
Solutions for Assignment # 1

October 15, 2024

1. Using only ∈̂ and =̂ to express the following formulas:

(a) z =̂ ((x, y), (u, v))

(b) ∀x[¬(x =̂∅) → (∃y ∈̂ x)(x ∩ y =̂∅)]

(c) ∀u[∀x∃y(x, y) ∈̂ u → ∃f∀x(x, f(x)) ∈̂ u]

Solution:

(a) Note that (x, y) = {{x}, {x, y}}. The formula z =̂ (x, y) can be expressed as:

φ(z, x, y) ≡ ∀u(u ∈̂ z ↔ ∀v(v ∈̂ u ↔ v =̂ x) ∨ ∀v(v ∈̂ u ↔ v =̂ x ∨ v =̂ y))

So z =̂ ((x, y), (u, v)) can be expressed as:

∃z1∃z2(φ(z1, x, y) ∧ φ(z2, u, v) ∧ φ(z, z1, z2))

(b) Note that x ∩ y =̂∅ iff ¬∃z(z ∈̂ y ∧ z ∈̂ x), ∃y ∈̂ x means ∃y(y ∈̂ x). This formula can be expressed as:

∀x (∃v (v ∈ x) → ∃y (y ∈̂ x ∧ ¬∃u (u ∈ x ∧ u ∈ y))

(c) Note that function f is a binary relation and (∀(x, y), (x, z) ∈̂ f)(y =̂ z). “f is a binary relation” can be
expressed as:

φ1(f) ≡ ∀z(z ∈̂ f ↔ ∃x∃yφ(z, x, y))

φ(z, x, y) means z =̂ (x, y) defined in (a).

“f is a function” can be expressed as:

φ2(f) ≡ φ1(f) ∧ ∀x∀y∀z∃u∃v(φ(x, y, u) ∧ φ(x, z, v) ∧ (u ∈̂ f ∧ v ∈̂ f → y =̂ z))

So the formula ∀u[∀x∃y(x, y) ∈̂ u → ∃f∀x(x, f(x)) ∈̂ u] can be expressed as:

∀u(∀x∃y∃z(φ(z, x, y) ∧ z ∈̂ u) → ∃f(φ2(f) ∧ ∀x∃y∃z(φ(z, x, y) ∧ z ∈̂ f ∧ z ∈̂ u)))

2. Suppose that R, S are two relations. Show that R−1 and S ◦R exist.

Solution: Since dom(R) and ran(R) are two sets, so are ran(R)× dom(R). By Comprehension Schema,

R−1 = {(u, v) ∈ ran(R)× dom(R) | (v, u) ∈ R}

exists. R−1 ⊂ P(P(
⋃⋃

R)) with Comprehension also shows R−1 is a set.

Since dom(R) and ran(S) are two sets, so does dom(R)× ran(S). By Comprehension Schema,

S ◦R = {(u, v) ∈ dom(R)× ran(S) | ∃w((u,w) ∈ R ∧ (w, v) ∈ S)}

exists. S ◦R ⊂ P(P(
⋃⋃

(R ∪ S))) with Comprehension also shows S ◦R is a set.

3. There is no set X such that P(X) ⊆ X.

Solution: Suppose NOT. There exists a set X s.t. P(X) ⊆ X.
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Method I We have X ∈ X ∈ X · · · , since X is a subset of itself X ∈ P(X) ⊆ X. But it contradicts
Regularity/Well-foundedness axioms.

Method II Let W = {x ∈ X | x /∈ x}. W ⊂ X, thus W ∈ P(X) ⊆ X. But W ∈ W ↔ W /∈ W .
Contradiction!

Let N =
⋂
{X | X is inductive}. N is the smallest inductive set. Let us use the following notation:

0 = ∅, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2}

If n ∈ N , let n+ 1 = n ∪ {n}. And for n,m ∈ N ,

n < m ↔ n ∈ m

A set T is transitive if x ∈ T implies x ⊆ T .

4. If X is inductive, then the set
{x ∈ X | x ⊆ X}

is inductive. Hence N is transitive, and for each n, n = {m ∈ N | m < n}.

Solution: Let E = {x ∈ X | x ⊆ X}.

(a) It is clear that ∅ ∈ X(X is inductive) and ∅ ⊆ X (trivial). So ∅ belongs to E.

(b) For all x ∈ E, x ∪ {x} ∈ X because x is an element of X and X is inductive. Since both x and {x} are
subsets of X, we have x ∪ {x} ⊆ X. Hence x ∪ {x} ∈ E.

According to (a) and (b), {x ∈ X | x ⊆ X} is inductive.

Let E0 = {x ∈ N | x ⊆ N} ⊆ N . But E0 is inductive, so N is a subset of E0. That means {x ∈ N | x ⊆
N} = N , thus N is transitive.

It is obvious that {m ∈ N | m < n} = {m ∈ N | m ∈ n} ⊆ n. On the other hand, since n ∈ N and
N is transitive, we have n ⊆ N . Then m ∈ n → m ∈ N which equals n ⊆ {m ∈ N | m < n}. Hence
n = {m ∈ N | m < n}.

5. If X is inductive, then the set
{x ∈ X | x is transitive}

is inductive. Hence every n ∈ N is transitive.

Solution: Let E = {x ∈ X | x is transitive}.

(a) ∅ ∈ E since ∅ is transitive.

(b) For all x ∈ X, x is transitive. Our goal is to show that x ∪ {x} is transitive, too. For all y ∈ x ∪ {x}, no
matter wether y ∈ x or y ∈ {x}, we have y ⊆ x ∪ {x}. Thus x ∪ {x} is transitive.

According to (a) and (b), {x ∈ X | x is transitive} is inductive.

Since N is the smallest inductive set, N ⊆ {x ∈ N | x is transitive}. Thus every element n of N is transitive.

6. If X is inductive, then the set
{x ∈ X | x is transitive and x /∈ x}

is inductive. Hence n /∈ n and n ̸= n+ 1 for each n ∈ N .

Solution: According to the conclusion above, it is sufficient to prove that x ∪ {x} /∈ x ∪ {x} if x is transitive
and x /∈ x. Suppose NOT, we have x ∪ {x} ∈ x or x ∪ {x} ∈ {x}. Both of them lead to x ∪ {x} ⊆ x (x is
transitive). But

x ∪ {x} ⊆ x → {x} ⊆ x → x ∈ x

It is a contradiction.

Since N is the smallest inductive set, N ⊆ {x ∈ X | x is transitive and x /∈ x}. Thus n /∈ n. n+1 = n∪{n}
by definition. Since there is n s.t. n /∈ n but n ∈ n+ 1, we have n ̸= n+ 1.
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7. If X is inductive, then the set {x ∈ X | x is transitive and every nonempty z ⊆ x has an ∈−minimal element}
is inductive. (t is ∈-minimal in z if there is no s ∈ z such that s ∈ t.)

Solution: It is sufficient to show that every nonempty z ⊆ x ∪ {x} has an ∈-minimal element if x belongs to
the above set. For any nonempty z ⊆ x ∪ {x}, Suppose z = {x}, x is the ∈-minimal element in z (Otherwise
x ∈ x, but then {x}, as a nonempty subset of x, has no ∈-minimal element). Otherwise, z ⊆ x, there would
exist a y ∈ z\{x} ⊆ x is a ∈-minimal element in z\{x}. Meanwhile, x /∈ y (Otherwise x ∈ y ∈ x → x ∈ x, since
x is transitive). That implies y is an ∈-minimal element in z.

8. Every nonempty X ⊆ N has an ∈-minimal element.

Solution: Since N is the smallest inductive set, N ⊆ {x ∈ N | x is transitive and every nonempty z ⊆
x has an ∈ -minimal element}. For all X ⊆ N , pick n ∈ X. If X ∩ n = ∅, (∀m < n)(m /∈ X). So n is an
∈-minimal element. If X ∩ n ̸= ∅, X ∩ n ⊆ n has an ∈-minimal element. It is an ∈-minimal element in X.

9. If X is inductive then so is {x ∈ X | x = ∅∨ x = y ∪ {y} for some y}. Hence each n ̸= ∅ is m+ 1 for some m.

Solution: Let E = {x ∈ X | x = ∅ ∨ x = y ∪ {y} for some y}. Suppose an nonempty set x ∈ E. Then
x ∪ {x} = y ∪ {y} for y = x. Thus x ∪ {x} ∈ E. So the above set is inductive.

Since N ⊆ {x ∈ N | x = ∅ ∨ x = y ∪ {y} for some y}, each n ̸= 0 is m+ 1 for some m.

10. (Induction) Let A be a subset of N such that 0 ∈ A, and if n ∈ A then n+ 1 ∈ A. Then A = N .

Solution: By definition, A is inductive. So N is a subset of A. But A ⊆ N naturally. Hence A = N .
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