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Forcing
▶ Gödel (1940) constructed L to prove that

Con(ZF) =⇒ Con(ZF + AC + CH).
▶ Paul Cohen (1963) invented forcing to prove that

Con(ZFC) =⇒ Con(ZF + AC + ¬CH).
▶ The idea is to extend a countable transitive model M

(ground model) by adjoining a new set G (generic set) in
order to obtain a larger model M [G] (generic extension).

▶ The generic set is approximated by forcing conditions in
the ground model, and the properties of the generic
extension can be described entirely within the ground
model using the language of forcing.

▶ The existence of the generic set can be viewed as a
generalization of Baire Category Theorem.
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Definitions

Consider a partial order (P,≤).

▶ We call P a notion of forcing, members of P are called
forcing conditions.

▶ Say p stronger than q if p ≤ q.
▶ p, q are compatible if ∃r ∈ P (r ≤ p ∧ r ≤ q).
▶ A set W ⊆ P is an antichain if elements of W are

pairwise incompatible.
▶ A set D ⊆ P is dense if (∀p ∈ P)(∃q ∈ D) [q ≤ p]
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Let M be a countable transitive model (ctm). Suppose
M |= ZFC and (P,≤) ∈ M .

Definition 1
▶ A nonempty set F ⊆ P is a filter on P if

1. if p ≤ q and p ∈ F , then q ∈ F .
2. if p, q ∈ F then ∃r ∈ F s.t. r ≤ p and r ≤ q

▶ A set of conditions G ⊂ P is generic over M1 if
1. G is a filter on P ;
2. if D ⊂ P is dense2 in P and D ∈ M , then G ∩D ̸= ∅.

The smallest transitive model containing M
⋃
{G}, denoted as

M [G] is called a generic extension of M .

1We also say that G is (M,P)-generic, M -generic, or P -generic (over
M), or just generic.

2“dense” can be replaced by: open dense, maximal antichain, predense
5 / 23



Example 2
(P,≤) = (<ω2,⊒), i.e. members of P are finite 0-1 sequences, and

p ≤ q if p extends q, i.e. q = p↾ dom(q).

Let
DM = {D ⊆ P | D ∈ M and D is dense open}.

Let G ⊂ P be a generic filter. Then G ∩D ̸= ∅ for every
D ∈ DM . Let xG =

⋃
G =

⋃
{p | p ∈ G}.

▶ Each Dn = {p ∈ P | dom(p) ≥ n+ 1} ∈ DM .
Thus domxG = ω.

▶ For each r ∈ M ∩ ω2, the following set is in DM .
Dr = {p ∈ P | p(n) = 1− r(n) for some n ∈ dom(p)}.

Therefore, xG /∈ M ∩ ω2.
Thus (ω2)M [G] ̸= (ω2)M .

6 / 23



Example 3
(P,≤) = (<ωω1,⊒), i.e.

▶ members of P are finite sequences of countable ordinals,
▶ p ≤ q if p extends q, i.e. q = p↾ dom(q).

Let DM and G ⊂ P as before. Let fG =
⋃

G.

▶ Each Dn = {p ∈ P | n ∈ dom(p)} ∈ DM .
So dom fG = ω.

▶ For every α < ωM
1 , Dα = {p ∈ P | α ∈ ran(p)} ∈ DM .

Therefore, ran(fG) = ωM
1 .

Thus in M [G], ωM
1 is countable.

7 / 23



The Generic Model Theorem

Theorem 4
Let M be a countable transitive model of ZFC, and (P,≤) a
notion of forcing in M . If G ⊂ P is a generic filter over P,
then there exists a transitive model M [G] such that

1. M [G] is a model of ZFC;
2. M ⊆ M [G] and G ∈ M [G];
3. OrdM [G] = OrdM ;
4. if N is a transitive model of ZF such that (2) holds for

N , then M [G] ⊆ N .
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The Forcing Language

▶ Every set in M [G] is definable (in V ) with parameters
from M ∪ {G}.

▶ Each element of M [G] will have a name in M describing
how it is constructed from M ∪ {G}. (MP)

▶ The forcing language contains a name for each element
of M [G], including a constant symbol Ġ for the generic
filter.

▶ The forcing relation p ⊩ σ (read as “p forces σ”) is a
generalization of satisfaction/deduction:

σ → σ′ ∧ p ⊩ σ =⇒ p ⊩ σ′
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The Forcing Theorem

Theorem 5
Let (P,≤) be a notion of forcing in M . If σ is a sentence of
the forcing language, then for every G ⊂ P generic over M ,

M [G] |= σ ⇐⇒ (∃p ∈ G) (p ⊩ σ)

These are the fundamental theory of forcing method, please
read the two textbooks by Thomas Jech and Kenneth Kunen
(both titled Set Theory) for more thorough discussion.
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Independence of CH

Theorem 6 (Cohen, 1963)
Assume Con(ZFC), it is consistent that ZFC + 2ℵ0 > ℵ1.

Work with a ctm M |= ZFC and use the following (P,≤):
▶ p ∈ P iff p is a finite function from ωM

2 × ω to {0, 1}.
▶ p ≤ q iff p ⊇ q.

If G is (M,P)-generic., let fG =
⋃

G. Then
Claim. fG is a function with dom(fG) = ωM

2 × ω, and
{fG(α, ·) | α < ωM

2 } are distinct ω-sequences.

11 / 23



Key: the following are open dense subsets of P in M .

▶ For each α < ωM
2 and each n < ω,

Dα,n = {p ∈ P | (α, n) ∈ dom(p)}.
▶ For every α, β < ωM

2 ,
Dα,β = {p ∈ P | ∃n [p(α, n) ̸= p(β, n)]}.

If ωM [G]
2 = ωM

2 , then M [G] |= 2ℵ0 ≥ ℵ2.

Definition 7
A forcing notion P satisfies the countable chain condition
(c.c.c.) if every antichain in P is countable.
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Theorem 8
If P satisfies c.c.c., then M and M [G] have the same
cardinals and cofinalities.3

Proof.
Suffices to show that M -regular cardinals remain regular in M [G].

▶ Let λ < κ and ḟ ∈ M be a name for some f : λ → κ in
M [G]. Show ḟG, the interpretation of ḟ in M [G], remains
bounded in κ (in M [G]), i.e. if some p ∈ G forces that “ḟ is a
function”, then there is a p′ ∈ G forces that “ḟ is bounded”.

▶ Let p ∈ P and assume p ⊩ ḟ : λ → κ. By c.c.c., for α < λ,
Aα = {β < κ | ∃q ≤ p (q ⊩ ḟ(α) = β)} is countable.

κ is regular, so
⋃
Aα is bounded in κ by some γ < κ. It

follows that for each α < λ, p ⊩ ḟ(α) < γ.

3I.e. (cf(α))M = (cf(α))M [G].
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At last, we show that our forcing notion satisfies c.c.c.

Lemma 9
Cohen’s forcing notion P satisfies c.c.c.

Sketch of proof.

▶ Let X ⊆ P be uncountable, show it cannot be an antichain,
i.e. it must contain compatible conditions.

▶ There is an uncountable Y ⊆ X forming a so-called
∆-system: there is a finite r ∈ P s.t. for any p1, p2 ∈ Y ,

(p1 − r) ∩ (p2 − r) = ∅.

This provides us an uncountable collection of mutually
compatible conditions.

This completes the proof of Cohen’s Theorem. ⊠
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More applications of forcing

Soon after Cohen invented the forcing technique, Donald
Martin isolated the combinatoric ingredient of Cohen’s
argument. In fact, our presentation of Cohen’s proof is based
on this framework.

Martin’s Axiom (MA)
Suppose P is a c.c.c forcing notion and D is a family of < 2ω

many dense (open) subsets of P. Then there is a filter G ⊂ P
such that G ∩D ̸= ∅ for every D ∈ D .

Such G is called a D-generic filter.
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Theorem 10
Assume MA. Then

1. If ω < κ < 2ω, then 2κ = 2ω.
As a corollary, 2ω is a regular cardinal.

2. R is not the union of < 2ω many meager sets.
3. Every tower on ω has size 2ω.
4. Every dominating family in ωω has size 2ω.

(2)-(4) are typical statements in the study of a branch of set
theory called “cardinal invariants”, which studies cardinals
associated to various structural properties of sets of reals.
▶ (1) is proved at the end.
▶ (2): cov(M) = 2ℵ0 .4

4cov(I) is the smallest size of a subfamily of I that covers R.
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▶ Suppose x, y ∈ [ω]ω, define x ⊆∗ y iff x− y is finite.
▶ A ⊆∗-descending sequence T ⊂ [ω]ω is a tower on ω it

has no ⊆∗-lower bound, i.e. there is no A ∈ [ω]ω s.t.
A ⊆∗X for every X ∈ T .

▶ t denotes the minimal cardinality of a tower.

▶ Suppose x, y ∈ ωω, define x <∗ y iff
{n ∈ ω | x(n) ≥ y(n)} is finite.

▶ We say a set D ⊆ ωω is a dominating family on ω if
∀f ∈ ωω, ∃g ∈ D s.t. f <∗ g.

▶ d = the minimal cardinality of a dominating family.
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(2) is the Baire Category Theorem for κ many dense open
sets, for every κ < 2ω. We prove (3) and (4).

Theorem 11 (ZFC)
1. Suppose A ⊂ [ω]ω, |A| ≤ ω and for every finite A0 ⊂ A,∣∣⋂A0

∣∣ = ω. Then there is some B ∈ [ω]ω s.t. B ⊆∗A
for every A ∈ A.

2. Every countable set A ⊂ ωω is dominated, i.e. there
exists an f ∈ ωω such that g <∗ f for every g ∈ A.

These says t > ω and d > ω. MA implies that t = d = 2ω.
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t = 2ω

We show that there is no tower of size < 2ω. Let T be a
⊆∗-descending sequence of elements in [ω]ω with |T | < 2ω.
Define (PT ,≤) as follows
▶ p ∈ PT iff p = (a, F ), where a ⊂ ω, F ⊂ T are both

finite.
▶ (a, F ) ≤ (a′, F ′) iff a ⊃ a′, F ⊃ F ′ and a− a′ ⊂

⋂
F ′.

(PT ,≤) satisfies c.c.c. The conclusion follows from the
genericity over the following dense sets:
▶ DT = {(a, F ) | T ∈ F}, for each T ∈ T .
▶ Dn = {(a, F ) | |a| ≥ n}, for each n ∈ ω.
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d = 2ω

Show that there is no dominating family of size < 2ω.
Let D be a <∗-increasing sequence of elements in ωω with
|D| < 2ω. Define (PD,≤) as follows
▶ p ∈ PD iff p = (s, F ), where s ⊂ ω, F ⊂ D are both

finite.
▶ (s, F ) ≤ (s′, F ′) iff s ⊐ s′, F ⊃ F ′ and ∀f ∈ F ′,

∀n ∈ dom(s)− dom(s′), s(n) > f(n).
(PD,≤) satisfies c.c.c. The conclusion follows from the
genericity over the following dense sets:
▶ Df = {(s, F ) | f ∈ F}, for each f ∈ D.
▶ Dn = {(s, F ) | n ∈ dom(s)}, for each n ∈ ω.
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2κ = 2ω

A family A ⊆ [ω]ω is an almost disjoint family if ∀x, y ∈ A,
x ∩ y is finite.

Lemma 12
There is an almost disjoint family of size 2ω.

Proof.
Fix a bijection π : ω → <ω2. Every f ∈ ωω gives an infinite subset
of ω: For each f ∈ [ω]ω, let

π∗(f) = {π−1(f ↾n) | n < ω} ⊆ ω.

Then the family A = {π∗(f) | f ∈ [ω]ω} works.
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Fix a cardinal κ < 2ω. Use MA to show that any X ⊂ κ can
be “coded” by an infinite subset of ω.

Definition 13
Let A ⊆ [ω]ω be an almost disjoint family, and C ⊊ A. The
partial order (P,≤)5 as follows
▶ p ∈ P iff p = (a,E), where a ⊂ ω, E ⊂ C are both finite.
▶ (a,E) ≤ (a′, E ′) iff a ⊃ a′, E ⊃ E ′ and

(a− a′) ∩ (
⋃

E ′) = ∅.6

(P,≤) satisfies c.c.c. The following sets are dense:
▶ DA = {(a,E) | A ∈ E}, for each A ∈ C.

5Write P as PA,C if necessary.
6Idea: a \ a′ consists of only new elements that do not occur in E′.
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▶ Dn = {(a,E) | |a| ≥ n}, for each n ∈ ω.
▶ DX,n = {(a,E) | |a ∩X| ≥ n}, for each X ∈ A− C.

Lemma 14 (Solovay’s Lemma)
Assume MA, Let A, C be as above. If |A| < 2ω, then there is
a set XC ⊂ ω so that for each A ∈ A,

A ∩XC is finite ⇔ A ∈ C.

Proof of (1).
Suppose ω < κ < 2ω, and A an almost disjoint family of size κ. A
has 2κ many sub-families C, each “coded” by a set XC , according
to the lemma. Thus 2ω ≥ 2κ.

If CH holds, 2ω = ω1; if CH fails, since 2cf(2ω) > 2ω, cf(2ω) can
not be < 2ω. Therefore 2ω is regular under MA.
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