Solutions for Assignment $# 1$

October 15, 2024

1. Using only $\hat{\in}$ and $\hat{=}$ to express the following formulas:

- (a) $z \triangleq ((x, y), (u, v))$
- (b) $\forall x \left[\neg (x \triangleq \varnothing) \rightarrow (\exists y \in x)(x \cap y \triangleq \varnothing) \right]$
- (c) $\forall u[\forall x \exists y(x, y) \in u \rightarrow \exists f \forall x(x, f(x)) \in u]$

SOLUTION:

(a) Note that $(x, y) = \{\{x\}, \{x, y\}\}\$. The formula $z = (x, y)$ can be expressed as:

$$
\varphi(z, x, y) \equiv \forall u (u \in z \leftrightarrow \forall v (v \in u \leftrightarrow v \Rightarrow x) \lor \forall v (v \in u \leftrightarrow v \Rightarrow x \lor v \Rightarrow y))
$$

So $z \triangleq ((x, y), (u, v))$ can be expressed as:

$$
\exists z_1 \exists z_2 (\varphi(z_1, x, y) \land \varphi(z_2, u, v) \land \varphi(z, z_1, z_2))
$$

(b) Note that $x \cap y \triangleq \emptyset$ iff $\neg \exists z (z \in y \land z \in x)$, $\exists y \in x$ means $\exists y (y \in x)$. This formula can be expressed as:

$$
\forall x (\exists v (v \in x) \rightarrow \exists y (y \in x \land \neg \exists u (u \in x \land u \in y))
$$

(c) Note that function f is a binary relation and $(\forall (x, y), (x, z) \in f)(y \hat{=} z)$. "f is a binary relation" can be expressed as:

$$
\varphi_1(f) \equiv \forall z (z \in f \leftrightarrow \exists x \exists y \varphi(z, x, y))
$$

 $\varphi(z, x, y)$ means $z \hat{=} (x, y)$ defined in (a). "f is a function" can be expressed as:

$$
\varphi_2(f) \equiv \varphi_1(f) \land \forall x \forall y \forall z \exists u \exists v (\varphi(x, y, u) \land \varphi(x, z, v) \land (u \in f \land v \in f \to y \stackrel{\sim}{=} z))
$$

So the formula $\forall u[\forall x \exists y(x, y) \in u \rightarrow \exists f \forall x(x, f(x)) \in u]$ can be expressed as:

$$
\forall u(\forall x \exists y \exists z (\varphi(z, x, y) \land z \in u) \rightarrow \exists f(\varphi_2(f) \land \forall x \exists y \exists z (\varphi(z, x, y) \land z \in f \land z \in u)))
$$

2. Suppose that R, S are two relations. Show that R_{-1} and $S \circ R$ exist.

SOLUTION: Since $\text{dom}(R)$ and $\text{ran}(R)$ are two sets, so are $\text{ran}(R) \times \text{dom}(R)$. By Comprehension Schema,

$$
R_{-1} = \{(u, v) \in \text{ran}(R) \times \text{dom}(R) \mid (v, u) \in R\}
$$

exists. $R_{-1} \subset \mathcal{P}(\mathcal{P}(\bigcup \bigcup R))$ with Comprehension also shows R_{-1} is a set.

Since dom(R) and ran(S) are two sets, so does dom(R) \times ran(S). By Comprehension Schema,

$$
S \circ R = \{(u, v) \in \text{dom}(R) \times \text{ran}(S) \mid \exists w((u, w) \in R \land (w, v) \in S)\}\
$$

exists. $S \circ R \subset \mathcal{P}(\mathcal{P}(\bigcup \bigcup (R \cup S)))$ with Comprehension also shows $S \circ R$ is a set.

3. There is no set X such that $\mathscr{P}(X) \subseteq X$.

SOLUTION: Suppose NOT. There exists a set X s.t. $\mathscr{P}(X) \subseteq X$.

- Method I We have $X \in X \in X \cdots$, since X is a subset of itself $X \in \mathscr{P}(X) \subseteq X$. But it contradicts Regularity/Well-foundedness axioms.
- Method II Let $W = \{x \in X \mid x \notin x\}$. $W \subset X$, thus $W \in \mathscr{P}(X) \subseteq X$. But $W \in W \leftrightarrow W \notin W$. Contradiction!

Let $N = \bigcap \{X \mid X$ is inductive}. N is the smallest inductive set. Let us use the following notation:

$$
0 = \emptyset, \quad 1 = \{0\}, \quad 2 = \{0, 1\}, \quad 3 = \{0, 1, 2\}
$$

If $n \in N$, let $n + 1 = n \cup \{n\}$. And for $n, m \in N$,

 $n < m \leftrightarrow n \in m$

A set T is transitive if $x \in T$ implies $x \subseteq T$.

4. If X is inductive, then the set

$$
\{x \in X \mid x \subseteq X\}
$$

is inductive. Hence N is transitive, and for each $n, n = \{m \in N \mid m < n\}$.

SOLUTION: Let $E = \{x \in X \mid x \subseteq X\}.$

- (a) It is clear that $\emptyset \in X(X)$ is inductive) and $\emptyset \subseteq X$ (trivial). So \emptyset belongs to E.
- (b) For all $x \in E$, $x \cup \{x\} \in X$ because x is an element of X and X is inductive. Since both x and $\{x\}$ are subsets of X, we have $x \cup \{x\} \subseteq X$. Hence $x \cup \{x\} \in E$.

According to (a) and (b), $\{x \in X \mid x \subseteq X\}$ is inductive.

Let $E_0 = \{x \in N \mid x \subseteq N\} \subseteq N$. But E_0 is inductive, so N is a subset of E_0 . That means $\{x \in N \mid x \subseteq N\}$ N } = N, thus N is transitive.

It is obvious that $\{m \in N \mid m < n\} = \{m \in N \mid m \in n\} \subseteq n$. On the other hand, since $n \in N$ and N is transitive, we have $n \subseteq N$. Then $m \in n \to m \in N$ which equals $n \subseteq \{m \in N \mid m < n\}$. Hence $n = \{m \in N \mid m < n\}.$

5. If X is inductive, then the set

$$
{x \in X \mid x \text{ is transitive}}
$$

is inductive. Hence every $n \in N$ is transitive.

SOLUTION: Let $E = \{x \in X \mid x \text{ is transitive}\}.$

- (a) $\varnothing \in E$ since \varnothing is transitive.
- (b) For all $x \in X$, x is transitive. Our goal is to show that $x \cup \{x\}$ is transitive, too. For all $y \in x \cup \{x\}$, no matter wether $y \in x$ or $y \in \{x\}$, we have $y \subset x \cup \{x\}$. Thus $x \cup \{x\}$ is transitive.

According to (a) and (b), $\{x \in X \mid x \text{ is transitive}\}\$ is inductive.

Since N is the smallest inductive set, $N \subseteq \{x \in N \mid x \text{ is transitive}\}\.$ Thus every element n of N is transitive.

6. If X is inductive, then the set

 ${x \in X \mid x \text{ is transitive and } x \notin x}$

is inductive. Hence $n \notin n$ and $n \neq n + 1$ for each $n \in N$.

SOLUTION: According to the conclusion above, it is sufficient to prove that $x \cup \{x\} \notin x \cup \{x\}$ if x is transitive and $x \notin x$. Suppose NOT, we have $x \cup \{x\} \in x$ or $x \cup \{x\} \in \{x\}$. Both of them lead to $x \cup \{x\} \subseteq x$ (x is transitive). But

$$
x \cup \{x\} \subseteq x \to \{x\} \subseteq x \to x \in x
$$

It is a contradiction.

Since N is the smallest inductive set, $N \subseteq \{x \in X \mid x \text{ is transitive and } x \notin x\}$. Thus $n \notin n$. $n+1 = n \cup \{n\}$ by definition. Since there is n s.t. $n \notin n$ but $n \in n + 1$, we have $n \neq n + 1$.

7. If X is inductive, then the set $\{x \in X \mid x \text{ is transitive and every nonempty } z \subseteq x \text{ has an } \in \text{-minimal element}\}\$ is inductive. (t is \in -minimal in z if there is no $s \in z$ such that $s \in t$.)

SOLUTION: It is sufficient to show that every nonempty $z \subseteq x \cup \{x\}$ has an \in -minimal element if x belongs to the above set. For any nonempty $z \subseteq x \cup \{x\}$, Suppose $z = \{x\}$, x is the \in -minimal element in z (Otherwise $x \in x$, but then $\{x\}$, as a nonempty subset of x, has no \in -minimal element). Otherwise, $z \subseteq x$, there would exist a $y \in z \setminus \{x\} \subseteq x$ is a ∈-minimal element in $z \setminus \{x\}$. Meanwhile, $x \notin y$ (Otherwise $x \in y \in x \to x \in x$, since x is transitive). That implies y is an \in -minimal element in z.

8. Every nonempty $X \subseteq N$ has an \in -minimal element.

SOLUTION: Since N is the smallest inductive set, $N \subseteq \{x \in N \mid x \text{ is transitive and every nonempty } z \subseteq$ x has an \in -minimal element}. For all $X \subseteq N$, pick $n \in X$. If $X \cap n = \emptyset$, $(\forall m \leq n)(m \notin X)$. So n is an ∈-minimal element. If $X \cap n \neq \emptyset$, $X \cap n \subseteq n$ has an ∈-minimal element. It is an ∈-minimal element in X.

9. If X is inductive then so is $\{x \in X \mid x = \emptyset \vee x = y \cup \{y\} \text{ for some } y\}$. Hence each $n \neq \emptyset$ is $m + 1$ for some m.

SOLUTION: Let $E = \{x \in X \mid x = \emptyset \vee x = y \cup \{y\} \text{ for some } y\}$. Suppose an nonempty set $x \in E$. Then $x \cup \{x\} = y \cup \{y\}$ for $y = x$. Thus $x \cup \{x\} \in E$. So the above set is inductive.

Since $N \subseteq \{x \in N \mid x = \emptyset \vee x = y \cup \{y\} \}$ for some $y\}$, each $n \neq 0$ is $m + 1$ for some m.

10. (Induction) Let A be a subset of N such that $0 \in A$, and if $n \in A$ then $n + 1 \in A$. Then $A = N$.

SOLUTION: By definition, A is inductive. So N is a subset of A. But $A \subseteq N$ naturally. Hence $A = N$.