Solution for Assignment #4.4

November 21, 2024

Write A - B for $A \setminus B$ when $A \supseteq B$.

EXERCISE 1. Suppose that $A \subseteq \omega^{\omega}$ has the property of Baire. Show that A is nonneager iff there is a non-empty open set $O \subseteq \omega^{\omega}$ such that $O \setminus A$ is meager.

<u>SOLUTION</u>. By the definition of Bair property, there is an open set O such that $O \triangle A$ is meager. If A is nonmeager, then $\emptyset \triangle A = A$ is nonmeager, so O must be non-empty.

On the other hand, if there is a non-empty open set $O \subseteq \omega^{\omega}$ such that $O \setminus A$ is meager. By Baire Category Theorem, every non-empty open set in \mathcal{N} is nonmeager, so $O = O \triangle A \cup A$ is nonmeager, thus A is nonmeager. \Box

EXERCISE 2. Show that for any $A \subseteq \omega^{\omega}$, $C_A - A$ contains no nonneager set, where C_A is defined as follow.

 $C_A = \{ O_s \mid O_s - A \text{ is meager} \}$

<u>SOLUTION</u>. Note that $C_A - A = \bigcup_{O_s \in C_A} (O_s - A)$ is a countable union of meager sets (since there are only countably many s's), then is a countable union of nowhere dense sets, is also meager. Also note that any subset of a meager set is meager. So $C_A - A$ contains no nonmeager set.

EXERCISE 3. Show that $2^{\omega} - \operatorname{ran}(\pi)$ is countable, where π is the embedding defined as follow.

 $\pi(x) = s_{x(0)} \frown s_{x(1)} \frown s_{x(2)} \frown \cdots$

where $s_{x(k)}$ is the 01-sequence with x(k) many 1's in the front and one 0 in the back for even k, and x(k) many 0's in the front and one 1 in the back.

SOLUTION. Note that $2^{\omega} - \operatorname{ran}(\pi)$ only consists of sequence with only finitely many 0's or finitely many 1's, which is clearly countable.

EXERCISE 4. Assume AD. Then $AC_{\omega}(\omega^{\omega})$, i.e. every countable set consisting of non-empty sets of reals has a choice function. Consequently, ω_1 is regular.

<u>SOLUTION</u>. Suppose that X_0, X_1, \cdots are non-empty subsets of ω^{ω} . Define operations on ω^{ω} as follows.

$$a \oplus b = \langle a(0), b(0), a(1), b(1), \cdots \rangle$$

$$\pi_0(a) = \langle a(0), a(2), a(4), \cdots \rangle$$

$$\pi_1(a) = \langle a(1), a(3), a(5), \cdots \rangle$$

Define sets

$$Y_n = \{ a \oplus b \mid a \in O_{\langle n \rangle} \land b \in X_n \}$$

and

$$Y = \bigcup_{n < \omega} Y_n = \left\{ a \oplus b \mid b \in X_{a(0)} \right\}.$$

By AD, game G(Y) has a winning strategy τ for someone. Clearly player II wins the game G(Y), since once player I plays a(0), player II just need to choose some $b \in X_{a(0)}$. Then $f(X_n) = \pi_1(\tau * \langle n, 0, 0, \cdots \rangle)$