Elementary Set Theory

Xianghui Shi

School of Mathematical Sciences Beijing Normal University

Fall 2024

Axiom of Regularity

AXIOM OF REGULARITY

Every nonempty set has an \in -minimal element:

$$\forall S \left(S \neq \varnothing \to (\exists x \in S) \ [S \cap x = \varnothing] \right).$$

This axiom asserts that the universe of sets is \in -wellfounded.

Some Lemmas

Lemma

► There is no infinite ∈-descending sequence:

 $\cdots \in x_n \in \cdots \in x_2 \in x_1 \in x_0$

Every set S has a transitive closure,¹ $TC(S) = \bigcap \{T \mid T \supset S \land T \text{ is transitive} \}$ $= \bigcup_{n < \omega} \bigcup^n S.$

 \blacktriangleright Every nonempty class C has an \in -minimal element.

¹Closed under " \in ": $x \in b \land b \in S \rightarrow x \in S$, or equivalently, $\bigcup S \subset S$.

The Cumulative Hierarchy of Sets

$$\begin{split} V_0 &= \varnothing, \qquad V_{\alpha+1} = \mathscr{P}(V_{\alpha}) \\ V_{\lambda} &= \bigcup_{\alpha < \lambda} V_{\alpha}, \ \lambda \text{ is a limit ordinal.} \end{split}$$

The sets V_{α} have the following properties:

- 1. If $\alpha < \beta$ then $V_{\alpha} \subset V_{\beta}$.
- 2. Each V_{α} is transitive.
- **3**. $\alpha \subset V_{\alpha}$.

<u>Proof</u>.

1. $V_{\alpha} \subset V_{\alpha+1}$ implies $\mathscr{P}(V_{\alpha}) \subset \mathscr{P}(V_{\alpha+1})$, $(:: V_{\alpha} \subset V_{\beta})$ and 2. $\bigcup V_{\alpha+1} = \bigcup \mathscr{P}(V_{\alpha}) = V_{\alpha} \subset V_{\alpha+1}$. At limit λ , $\bigcup V_{\lambda} = \bigcup_{\alpha < \lambda} V_{\alpha+1} = V_{\lambda}$. Therefore every V_{α} is transitive. 3. $\alpha \subset V_{\alpha}$ implies that $\alpha + 1 \subset V_{\alpha} \cup \{\alpha\} \subset V_{\alpha+1}$. At limit λ , $\lambda = \bigcup_{\alpha < \lambda} \alpha \subset \bigcup_{\alpha < \lambda} V_{\alpha} = V_{\lambda}$.

Von Neumann universe

The Axiom of Regularity implies that

Proposition 1

 $V = \bigcup_{\alpha} V_{\alpha}$, i.e. for every x there is $\alpha \in \text{Ord s.t. } x \in V_{\alpha}$.

<u>Proof</u>.

- Let $C = V \setminus \bigcup_{\alpha} V_{\alpha}$. Assume $C \neq \emptyset$. Take a $c \in \min C$.
- ► $c \neq \emptyset$, as $\emptyset \in V_1$. Take any $x \in c$. $x \notin C$ as c is minimal. So there is an $\alpha_x \in \text{Ord such that } x \in V_{\alpha_x+1} \setminus V_{\alpha_x}$.
- Let $A_c = \{ \alpha_x + 1 \in \text{Ord} \mid x \in V_{\alpha_x + 1} \setminus V_{\alpha_x} \land x \in c \}.$
- \triangleright C is a set, by Axiom of Replacement, A_c is a set of ordinals.
- ▶ Let $\beta = \sup A_c$. Then $c \in \mathscr{P}(V_\beta) = V_{\beta+1}$. Contradiction! \square

The Rank Function

For every $x \in V$, we may define the rank of x: rank(x) = the least α such that $x \in V_{\alpha+1}$.

Thus

Equivalence classes over a proper class

• Given a class C, let

 $C^* = \{ x \in C \mid x \text{ has minimal rank} \}.$

Then $C \neq \varnothing \implies C^* \neq \varnothing$ and $C^* \in V_{\alpha+2}$ for some α .

- Given an equivalence relation ≡ over a proper class C, the previous definition of quotient class:
 C/_≡ = {[x] | x ∈ C} is a class of classes.
- With the rank function, one can refer to each equivalence class [x] via [x]* (as sets). In particular, one can define isomorphism types for a given isomorphism.

\in -induction

The method of transfinite induction, which is along Ord, can be extended to arbitrary transitive class.

\in -induction

The method of transfinite induction, which is along Ord, can be extended to arbitrary transitive class.

Theorem 2 (∈-induction)

Let T be a transitive class, let φ be a property. Assume that 1. $\varphi(\emptyset)$ holds; 2. if $x \in T$ and $\varphi(z)$ holds for every $z \in x$, then $\varphi(x)$ holds. Then $\varphi(x)$ holds for every $x \in T$.

Theorem 3 (\in -Recursion)

Let T be a transitive class and G be a function over V. Then there is a function F on T s.t. $F(x) = G(F \upharpoonright x)$ for every $x \in T$.

<u>Proof</u>.

$$F(x) = y \leftrightarrow \exists f \text{ s.t. } \operatorname{dom}(f) \subset T \text{ is transitive and}$$

(i) $\forall u \in \operatorname{dom}(f) (f(u) = G(f \upharpoonright u))$
(ii) $f(x) = y$

The uniqueness of F follows from \in -induction.

Nontrivial \in -isomorphism

Theorem 4

Let T_1, T_2 be two classes, $\pi : T_1 \to T_2$ be an \in -isomorphism. If T_1, T_2 are transitive, then $T_1 = T_2$ and $\pi(u) = u$ for every $u \in T_1 = \text{TC}(T_1)$.

Proof.

Assume that $\pi(z) = z$ for every $z \in x$. We show that $\pi(x) = x$.

- By inductive hypothesis, $x \subseteq \pi(x)$.
- Suppose $t \in \pi(x)$. As π is an isomorphism, $\pi(u) = t$ for some $u \in T_1$. $\pi(u) \in \pi(x)$ implies $u \in x$. So $t = \pi(u) = u \in x$. \Box

Well-Founded Relations

We extend these to a broader class: well-founded relations. Let E be a binary relation on a class P, for each $x \in P$, define $\operatorname{Ext}_E(x) = \{z \in P \mid z \in x\}$ to be the *E*-extension of x.

Well-Founded Relations

We extend these to a broader class: well-founded relations. Let E be a binary relation on a class P, for each $x \in P$, define $\operatorname{Ext}_E(x) = \{z \in P \mid z \in x\}$ to be the *E*-extension of x.

Definition 5

A relation E on P is well-founded if

- 1. every nonempty set $x \subset P$ has an *E*-minimal element.
- 2. $\operatorname{Ext}_{E}(x)$ is a set, for every $x \in P$.

The **Axiom of Regularity** implies that \in is well-founded.

E-minimal element

Lemma 6

If E is a well-founded on P, then every nonempty class $C \subset P$ has an E-minimal element.

<u>Proof</u>.

For an $S \in P$, define $TC_E(S) = \bigcup S_n$, where

 $S_0 = \operatorname{Ext}_E(S)$ and $S_{n+1} = \bigcup \{ \operatorname{Ext}_E(x) \mid x \in S_n \}.$

Then pick an $S \in C$ and an *E*-minimal of $TC_E(S) \cap C$ is an *E*-minimal of *C*.

Well-Founded Induction

Theorem 7 (*E*-induction)

Let T be a transitive class on P, φ be a property. Assume that

- 1. Every *E*-minimal element x has property φ .
- 2. if $x \in P$ and if $\varphi(z)$ holds for every z s.t. $z \in x$, then $\varphi(x)$ holds.

Then every $x \in P$ has property φ .

Well-Founded Recursion

Theorem 8 (Well-Founded Recursion)

Let E be a well-founded relation on P. Let G be a function on $V \times V$. Then there is a unique function F on P s.t. $F(x) = G(x, F \upharpoonright \operatorname{Ext}_E(x)), \quad \text{for every } x \in P.$

Rank Function

Example 9 (The Rank Function)

Let E be a well-founded relation on P. Define, by induction, for all $x \in P$.

$$\rho^{E}(x) = \sup\{\rho^{E}(z) + 1 \mid z \in x\}.$$

For all $x, y \in P$, $x \in y \leftrightarrow \rho^E(x) < \rho^E(y)$. The range of ρ^E is either an ordinal or the class Ord.

Mostowski Collapse

Definition 10

A well-founded relation E on a class P is **extensional** if $\operatorname{Ext}_E(x) \neq \operatorname{Ext}_E(y)$ whenever $x, y \in P$ and $x \neq y$.

Mostowski Collapse

Definition 10

A well-founded relation E on a class P is **extensional** if $\operatorname{Ext}_E(x) \neq \operatorname{Ext}_E(y)$ whenever $x, y \in P$ and $x \neq y$.

Theorem 11

If E is a well-founded and extensional relation on a class P, then there is a unique transitive class M and a unique isomorphism $\pi : (P, E) \cong (M, \in)$.