
Solutions for Assignment # 4.2

November 21, 2024

1. Prove proposition 5. Let T be a tree.

(a) If s, t, u ∈ T , then Rstu = {δst, δtu, δsu} has ≤ 2 elements, and p, q ∈ Rstu → p ⊂ q ∨ q ⊂ p.
(b) ≺ is a linear ordering of T which extends v.
(c) For every t ∈ T , T t = {s ∈ T | t v s} is an interval in (T,≺).

Solution:

(a) It is to easy to prove that δst is an initial segment of (·, s)T . Fix x ∈ δst, for any x′ < x, x′ < s and x′ < t
(< is a partial order), i.e x′ ∈ δst.
Without losing generality, suppose nst ≤ ntu ≤ nsu. Since δst, δtu are both initial segments of well-ordered
set (·, t)T . So δst ⊂ δtu. Similar, we have δst ⊂ δtu ⊂ δsu. Then δst = δst ∩ δsu = (·, s)T ∩ (·, t)T ∩ (·, u)T =
δtu ∩ δsu = δtu. Hence Rstu = {δtu, δsu} and δtu ⊂ δsu.

(b) i. (irreflective) Suppose s ≺ t. if s v t, obviously t ⊀ s. Otherwise, s 6v t∧ t 6v s∧ s(nst) <X t(nst), t ⊀ s
since X is linear ordered.

ii. (transitive) Suppose s ≺ t ∧ t ≺ u. It is easier when s v t or t v u. Now prove the other case. If
nst < ntu, then nsu = nst(see the proof of (a)), s(nsu) = s(nst) <X t(nst) = u(nst) = u(nsu). If
ntu < nst, then nsu = ntu, similar, s(nsu) <X u(nsu). If ntu = nst, then ntu = nst = nsu, since X is
linear ordered, s(nsu) <X u(nsu)

iii. (trichotomous) Suppose s 6= t. There are exactly four cases s v t, t v s, s 6v t∧t 6v s∧s(nst) <X t(nst),
s 6v t ∧ t 6v s ∧ t(nst) <X s(nst)

(c) It suffices to prove that s1 ≺ s ≺ s2, t v s1 ∧ t v s2 implies t v s. By definition, t v s ⇒ t ∈ (·, s)T . So
we have t ∈ δs1s2 . Suppose t 6∈ (·, s)T . Then δs1s 6= δs1s2 ∧ δs2s 6= δs1s2 . By (a), δs1s = δs2s ⊊ δs1s2 . So
s2(ns2s) = s1(ns1s) < s(ns1s) = s(ns2s) (contradiction!).

2. Prove Proposition 6. Let T,BT be as above.

(a) ≺ is a linear ordering of T ∪BT .
(b) For every t ∈ T , Bt = {f ∈ T ∪BT | t ∈ f} is an interval in (T ∪BT ,≺).

Solution: Consider (T ∪BT ,v∗), where v∗=v ∪{(t, f) | t ∈ T ∧f ∈ BT ∧ t ∈ f}. If t ∈ T , (·, t)T∪BT
= (·, t)T

is well-ordered. If t ∈ BT , (·, t)T∪BT
= {s ∈ T | s ∈ t} = t is also well-ordered. From this we can say (T ∪BT ,v∗)

is a tree.

(a) By 2(b), we can define ≺∗ as a linear ordering of the tree T ∪ BT which extends v∗. Notice that for
f, g ∈ T ∪BT , f v g ⇒ f(nfg) = ∅ ≤X gnfg. So ≺=≺∗ is a linear ordering of T ∪BT .

(b) By 2(c), (T ∪BT )
t = {s ∈ T ∪BT | t v∗ s} is an interval in (T ∪BT ,≺). So Bt = (T ∪BT )

t is an interval
in (T ∪BT ,≺).

3. If X is a Suslin line, then X2 is not c.c.c.

Solution: We make the interval by recursion on α.
First, pick a0 < b0 < c0 and make the first interval (a0, b0)× (b0, c0).
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For α < ω1, having constructed (aβ , bβ) × (bβ , cβ) for any β < α, since {bβ | β < α} ∈ X is countable, it
can’t be dense in X. So there is aα < cα s.t {bβ | β < α} ∩ (aα < cα) = ∅. We can choose bα ∈ (aα, cα) since
X is dense. It is obvious that (aα, bα)× (bα, cα) ∩ (aβ , bβ)× (bβ , cβ) = ∅ for any β < α.

Thus, we get M = {(aα, bα) × (bα, cα) | α < ω1} is a pairwise-disjoint collection of open intervals of X2,
but |M | = ω1 > ω.

4. Ch4: 8. If P is a perfect set and (a, b) is an open interval such that P ∩ (a, b) 6= ∅, then |P ∩ (a, b)| = c.

Solution: Obviously, |P ∩ (a, b)| ≤ c since it is a subset of R.
Choose x0 ∈ P ∩ (a, b), if [x0, b) ⊂ P or (a, x0] ⊂ P , we can easily get |P ∩ (a, b)| ≥ c. Now, suppose that

[x0, b) ⊈ P and (a, x0] ⊈ P . Pick a1 ∈ (a, x0] − P and b1 ∈ [x0, b) − P , Then P ∩ [a1, b1] is a perfect. Since
P∩[a1, b1] is a nonempty closed set, it suffices to prove the set has no isolated point. But P∩[a1, b1] = P∩(a1, b1).
For any x ∈ P ∩ (a1, b1) and any open neighborhood I of x, (P ∩ (a1, b1))∩I−{x} = P ∩ ((a1, b1)∩I)−{x} 6= ∅,
since x is a limit point of P . This means that P ∩ [a1, b1] is a perfect set. Thus |P ∩ (a, b)| ≥ |P ∩ [a1, b1]| = c.

5. Ch4: 9. If P2 ⊈ P1 are perfect sets, then |P2 − P1| = c.

Solution: Pick x ∈ P2 − P1. Since P1 is closed, there exists δ > 0 such that B(x, δ) ⊂ P c
1 . By exercise 4,

|P2 ∩B(x, δ)| = c. Then P2 ∩B(x, δ) ⊂ P2 − P1 ⊂ R, so |P2 − P1| = c.

6. Ch4: 10. If A is a set of reals, a real number a is called a condensation point of A if every neighborhood of a
contains uncountably many elements of A. Let A∗ denote the set of all condensation points of A.

If P is perfect then P = P ∗.

Solution: For any x ∈ P and δ > 0, B(x, δ)∩P 6= ∅. Using the conclusion of exercise 4, |B(x, δ)∩P | = c > ℵ0,
i.e x ∈ P ∗.

On the other hand, P ′ = {x ∈ R | ∀δ > 0(B(x, δ) ∩ P − {x} 6= ∅)}. Clearly P ∗ ⊂ P ′. But because P is
closed, we have P ′ ⊂ P . Thus P ∗ ⊂ P .

So P = P ∗ holds.

7. Ch4: 11. If F is closed and P ⊂ F is perfect, then P ⊂ F ∗.

Solution: We have prove that P = P ∗ in the above exercise, so it is sufficient to show that P ∗ ⊂ F ∗. For
any x ∈ P ∗, by definition, ∀δ > 0, |B(x, δ) ∩ P | > ℵ0. Then |B(x, δ) ∩ F | ≥ |B(x, δ) ∩ P | > ℵ0, which implies
that x ∈ F ∗.

8. Ch4: 12. If F is an uncountable closed set and P is the perfect set constructed in Theorem 4.6, then F ∗ ⊂ P ,
thus F ∗ = P .

Solution: For any x ∈ F ∗ and δ > 0, |B(x, δ) ∩ F | > ℵ0. By theorem 4.6, F = P ∪ S, where P is a perfect
set and S is at most countable.

B(x, δ) ∩ F = (B(x, δ) ∩ P ) ∪ (B(x, δ) ∩ S)

|B(x, δ) ∩ P | must be larger than ℵ0. Otherwise, both of B(x, δ) ∩ P and B(x, δ) ∩ S are at most countable,
which leads to that B(x, δ) ∩ F is at most countable (contradiction). So we get x ∈ P ∗ = P . Thus F ∗ ⊂ P .

On the other hand, we have proved P ⊂ F ∗ in exercise 7. So F ∗ = P .

9. Ch4: 13. If F is an uncountable closed set, then F = F ∗ ∪ (F − F ∗) is the unique partition of F into a perfect
set and an at most countable set.

Solution: In the above exercise, we have proved that F = F ∗ ∪ (F − F ∗) is a partition required. Here we
prove the uniqueness. Suppose F = P1 ∪ S1 = P2 ∪ S2 are two partitions. If P1 6= P2, without lost of generality,
assume P2 ⊈ P1. By exercise 5, |P2 − P1| = c. But |P2 − P1| = |S1 − S2| ≤ ℵ0, which is a contradiction. So the
partition is unique.
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10. Ch4: 15. If B is Borel and f is a continuous function then f−1(B) is Borel.

Solution: For each α < ω1,

Σ0
1 = the collection of all open sets

Π0
1 = the collection of all closed sets

Σ0
α = {

∪
Bn | each Bn ∈ Π0

β some β < α}
Π0

α = {Ac | A ∈ Σ0
α}

Then ∪
α<ω1

Σ0
α =

∪
α<ω1

Π0
α = B

Now we prove by induction that each Σ0
α is closed under inverse image by continuous function.

Σ0
1 holds the property by the definition of continuous function.

For any A ∈ Σ0
α,

A =
∪
Bn =

∪
Ac

n

where each Bn ∈ Π0
βn

, An ∈ Σ0
βn

for some βn < α. f−1(A) = f−1(
∪

Ac
n) =

∪
f−1(A

c
n) =

∪
f−1(An)

c. By
induction, each f−1(An) ∈ Σ0

βn
. Thus f−1(A) ∈ Σ0

α.
So B is closed under inverse image by continuous function, i.e if B is Borel and f is a continuous function

then f−1(B) is Borel.

11. Ch4: 18. The tree TF has no maximal note, i.e, s ∈ T such that there is no t ∈ T with s ⊂ t. The map F 7→ TF

is a one-to-one correspondence between closed sets in N and sequential tree without maximal nodes.

Solution:
TF = {s ∈ Seq : s ⊂ f for some f ∈ F}

For any s ∈ T , there exists an f in F such that s ⊂ f , i.e s = f ↾ n for some n < ω. Let t = f ↾ (n + 1),
thus we have s ∈ t and s ⊂ t.

It suffices to prove that the map F 7→ TF is one-to-one. It is easy to verify that [TF ] = F : If f ∈ N is such
that f ↾ n ∈ TF for all n ∈ N, then for each n, there is some g ∈ F such that g ↾ n = f ↾ n; and since F is closed,
it follows that f ∈ F . Let F1, F2 be closed sets in N . If F1 6= F2, say g ∈ F1 − F2, then for all n, g ↾ n ∈ TF1

(by definition of TF1
), but g ↾ m /∈ TF2

for some m (since F2 is closed), TF1
6= TF2

.
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