 1 is:

f(− 1

2n
) = n, f(0) = ω

(b) A = {−1,− 1
2 , · · · ,−

1
2n , · · · , 0,

1
2}. The isomorphism f : A → ω + 2 is:

f(− 1

2n
) = n, f(0) = ω, f(

1

2
) = ω + 1

(c) A = {m− 1
2n | m,n ∈ N}. The isomorphism f : A → ω · ω is:

f(m− 1

2n
) = ω ·m+ n

(d) By Cantor’s Normal form Theorem, for any ordinal α ∈ ωω,

α = kn + ω · kn−1 + · · ·+ ωn · k0(k0 ̸= 0)

Let
g(α) = n− 2−k0 − 2−k0−(k1+1) − · · · − 2−k0−(k1+1)−···−(kn+1)

Then g is an isomorphism from ωω to g(ωω) ⊂ Q
(e) Such A can not be expressed explicitly by (Q, <,+,−,×,÷, Exp). But ϵ0 is a countable ordinal, we can

construct such A by transfinite induction as follows.
(f) We construct a Aα ⊆ Q ∩ [0, 1) for each ordinal α < ω1 (the first uncountable ordinal) such that

(A,<Q) ∼= (α,∈)

For A ⊆ Q and r ∈ Q, use notations:

A+ r := {a+ r | a ∈ A},

rA := {ra | a ∈ A}.

Inductive foundation: For α = 0, let A0 = ∅.
Successor step: For α = β + 1, let Aα = 1

2Aβ ∪ { 1
2}.

Limit step: For limit contable ordinal α, there is a bijection f : ω → α, let βn = f(n) < α for each n ∈ ω
then

sup
n∈ω

{βn} = α

(A limit countable ordinal is a limit of countable ordinals.) Then let

Aα =
∪
n∈ω

(
1

2n
Aβn

+ (1− 1

2n−1
)).

5. An ordinal α is a limit ordinal iff α = ω · β for some β ∈ Ord \{0}

Solution: Suppose α is a limit ordinal, then there exists a unique β and n, such that α = ω · β + n, and
n < ω. If n ̸= 0, it must be m+ 1 for some m < ω. But then α = (ω · β +m) + 1, which contradicts to that α
is limit.

(Method I). Suppose α = α′+1 for some α′, then there exists a unique β′ and n′, such that α′ = ω ·β′+n′,
and n′ < ω. Let β = β′, n = n′ + 1, we have α = ω · β + n, where n < ω. By the uniqueness of β and n, α can’t
be written as α = ω · β for some β ∈ Ord.

(Method II). There are two cases for β. (a) β = γ+1 for some γ. Then α = ω(γ+1) = sup{(ω ·γ+n | n < ω}
is a limit ordinal. (b) β is a limit ordinal. Then α = sup{ω · γ | γ < β} is also a limit ordinal.
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6. Find the first three α > 0 s.t. ξ + α = α for all ξ < α.

Solution: The least α is 1. The only ordinal less than 1 is 0, which satisfies that 0 + 1 = 1. On the other
hand, 1 is the least ordinal > 0.

If we suppose α > 1, the least ordinal is ω. For any n < ω, n + ω = limm→ω(n +m) = ω. On the other
hand, for any 1 < m < ω, there exists an m′ such that m = m′ + 1 and m′ > 0, thus m′ +m > m.

Suppose α > ω, the least ordinal is ω2. For any β < ω2, β = ω · m + n and m,n < ω. β + ω2 =
ω · m + n + ω · ω = ω2. On the other hand, for any ω < β = ω · m + n < ω2, there exists β′ such that
β = β′ + ω + n and β′ > 0; thus β′ + β > β.

7. Find the least ξ such that

(a) ω + ξ = ξ

(b) ω · ξ = ξ, ξ ̸= 0

(c) ωξ = ξ

(Hint for (1): Consider a sequence ⟨ξn⟩ s.t. ξn+1 = ω + ξn.)

Solution:

(a) Construct a sequence ⟨ξn⟩: ξ1 = ω, ξn+1 = ω + ξn. Then ⟨ξn⟩ is a set belongs to Ord. In fact, ξn = ω · n,
let

ξ = lim
n→ω

ξn = ω · ω

It is easy to verify that ω + ξ = ξ. On the other hand, for any α < ξ, α = ω · k1 + k2, where k1, k2 < ω.
Then

ω + α = ω + ω · k1 + k2 = ω · (k1 + 1) + k2 > ω · k1 + k2 = α

(b) Construct a sequence ⟨ξn⟩: ξ1 = ω, ξn+1 = ω · ξn. Then ⟨ξn⟩ is a set belongs to Ord. In fact, ξn = ωn, let

ξ = lim
n→ω

ξn = ωω

It is easy to verify that ω · ξ = ξ. On the other hand, for any α < ωω, there exists an n such that

ωn ≤ α < ωn+1

Actually, n = sup{m ∈ ω | x ≥ ωm}, where {m ∈ ω | x ≥ ωm} is an initial segment of ω. Thus we have

ω · α ≥ ω · ωn = ωn+1 > α

(c) Construct a sequence ⟨ξn⟩: ξ1 = ω, ξn+1 = ωξn . Then ⟨ξn⟩ is a set belongs to Ord. Let

ξ = lim
n→ω

ξn = . .
.
ωωω

=: ϵ0

It is easy to verify that ωξ = ξ. On the other hand, for any α < ξ, there exists an n such that

ξn ≤ α < ξn+1

Actually, n = sup{m ∈ ω | x ≥ ξm}, where {m ∈ ω | x ≥ ξm} is an initial segment of ω. Thus we have

ωα ≥ ωξn = ξn+1 > α.
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Exercises in About V

By transfinite recursion, define
V0 = ∅,

Vn+1 = P(Vn),

Vω =
∪

n<ω Vn.

1. Every x ∈ Vω is finite.

Solution: Fix x ∈ Vω. There is an n such that x ∈ Vn.
Claim. For each n, Vn is transitive, and |Vn+1| = 2n.
Proof of the Claim. We prove by induction on n. This is clearly true for n = 0. We proceed from n to n+ 1.
Clearly |Vn+2| = 2n+1 by induction and simple calculation. Let y be any element of Vn+1. Then y ⊆ Vn, by
definition. Since Vn is transitive, ∀z(z ∈ Vn → z ⊆ Vn), we have Vn ⊆ Vn+1. Thus y ⊆ Vn+1. This shows that
for every n, Vn is transitive, and |Vn+1| = 2n. ⊣ (Claim)

By the claim, x ⊆ Vn, and |x| ≤ |Vn|. Therefore x is finite.

2. Vω is transitive.

Solution: This follows from the above claim. Let x ∈ Vω, then x ∈ Vn for some n. By the transitivity of
Vn and the definition of Vω, x ⊆ Vn ⊆ Vω.

3. Vω is an inductive set.

Solution: First ∅ ∈ V1 ⊆ Vω. Now fix x ∈ Vω and an n such that x ∈ Vn. Then x∪{x} ⊆ Vn∪Vn+1 ⊆ Vn+1.
The last step follows from the claim that every Vn is transitive. Hence x ∪ {x} ∈ Vn+2 ⊆ Vω.

1. If x, y ∈ Vω then {x, y} ∈ Vω.

Solution: Suppose x ∈ Vm and y ∈ Vn. We may assume that m ≤ n. By the transitivity of Vn’s, x, y ∈ Vn,
and hence {x, y} ∈ Vn+1 ⊆ Vω.

2. If x ∈ Vω, then
∪

x ∈ Vω and P(x) ∈ Vω.

Solution: Fix an n such that x ∈ Vn. Since Vn is transitive, x ⊆ Vn. Then
∪

x ⊆
∪
{Vn | z ∈ x} = Vn and

P(x) ⊆ P(Vn). These implies that
∪
x ∈ Vn+1 and P(x) ∈ Vn+2, therefore both in Vω.

3. If A ∈ Vω and f is a function on A such that f(x) ∈ Vω for each x ∈ A, then f [A] ∈ Vω.

Solution: If A ∈ Vω, by (71), A is finite. Then f [A] is a finite subset of Vω, so the conclusion follows from
(74).

4. If x is a finite subset of Vω, then x ∈ Vω.

Solution: Suppose x = {ai | i = 1, . . . , n}. Let C = {ki | ai ∈ Vki
}. C is finite set of numbers and has a

largest number K. Since Vn’s are all transitive, x ⊆ VK , hence x ∈ VK+1 ⊆ Vω.
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