Solutions for Assignment # 4.2

November 21, 2024

1. Prove proposition 5. Let T be a tree.

(a) If s,t,u € T, then Ryt = {Jst, Otu, 05} has < 2 elements, and p,q € Rty > p C gV g C p.
(b) < is a linear ordering of T which extends C.
(c) Foreveryt € T, T" = {s € T |t C s} is an interval in (T, <).

SOLUTION:

(a) Tt is to easy to prove that dy; is an initial segment of (-, s)r. Fix @ € 0, for any o’ < z, 2’ < sand 2’ <t
(< is a partial order), i.e 2’ € dq.

Without losing generality, suppose ng < Mgy < Mgy Since dg¢, 04, are both initial segments of well-ordered
set (-, t)7. S0 dst C Oy. Similar, we have ds¢ C 9z C sy Then bt = 5t N sy = (L, 8)r N ()T N (L u)r =
Otu N sy = Oy Hence Rgpy = {0tw, 050} and gy C sy
(b) i. (irreflective) Suppose s < t. if s C ¢, obviously t £ s. Otherwise, s Z t At Z s As(ng) <x t(ns), t £ s
since X is linear ordered.

ii. (transitive) Suppose s < t At < u. It is easier when s C ¢ or t C u. Now prove the other case. If
Nt < Ny, then ng, = ng(see the proof of (a)), s(nsu) = s(nst) <x t(nst) = u(ng) = u(ng,). If
Ny < Mg, then ng, = Ny, similar, s(ng,) <x w(ngy). If Ny = ngt, then ngy, = ng = Ny, since X is
linear ordered, s(ngs,) <x u(ngy)

iii. (trichotomous) Suppose s # t. There are exactly four cases s C ¢, t T s, s L tAt L sAs(ng) <x t(nst),
SZEALEZL sAt(ng) <x s(nst)
(c) It suffices to prove that s; < s < s, t C s1 At C sy implies t C s. By definition, t C s = t € (-, 8)r. So
we have t € 0s,5,. Suppose t & (-, 8)7. Then 5,5 # 05,55 A Osys 7 Os155- BY (2), 05,5 = 0505 S sy5,- S0
S2(Nsys) = 51(Nsys) < $(Ngys) = S(Nsys) (contradiction!).

2. Prove Proposition 6. Let T, Br be as above.

(a) < is a linear ordering of T'U Br.
(b) Foreveryt €T, By={f € TUByp |t € f}isan interval in (T'U By, <).

SoLuTION:  Consider (T'U By, C*), where C*=C U{(t, f) |t e TAf € BrAte f}. IfteT, (-, t)rup, = (07
is well-ordered. If t € By, (-,t)rup, = {s € T' | s € t} = t is also well-ordered. From this we can say (I"UBr, C*)
is a tree.

(a) By 2(b), we can define <* as a linear ordering of the tree T'U Br which extends C*. Notice that for
f,9€TUBr, fCg= f(ngg) =@ <x gnsg. So <==<*is a linear ordering of T'U Br.

(b) By 2(c), (TUBr)! ={s € TUBy |t C* s} is an interval in (T'U Br, <). So B; = (T'U Br)! is an interval
in (T'U Brp, <).

3. If X is a Suslin line, then X? is not c.c.c.

SoLUTION: We make the interval by recursion on «.

First, pick ap < by < ¢p and make the first interval (ag, bg) X (bg, co)-



For o < w1, having constructed (ag, bg) x (bg,cg) for any 8 < «, since {bg | 8 < a} € X is countable, it
can’t be dense in X. So there is an < ¢ 8.t {bg | f < a} N (aq < ca) = &. We can choose b, € (aq,cq) since
X is dense. It is obvious that (aa,ba) X (ba,ca) N (ag,bg) x (bs,cg) = @ for any § < «a.

Thus, we get M = {(aa,ba) X (ba,Ca) | @ < w1} is a pairwise-disjoint collection of open intervals of X2,
but |[M| =w; > w.

. Ch4: 8. If P is a perfect set and (a,b) is an open interval such that P N (a,b) # &, then |P N (a,b)| = c.

SOLUTION:  Obviously, |P N (a,b)| < ¢ since it is a subset of R.

Choose 2o € PN (a,b), if [x9,b) C P or (a,z0] C P, we can easily get |P N (a,b)| > ¢. Now, suppose that
[20,b) € P and (a,z0] € P. Pick a1 € (a,x0) — P and by € [z9,b) — P, Then P N [ay,b:1] is a perfect. Since
PNla1, b1] is a nonempty closed set, it suffices to prove the set has no isolated point. But PN[az,b1] = PN(a1,b1).
For any x € PN (a1, b1) and any open neighborhood I of z, (PN (a1,b1))NI—{z} = PN((a1,b1)NI)—{z} # 2,
since x is a limit point of P. This means that P N [a1,b1] is a perfect set. Thus |P N (a,d)| > |P N[a1,b1]] = ¢

. Ch4: 9. It P, ¢ Py are perfect sets, then |P, — Pi| = c.

SoLUTION: Pick x € P, — P;. Since P; is closed, there exists § > 0 such that B(z,d) C Pf. By exercise 4,
‘PQﬂB(Q?,é)‘ = c¢. Then PQQB(.’L',(S) cP,— P, CR, so ‘PQ—P1| =c.

. Ch4: 10. If A is a set of reals, a real number a is called a condensation point of A if every neighborhood of a
contains uncountably many elements of A. Let A* denote the set of all condensation points of A.

If P is perfect then P = P*.

SoLUTION: Forany x € Pand d > 0, B(x,0)NP # @. Using the conclusion of exercise 4, | B(x,0)NP| = ¢ > N,
iex € P*.

On the other hand, P = {z € R | V§ > 0(B(x,0) N P — {z} # @&)}. Clearly P* C P’. But because P is
closed, we have P’ C P. Thus P* C P.

So P = P* holds.

. Ch4: 11. If F is closed and P C F is perfect, then P C F™*.

SOLUTION: We have prove that P = P* in the above exercise, so it is sufficient to show that P* C F*. For
any x € P*, by definition, V§ > 0, |B(z,d) N P| > Rg. Then |B(z,d) N F| > |B(x,0) N P| > Ry, which implies
that z € F™*.

. Ch4: 12. If F is an uncountable closed set and P is the perfect set constructed in Theorem 4.6, then F* C P,
thus F* = P.

SoLuTioN: For any € F* and § > 0, |B(z,6) N F| > Ny. By theorem 4.6, F = P U S, where P is a perfect
set and S is at most countable.

B(z,0)NF = (B(z,0) N P)U (B(z,d)NS)
|B(z,d) N P| must be larger than Rg. Otherwise, both of B(z,d) N P and B(z,d§) N S are at most countable,

which leads to that B(x,d) N F is at most countable (contradiction). So we get « € P* = P. Thus F'* C P.
On the other hand, we have proved P C F™* in exercise 7. So F* = P.

. Ch4: 13. If F' is an uncountable closed set, then F' = F* U (F — F*) is the unique partition of F' into a perfect
set and an at most countable set.

SoLuTION: In the above exercise, we have proved that F' = F* U (F — F*) is a partition required. Here we
prove the uniqueness. Suppose F' = P; US; = P, U S; are two partitions. If P; # Ps, without lost of generality,
assume P, ¢ P;. By exercise 5, |P, — Pi| = ¢. But [P, — P1| = |S; — S2| < Ry, which is a contradiction. So the
partition is unique.



10.

11.

Ch4: 15. If B is Borel and f is a continuous function then f_;(B) is Borel.

SOLUTION: For each a < wq,

»? = the collection of all open sets
19 = the collection of all closed sets
Y0 ={UB, | each B, € ITj some § < a}
I, = {A° [ Ae x(}
Then
Ua<w1 E(C)Y = Ua<w1 Hg‘ = '@
Now we prove by induction that each £ is closed under inverse image by continuous function.
%9 holds the property by the definition of continuous function.
For any A € X9,
A=UB,=U4¢
where each B, € II}} , A, € £} for some 8, < a. f1(A) = f1(UAS) = Ufa(45) = Ufa(4n) By
induction, each f_1(Ay) € Z%n. Thus f_1(A) € %0.

So A is closed under inverse image by continuous function, i.e if B is Borel and f is a continuous function
then f_1(B) is Borel.

Ch4: 18. The tree Tr has no maximal note, i.e, s € T such that there is no t € T' with s C t. The map F — Tp
is a one-to-one correspondence between closed sets in N and sequential tree without maximal nodes.

SOLUTION:
Tr ={s€Seq:sC f for some f € F}

For any s € T, there exists an f in F such that s C f,ie s = f [ nfor some n <w. Let t = f [ (n+ 1),
thus we have s € t and s C ¢.

It suffices to prove that the map F +— T is one-to-one. It is easy to verify that [Tr] = F: If f € A is such
that f [ n € Tp for all n € N, then for each n, there is some g € F' such that g [ n = f | n; and since F' is closed,
it follows that f € F. Let Fy, Fy be closed sets in N. If Fy # Fs, say g € Fy — Fy, then for all n, g | n € Tx
(by definition of Tr, ), but g [ m ¢ Tr, for some m (since F is closed), Tr, # Tr,.



