Solutions for Assignment # 4.1

November 21, 2024

1. Define +¢q, -¢ and <¢ and verify that your definitions doesn’t depend on the choice of representatives.

SOLUTION: Define Q = Z x Z. /~, where (p,q) = (r,s) iff p-z s = q-zr. For rest of the solution, we write (a, b)
for equivalent class [(a,b)]~, and +, -, < for 4z, 'z, <z.

o Define (a,b) +q (¢,d) = (a-d+b-c,b-d). Suppose that (a1,b1) = (az,b2) and (c1,d1) ~ (c2,d2), then

(@1 -dy+by-c1,by-di) = ((a1-dy +by-c1) - ba-ca, (br-di) - ba - c2)
((ag -da 4+ b2 -cz) by -c1,(ba-dz) by-cp)
(ag - da + by - c3,bg - da).

%

o Define (a,b) -g (¢,d) = (a-¢,b-d). Suppose that (a1,b1) = (az,b2) and (c¢1,d1) = (c2,d2), then

(al'Cl,bz'dz)%(al'Cl'bz'dQ,Cl'drbz'dz)
= (ag-ca-by-di,by-dy-b1-dy)
~ (ag - c2,b3 - da).

o Define (a,b) <qg (¢,d) iff a-d < b-c. Suppose that (a1,b1) = (a2,b2) and (c1,d1) =~ (c2,dz), then

a1 -dy <by-ciea;-by-dy-do<cy-dg-by-bs
<:>a2~b1~d1~d2<62od1~b1~b2
& ag - dy < by - co.

2. Ch4: 1. The set of all continue functions f : R — R has cardinality ¢ (while the set of all functions has
cardinality 2°¢).
SOLUTION: Denote the set of all continue functions by ¢(R).
For any a € R, let g,(z) = a(Vz € R). Obviously, g, € ¢(R). Define
G: R — ¢R)
a —> gq
G is an injection, so |c(R)| > |R| = ¢
Q is countable, denoted by {r; | i <w}. Let
F: ¢(R) — “R
f L <f(7"0),f(7“1)7...>
F is injection. For any f # g € ¢(R), there exists € R, s.t f(x) # g(x). Since f and g are continue, there exists
an interval I, s.t f(y) # g(y)(Vy € I). But Q is dense in R, so f(r;) # g(r;) for some i < w, i.e F(f) # F(g).
From this, we can get
e(®)] < [°B| = [B]* = (2)° =2°% = 2 = ¢
Hence, |c¢(R)| = c.
The set of all functions on R is *R. |FR| = (2v)2" = 2+2" = 22" = 2¢,



3. Chy4: 2. There are at least ¢ countable order-types of linearly ordered sets.
SoLuTION: For every sequence a = (a, : n € N) of natural numbers, let
Ta:a0+§+a1 +§—|—a2+

where ¢ is the order-type of the integers.

If a # b, then 7, # 7. Suppose not, let ¢ : 7, — 7, be the isomorphism and i be the least s.t a; # b;. Since
¢ is order preserving, it must be that p(ag +{+a1+ &+ +ai1+&) =bo+E+b1+ &+ -+ bi—1+& (by
induction). Without lose of generality, suppose a; < b;. Let n; = ap+&+ a1 +&+---+a;—1 + &, and we identify
1; with ¢(n;). Then @[n; + a;] is an initial part of n; + b;. Suppose ¢ is the k-th element of b;. Let ¢* denote the
element such that

ordertype({d € 7, | d <p ¢*}) = n; + k.

Note that p~1(a}) > ¢, for any ¢ € n; + a;. Thus p~1(a}) € (n; + a;, +00). Then for any c € (n; + a;, o~ 1(a})],

1 K3
there is a d € (n; + a;,c). But this is not true on the 7, side — there is a least element in (1; + a;,a}]. This

contradicts to that ¢ is isomorphism.

The map a — 7, is a injection from “N into the set of order-types of linearly ordered sets. Hence

|[{order-types of linearly ordered sets}| > [“N| = w® =2“ = .

4. Chy4: 3. The set of all algebraic reals is countable.
SOLUTION: Since every algebraic real is one element of the finite roots of some polynomials in Z[z], and
|Z[x]| = |Z<%| is countable, there are only countably many algebraic reals.

5. Ch4: 4. If S is a countable set of reals, then |R — S| =¢.

SoLUTION: Let S* be a countable subset of R?. Let PS* = {z € R | Jy((x,y) € S*)}. Since PS* C R is
countable, there exists an zg € PS*. Then ({zo} x R) C ((R — PS*) x R) C (R? — S*). So |[R? — S*| > ¢. But
|R? — S*| < ¢ since it is a subset of R%. We can get that |[R? — §*| = .

Now, since ¢ : R ~ R?, there exists a countable sunset S* = ¢(S) of R%. So (R — S) ~ (R? — S*). Hence
IR—-S|=r¢.

6. Chy: 5.

(a) The set of all irrational numbers has cardinality c.

(b) The set of all transcendental numbers has cardinality c.

SoLuTIioN: This is the direct conclusion of previous two exercises.



