Solution for Assignment #4.3

November 21, 2024

Write $A - B$ for $A \setminus B$ when $A \supseteq B$.

EXERCISE 1. $F \subseteq \mathcal{N}$ *is closed iff* $F = [T]$ *for some tree* $T \subseteq \omega^{\lt \omega}$.

SOLUTION. \Rightarrow . Suppose that $F \subseteq \mathcal{N}$ is closed. Let tree $T \subseteq \omega^{\leq \omega}$ be the set $\{f \mid n \mid f \in F \land n \in \omega\}$. Clearly every $f \in F$ is a path through *T*, and hence $F \subseteq [T]$. On the other hand, since *F* is closed, if $g \notin F$, then there is an $s \in \omega^{\leq \omega}$ such that $s \sqsubset g$, but $s \not\sqsubset f$ for all $f \in F$. So such an s is not in T and g is not a path through *T*. Thus $F = [T]$.

⇐. Note that

$$
[T] = \{ f \mid \forall n (f \mid n \in T) \}
$$

= $\mathcal{N} - \{ f \mid \exists n (f \mid n \notin T) \}$
= $\mathcal{N} - \{ f \mid \exists s \notin T (s \sqsubset f) \}$
= $\mathcal{N} - (\bigcup_{s \notin T} O_s)$

is clearly closed.

EXERCISE 2. If *f* is an isolated point of a closed set $F \subseteq \mathcal{N}$, then there is $n \in \omega$ such that $\forall g \in F$ (*f* \neq $g \to f \upharpoonright n \neq g \upharpoonright n$.

SOLUTION. Suppose that *f* is an isolated point of a closed set $F \subseteq \mathcal{N}$, then there is $s \in \omega^{\leq \omega}$ such that $O_s \cap F = \{f\}$. Then $n = |s|$ is as required.

A tree $T \subseteq \omega^{\leq \omega}$ is perfect iff for every $t \in T$, there exists $s_1, s_2 \in T$ such that $t \sqsubset s_1$ and $t \sqsubset s_2$, but *s*1*, s*² are incomparable.

EXERCISE 3. *A closed set* $F \subseteq \mathcal{N}$ *is perfect iff*

$$
T_F = \{ f \mid n \mid f \in F \land n < \omega \}
$$

is a perfect tree.

SOLUTION. \Rightarrow Suppose that T_F is not a perfect tree, i.e., there is an $t = f \restriction n \in T_F$, such that if $s_1, s_2 \in T_F$ are extensions of *t*, then s_1, s_2 are comparable. Then such s_i can only be the initial segment of *f*, and $O_t \cap T_F = \{f\}$. Hence *f* is an isolated point of *F*.

⇐. Suppose that *F* is not perfect, i.e., there is an isolated point *f ∈ F*. By previous exercise, there is $n \in \omega$ such that $\forall g \in F$ $(f \neq g \rightarrow f \upharpoonright n \neq g \upharpoonright n)$. Then $t = f \upharpoonright n \in T_F$ witnesses that T_F is not a perfect tree. \Box

EXERCISE 4. *Show that* $\bigcup_{\alpha<\omega_1}\sum_{\alpha}^0$ *is the collection of all Borel sets.*

 \Box

<u>SOLUTION</u>. We first show that every Σ^0_α set is Borel by induction. Cleary every set in Σ^0_1 is open and Borel. Suppose that every Σ^0_β set is Borel for every $\beta < \alpha$. Then by complement operation, every Π^0_β **Borel.** Suppose that every Δ_{β} set is Borel for every $\beta \leq a$. Then by complement operation, every π_{β} set is Borel.

Now it suffices to show that $\bigcup_{\alpha<\omega_1}\Sigma_\alpha^0$ is a *σ*-algebra. For every Σ_α^0 set $X, X^c \in \Pi_\alpha^0 \subseteq \Sigma_{\alpha+1}^0$. Suppose that X_0, X_1, \dots are sets in $\Sigma_{\alpha_0}^0, \Sigma_{\alpha_1}^0, \dots$. Let $\alpha = \sup \{ \alpha_i \mid i < \omega \}$. By AC, ω_1 is regular and so $\alpha < \omega$. Thus $\bigcup_{i < \omega} X_i \in \Pi_{\alpha}^0 \subseteq \Sigma_{\alpha+1}^0$. Hence $\bigcup_{\alpha < \omega_1} \Sigma_{\alpha}^0$ is closed under complement and countable intersection. \Box

Write F_{σ} set for Σ_2^0 set (countable union of closed sets), and G_{δ} set for Π_2^0 set (countable intersection of open sets).

Exercise 5. *Show that the collection of Lebesgue measurable sets (of reals) forms a σ-algebra.*

SOLUTION. Complement. Suppose that *A* is Lebesgue measurable. Then there are F_{σ} set *F* and G_{δ} set G such that $F \subseteq A \subseteq G$ and $\mu^*(G - F) = 0$. Note that $G^c \subseteq A^c \subseteq F^c$, $G^c \in F_{\sigma}$, $F^c \in G_{\delta}$, and $\mu^*(F^c - G^c) = \mu^*(F - G) = 0$. So A^c is also Lebesgue measurable.

Countable union. Suppose that for $i = 0, 1, \dots, F_i \in F_\sigma, G_i \in G_\delta, F_i \subseteq A_i \subseteq G_i, \mu^*(F_i - G_i) = 0.$ Fix *i*. Assume that $G_i = \bigcap_{j < \omega} X_{ij}$ where all X_{ij} 's are open. Without loss of generity, we may assume that $X_{i0} \supseteq X_{i1} \supseteq \cdots \supseteq G_i$. And by $\mu^*(G_i - F_i) = 0$, we may further assume that $\mu^*(X_{ij} - F_i) \leq 2^{-ij}$. Let $H_j = \bigcup_{i < \omega} X_{ij}$ be a Σ_1^0 set, and $F = \bigcup_{i < \omega} F_i$ be a F_{σ} set. Then $H_j \supseteq \bigcup_{i < \omega} G_i$ and

$$
\mu^*(H_j - F) = \mu^* \left(\bigcup_{i < \omega} (X_{ij} - F_i) \right) \leq 2^{-j}.
$$

Let $H = \bigcap_{j < \omega} H_j$ be a G_{δ} set. Then $F \subseteq \bigcup_{i < \omega} A_i \subseteq H$, $\mu^*(H - F) = \lim_{j < \omega} \mu^*(H_j - F) = 0$. \Box

Exercise 6. *Show that the collection of sets (of reals) having the property of Baire forms a σ-algebra.*

SOLUTION. Complement. Note that if *G* is open, then $\overline{G}-G$ is nowhere dense. So if $A \triangle G$ is meager, then $A^c \triangle \bar{G}^c \subseteq (A \triangle G) \cup (\bar{G} - G)$ is meager. Thus *A* has property of Baire implies A^c has property of Baire.

Countable union. Suppose that $A_i \triangle G_i = \bigcup_{j < \omega} B_{ij}$ is meager, G_i is open, and B_{ij} is nowhere dense. Then

$$
\left(\bigcup_{i<\omega}A_i\right)\triangle\left(\bigcup_{i<\omega}G_i\right)\subseteq\bigcup_{i<\omega}(A_i\triangle G_i)=\bigcup_{i<\omega}\bigcup_{j<\omega}B_{ij}.
$$

Note that subset of nowhere dense set is also nowhere dense, and subset of meager set is also meager. Then $(\bigcup_{i<\omega} A_i) \bigtriangleup (\bigcup_{i<\omega} G_i)$ is meager and $\bigcup_{i<\omega} A_i$ has the property of Baire. \Box