Elementary Set Theory

Xianghui Shi

School of Mathematical Sciences Beijing Normal University

Fall 2024

Axiom of Regularity

Axiom of Regularity

Every nonempty set has an *∈*-minimal element:

$$
\forall S \left(S \neq \varnothing \to (\exists x \in S) \left[S \cap x = \varnothing \right] \right)
$$

This axiom asserts that the universe of sets is *∈*-wellfounded.

Some Lemmas

Lemma

▶ *There is no infinite ∈-descending sequence:* $\cdots \in x_n \in \cdots \in x_2 \in x_1 \in x_0$ ▶ *Every set S has a* **transitive closure***,* 1 $\mathrm{TC}(S) = \bigcap \{T \mid T \supset S \wedge T \text{ is transitive}\}$ $=\bigcup_{n<\omega}\bigcup^n S.$

▶ *Every nonempty class C has an ∈-minimal element.*

¹Closed under "*∈*": *x ∈ b ∧ b ∈ S → x ∈ S*, or equivalently, ∪ *S ⊂ S*.

The Cumulative Hierarchy of Sets

$$
V_0 = \emptyset, \qquad V_{\alpha+1} = \mathscr{P}(V_{\alpha})
$$

$$
V_{\lambda} = \bigcup_{\alpha < \lambda} V_{\alpha}, \quad \lambda \text{ is a limit ordinal.}
$$

The sets V_α have the following properties:

- 1. If $\alpha < \beta$ then $V_{\alpha} \subset V_{\beta}$.
- 2. Each *V^α* is transitive.
- 3. $\alpha \subset V_{\alpha}$.

Proof.

1. $V_{\alpha} \subset V_{\alpha+1}$ implies $\mathscr{P}(V_{\alpha}) \subset \mathscr{P}(V_{\alpha+1})$, $(\because V_{\alpha} \subset V_{\beta})$ and 2. $\bigcup V_{\alpha+1} = \bigcup \mathscr{P}(V_{\alpha}) = V_{\alpha} \subset V_{\alpha+1}$. At limit λ , $\bigcup V_{\lambda} = \bigcup_{\alpha \leq \lambda} V_{\alpha+1} = V_{\lambda}$. Therefore every V_{α} $V_{\lambda} = \bigcup_{\alpha < \lambda} V_{\alpha+1} = V_{\lambda}$. Therefore every V_{α} is transitive. 3. *α ⊂ V^α* implies that *α* + 1 *⊂ V^α ∪ {α} ⊂ Vα*+1. At limit *λ*, $\lambda = \bigcup_{\alpha < \lambda} \alpha \subset \bigcup_{\alpha < \lambda} V_{\alpha} = V_{\lambda}.$

Von Neumann universe

The **Axiom of Regularity** implies that

Proposition 1

 $V = \bigcup_{\alpha} V_{\alpha}$, *i.e. for every x* there is $\alpha \in \text{Ord}$ *s.t.* $x \in V_{\alpha}$.

Proof.

- ▶ Let *C* = *V * ∪ *α Vα*. Assume *C ̸*= ∅. Take a *c ∈* min *C*.
- ▶ $c \neq \emptyset$, as $\emptyset \in V_1$. Take any $x \in c$. $x \notin C$ as c is minimal. So there is an $\alpha_x \in \text{Ord}$ such that $x \in V_{\alpha_x+1} \setminus V_{\alpha_x}.$
- ▶ Let $A_c = \{ \alpha_x + 1 \in \text{Ord} \mid x \in V_{\alpha_x+1} \setminus V_{\alpha_x} \land x \in c \}.$
- \triangleright *C* is a set, by Axiom of Replacement, A_c is a set of ordinals.
- $▶$ Let $β = \sup A_c$. Then $c ∈ \mathscr{P}(V_β) = V_{β+1}$. Contradiction! □

The Rank Function

For every $x \in V$, we may define the rank of x : $rank(x) =$ the least α such that $x \in V_{\alpha+1}$.

Thus

\n- For every
$$
x \in V_{\alpha}
$$
, $rank(x) < \alpha$.
\n- If $x \in y$ then $rank(x) < rank(y)$.
\n- rank(α) = α .
\n

Equivalence classes over a proper class

▶ Given a class *C*, let

 $C^* = \{x \in C \mid x \text{ has minimal rank}\}.$

Then $C \neq \emptyset \implies C^* \neq \emptyset$ and $C^* \in V_{\alpha+2}$ for some α .

- ▶ Given an equivalence relation *≡* over a proper class *C*, the previous definition of quotient class: $C/_{\equiv} = \{ [x] \mid x \in C \}$ is a class of classes.
- ▶ With the rank function, one can refer to each equivalence class [*x*] via [*x*] *∗* (as sets). In particular, one can define isomorphism types for a given isomorphism.

∈-induction

The method of transfinite induction, which is along Ord, can be extended to arbitrary transitive class.

∈-induction

The method of transfinite induction, which is along Ord, can be extended to arbitrary transitive class.

Theorem 2 (*∈*-induction)

Let T be a transitive class, let φ be a property. Assume that 1. *φ*(∅) *holds;* 2. *if* $x \in T$ and $\varphi(z)$ holds for every $z \in x$, then $\varphi(x)$ holds.

Then $\varphi(x)$ *holds for every* $x \in T$ *.*

Theorem 3 (*∈*-Recursion)

Let T be a transitive class and G be a function over V . Then there is a function F on T s.t. $F(x) = G(F \upharpoonright x)$ *for every* $x \in T$.

Proof.

$$
F(x) = y \leftrightarrow \exists f \text{ s.t. } \text{dom}(f) \subset T \text{ is transitive and}
$$

$$
(i) \forall u \in \text{dom}(f) (f(u) = G(f \upharpoonright u))
$$

$$
(ii) f(x) = y
$$

The uniqueness of *F* follows from *∈*-induction.

Nontrivial *∈*-isomorphism

Theorem 4

Let T_1, T_2 *be two classes,* $\pi: T_1 \to T_2$ *be an* \in *-isomorphism. If* T_1, T_2 *are transitive, then* $T_1 = T_2$ *and* $\pi(u) = u$ *for every* $u \in T_1 = \text{TC}(T_1)$.

Proof.

Assume that $\pi(z) = z$ for every $z \in x$. We show that $\pi(x) = x$.

- $▶$ By inductive hypothesis, $x \subseteq \pi(x)$.
- ▶ Suppose *t ∈ π*(*x*). As *π* is an isomorphism, *π*(*u*) = *t* for some $u \in T_1$. $\pi(u) \in \pi(x)$ implies $u \in x$. So $t = \pi(u) = u \in x$. \Box

Well-Founded Relations

We extend these to a broader class: well-founded relations. Let *E* be a binary relation on a class *P*, for each $x \in P$, define $\text{Ext}_E(x) = \{z \in P \mid z \to x\}$ to be the *E*-extension of *x*.

Well-Founded Relations

We extend these to a broader class: well-founded relations. Let *E* be a binary relation on a class *P*, for each $x \in P$, define $\text{Ext}_E(x) = \{z \in P \mid z \to x\}$ to be the *E*-extension of *x*.

Definition 5

A relation *E* on *P* is **well-founded** if

- 1. every nonempty set *x ⊂ P* has an *E*-minimal element.
- 2. Ext $E(x)$ is a set, for every $x \in P$.

The **Axiom of Regularity** implies that *∈* is well-founded.

E-minimal element

Lemma 6

If E *is a well-founded on* P , then every nonempty class $C \subset P$ *has an E-minimal element.*

Proof.

For an $S \in P$, define $TC_E(S) = \bigcup S_n$, where

 $S_0 = \text{Ext}_E(S)$ and $S_{n+1} = \bigcup \{ \text{Ext}_E(x) \mid x \in S_n \}.$

Then pick an $S \in C$ and an *E*-minimal of $TC_E(S) \cap C$ is an *E*-minimal of *C*.

Well-Founded Induction

Theorem 7 (*E*-induction)

Let T be a transitive class on P, φ be a property. Assume that

- 1. *Every E*-minimal element *x* has property φ .
- 2. *if* $x \in P$ and *if* $\varphi(z)$ *holds for every z s.t. z E x*, *then* $\varphi(x)$ *holds.*

Then every $x \in P$ *has property* φ *.*

Well-Founded Recursion

Theorem 8 (Well-Founded Recursion)

Let E be a well-founded relation on P. Let G be a function on $V \times V$. Then there is a unique function F on P s.t. $F(x) = G(x, F \mid \text{Ext}_E(x))$, for every $x \in P$.

Rank Function

Example 9 (The Rank Function)

Let *E* be a well-founded relation on *P*. Define, by induction, for all $x \in P$.

$$
\rho^{E}(x) = \sup \{ \rho^{E}(z) + 1 \mid z \mathrel{E} x \}.
$$

For all $x,y\in P$, $x\mathrel{E} y \leftrightarrow \rho^{E}(x) < \rho^{E}(y).$ The range of ρ^{E} is either an ordinal or the class Ord.

Mostowski Collapse

Definition 10

A well-founded relation *E* on a class *P* is **extensional** if $\text{Ext}_E(x) \neq \text{Ext}_E(y)$ whenever $x, y \in P$ and $x \neq y$.

Mostowski Collapse

Definition 10

A well-founded relation *E* on a class *P* is **extensional** if $\text{Ext}_E(x) \neq \text{Ext}_E(y)$ whenever $x, y \in P$ and $x \neq y$.

Theorem 11

If E is a well-founded and extensional relation on a class P, then there is a unique transitive class M and a unique .