Elementary Set Theory

Xianghui Shi

School of Mathematical Sciences Beijing Normal University

Fall 2024

MODELS OF SET THEORY

 $- A$ super-brief introduction $- A$

Universe of sets

Question

What does the (standard, if exists) model of set theory look like?

Universe of sets

Question

What does the (standard, if exists) model of set theory look like?

Unlike the case of models of arithmetic, we currently don't have a complete image of the universe of sets.

Universe of sets

Question

What does the (standard, if exists) model of set theory look like?

Unlike the case of models of arithmetic, we currently don't have a complete image of the universe of sets.

$$
V_0 = \varnothing
$$

\n
$$
V_{\alpha+1} = \mathscr{P}(V_{\alpha})
$$

\n
$$
V_{\lambda} = \bigcup \{ V_{\alpha} \mid \alpha < \lambda \}
$$
 (for limit $\lambda > 0$)

Models of set theory

 $▶$ For all α , $V_{\alpha} \models$ Extensionality, Regularity, and Union.

Let
$$
\alpha
$$
 be a limit ordinal. Then

 $V_\alpha \models$ Pairing, Power set and Choice.

- $▶$ If $\alpha > \omega$, then $V_{\alpha} \models$ Infinity.
- **If** κ is a regular strong limit cardinal, then¹ $V_{\kappa} \models$ Replacement.

 1ω is a regular and strong limit cardinal.

Models of set theory

Theorem (ZFC)

- 1. $V_\omega \models \mathsf{ZFC} \mathrm{Inf}.$
- 2. *Assume κ is a strongly inaccessible cardinal.*² *Then* $V_{\kappa} \models$ **ZFC**.

²Strongly inaccessible cardinals are uncountable regular strongly inaccessible cardinals.

Models of set theory

Theorem (ZFC)

1.
$$
V_{\omega} \models \mathsf{ZFC} - \mathrm{Inf.}
$$

2. *Assume κ is a strongly inaccessible cardinal.*² *Then* $V_{\kappa} \models$ **ZFC**.

So by Gödel's 2-nd Incompleteness Theorem, $ZFC \nRightarrow \text{Con}(ZFC)$,

Theorem

ZFC ⊬*"there exists a strongly inaccessible cardinal".*

²Strongly inaccessible cardinals are uncountable regular strongly inaccessible cardinals.

▶ A proof of ZFC ⊬ *∃κ*(*κ* is strongly inaccessible) without using Gödel's Incompleteness.

Proof.

If not, let κ_0 be the least strongly inaccessible cardinal. Then $V_{\kappa_0} \models$ ZFC implies that $V_{\kappa_0} \models \exists \lambda (\lambda$ is strongly inaccessible). Let λ_0 be such a λ . Then $\lambda_0 < \kappa_0$. The key fact is that λ_0 is also strongly inaccessible in V. This contradicts to the hypothesis that κ_0 is the least strongly inaccessible cardinal in *V*.

▶ A proof of ZFC ⊬ *∃κ*(*κ* is strongly inaccessible) without using Gödel's Incompleteness.

Proof.

If not, let κ_0 be the least strongly inaccessible cardinal. Then $V_{\kappa_0} \models$ ZFC implies that $V_{\kappa_0} \models \exists \lambda (\lambda$ is strongly inaccessible). Let λ_0 be such a λ . Then $\lambda_0 < \kappa_0$. The key fact is that λ_0 is also strongly inaccessible in V. This contradicts to the hypothesis that κ_0 is the least strongly inaccessible cardinal in *V*.

- ▶ In fact, neither does ZFC imply the existence of weakly inaccessible cardinals.
- ▶ A cardinal whose existence cannot be proved in ZFC but whose existence has not been shown to be inconsistent with ZFC is called a **large cardinal.**
- \blacktriangleright Thus weakly inaccessible and strongly inaccessible cardinals are large cardinals.

Constructibility

Definition

 \blacktriangleright A set *y* is **definable over a structure** M iff there is a formula $\varphi(\bar{x}) \in \mathcal{L}^M$ and parameters $\bar{p} \in M$ such that: $y = \{z \in M \mid M \models \varphi[z, \bar{p}]\}.$

 \blacktriangleright For any set M , let $Def(M) = \{ y \subseteq M \mid y \text{ is definable over } (M, \in) \}.$

$$
L_0 = \varnothing
$$

\n
$$
L_{\alpha+1} = \text{Def}(L_{\alpha})
$$

\n
$$
L_{\lambda} = \bigcup \{ L_{\alpha} \mid \alpha < \lambda \} \qquad \text{(for limit } \lambda > 0\text{)}
$$

▶ *L* was discovered by Gödel (1937) as a way to prove that $Con(ZF) \implies Con(ZFC)$.

- ▶ *L* is a (definable) class, the class of **constructible sets**, and the assertion $V = L$, i.e. $\forall x (x \in L)$, is the **Axiom of Constructibility**.
- ▶ By transfinite recursion within *L* one can well-order *L* level-by-level, well ordering $L_{\alpha+1} - L_{\alpha}$ according to definitions and the previous well-ordering of the parameters from *Lα*.
- ▶ Gödel also provided a construction of L by transfinite recursion in terms of 8 elementary set operators.
- ▶ Each *L^α* is transitive.
- ▶ Every ordinal is an element of *L*.

$$
\blacktriangleright V_{\alpha} = L_{\alpha}, \text{ for } \alpha \leq \omega.
$$

 \blacktriangleright *L* \models Pairing, Union, Power set, Replacement etc.

Pairing. $a, b \in X \implies \{a, b\}$ is definable from X.

Union. $a \in X \land X$ is transitive \implies ∪ *a* is definable from *X*. Power set. If $a \in L$, $\mathscr{P}(a)^{L} = \mathscr{P}(a) \cap L = \{x \in L \mid x \subseteq a\} \subseteq \mathscr{P}(a).$ By Replacement, $\mathscr{P}(a) \cap L \subseteq L_{\beta}$ for some β . In fact, for each $x \in \mathscr{P}(a)^L$, let α_x be least α such that $x\in \mathscr{P}(a)\cap L_{\alpha_x}$, take $\beta\geq \sup\{\alpha_x\mid x\in \mathscr{P}(a)^L\}.$ So $\mathscr{P}(a)^L = \{x \in L_\beta \mid x \subseteq a\} \in L_{\beta+1}.$

- ▶ Since $\text{Ord} \subseteq L \subseteq V$, Π_1^{ZF} -properties of ordinals are preserved when going down from *V* to *L*.
- \blacktriangleright Hence regular cardinals remain regular in L ; similarly, limit cardinals, inaccessible cardinals, Mahlo cardinals, etc.
- ▶ More generally, any large cardinal property weaker than 0[‡] will be retained in *L*.
- \blacktriangleright (Gödel, 1937) $L \models$ ZFC + GCH.
- ▶ If κ is weakly inaccessible (in *V*), L_{κ} \models ZFC + GCH. Key point. GCH *implies that weakly inaccessible is the same as strongly inaccessible.*
- ▶ Jensen (1972) developed a "**fine structure**" theory for *L* of intrinsic interest, and the study of constructibility and its generalizations has become one of the mainstreams of modern set theory.
- ▶ 0[‡] is a large cardinal principle isolated by Jensen. The existence of 0^\sharp implies $V\neq L$, i.e. there is a non-constructible set.
- \triangleright Since $L \models AC$, GCH, $V = L$, these statements can not be refuted within L , more generally, by taking inner models. These can also be done by Cohen's method of **forcing** (1963).

Inner model

Definition

For a proper class *M*, *M* is an **inner model** iff *M* is a transitive *∈*-model of ZF with Ord *⊂ M*.

Gödel also showed that

Theorem

- 1. *L is the smallest inner model of* ZF*, i.e.* any *M* if $M \models \textsf{ZF}$ and $M \supset \textsf{Ord}$, then $M \supset L$.
- 2. In fact, $L^M = L$, *where L^M is the constructible universe defined within M.*

More *L*-like models

Definition 1

$$
L(A) \begin{array}{l} L_0(A) = \text{TC}(\{A\}) \\ L_{\alpha+1}(A) = \text{Def}(L_{\alpha}(A)) \\ L_{\lambda}(A) = \bigcup \{ L_{\alpha}(A) \mid \alpha < \lambda \} \end{array} \text{ (for limit } \lambda > 0)
$$

$$
L[A] \quad \begin{array}{l} L_0[A] = \varnothing \\ L_{\alpha+1}[A] = \mathsf{Def}^A(L_{\alpha}[A]) \\ L_{\lambda}[A] = \bigcup \{ L_{\alpha}[A] \mid \alpha < \lambda \} \quad \text{(for limit } \lambda > 0) \end{array}
$$

where $TC(x)$ is the smallest transitive set containing x , $Def^A(x) = \{ y \subseteq x \mid y \text{ is definable over } (x, \in, A \cap x) \}$

- \blacktriangleright For a given set A, $L(A)$ is the constructible closure of A, i.e. the smallest inner model M such that $A \in M$.
	- *•* For a given set *A*, *L*[*A*] is the constructible universe relative to *A*, i.e. the smallest inner model *M* such that $A ∩ M ∈ M$.
- \blacktriangleright *L(A)* does not satisfy AC, unless $TC({A})$ can be well ordered.
- *• L*[*A*] satisfies AC.
- ▶ For *α ≥ ω*, *|Lα*(*A*)*|* = *|* TC(*{A}*)*| · |α|*.
- For $\alpha > \omega$, $|L_{\alpha}[A]| = |\alpha|$.
- ▶ More *L*-like models: $L(\mathbb{R})$, $L(\text{Ord}^{\omega})$, $L[0^{\sharp}], L[\widetilde{E}]$, etc.

OD and HOD

 \blacktriangleright A set X is **ordinal definable** if there are an ordinal *α ∈* Ord and a formula *φ* such that

$$
X = \{x \mid V_{\alpha} \models \varphi(x, \bar{\alpha})\}
$$

for some ordinal parameters $\bar{\alpha}\in \mathrm{Ord}^{<\omega}.$

 \triangleright OD = $\{X \mid X$ is ordinal definable

OD has a natural well-ordering, however it is not transitive.

▶ Let HOD denote the class of **hereditarily ordinal-definable** sets, i.e.

 $HOD = \{x \mid TC(\lbrace x \rbrace) \subseteq OD\}$

 \blacktriangleright The class HOD is a transitive model of $7FC³$

³This gives another proof of $Con(ZF) \implies Con(ZFC)$.

- ▶ Both notions of OD and HOD are expressible in the language of set theory.
- ▶ Both OD and HOD can be relativized to a given set *A*: OD[A], OD(A), HOD[A] and HOD(A).
- ▶ By definition, *L ⊆* HOD.
- \blacktriangleright In contrast to the Constructible universe L , which may consist of only a very small fraction of the universe $V,^4$ HOD is very close to *V* .
- \blacktriangleright HOD-like models play important roles in contemporary foundational study of set theory.

⁴ assuming suitable large cardinals.