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Axiom of Regularity

Axiom of Regularity
Every nonempty set has an ∈-minimal element:

∀S (S ̸= ∅ → (∃x ∈ S) [S ∩ x = ∅].

This axiom asserts that the universe of sets is ∈-wellfounded.
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Some Lemmas

Lemma
▶ There is no infinite ∈-descending sequence:

· · · ∈ xn ∈ · · · ∈ x2 ∈ x1 ∈ x0

▶ Every set S has a transitive closure,1

TC(S) =
∩
{T | T ⊃ S ∧ T is transitive}

=
∪

n<ω

∪n S.

▶ Every nonempty class C has an ∈-minimal element.

1Closed under “∈”: x ∈ b ∧ b ∈ S → x ∈ S, or equivalently,
∪
S ⊂ S.
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The Cumulative Hierarchy of Sets

V0 = ∅, Vα+1 = P(Vα)

Vλ =
∪

α<λ Vα, λ is a limit ordinal.

The sets Vα have the following properties:
1. If α < β then Vα ⊂ Vβ.
2. Each Vα is transitive.
3. α ⊂ Vα.

Proof.
1. Vα ⊂ Vα+1 implies P(Vα) ⊂ P(Vα+1), (∴ Vα ⊂ Vβ) and
2.

∪
Vα+1 =

∪
P(Vα) = Vα ⊂ Vα+1. At limit λ,∪

Vλ =
∪

α<λ Vα+1 = Vλ. Therefore every Vα is transitive.
3. α ⊂ Vα implies that α+ 1 ⊂ Vα ∪ {α} ⊂ Vα+1. At limit λ,

λ =
∪

α<λ α ⊂
∪

α<λ Vα = Vλ.
4 / 16



Von Neumann universe
The Axiom of Regularity implies that

Proposition 1
V =

∪
α Vα, i.e. for every x there is α ∈ Ord s.t. x ∈ Vα.

Proof.

▶ Let C = V \
∪

α Vα. Assume C ̸= ∅. Take a c ∈ minC.
▶ c ̸= ∅, as ∅ ∈ V1. Take any x ∈ c. x /∈ C as c is minimal.

So there is an αx ∈ Ord such that x ∈ Vαx+1 \ Vαx .
▶ Let Ac = {αx + 1 ∈ Ord | x ∈ Vαx+1 \ Vαx ∧ x ∈ c}.
▶ C is a set, by Axiom of Replacement, Ac is a set of ordinals.
▶ Let β = supAc. Then c ∈ P(Vβ) = Vβ+1. Contradiction!
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The Rank Function

For every x ∈ V , we may define the rank of x:
rank(x) = the least α such that x ∈ Vα+1.

Thus

▶ For every x ∈ Vα, rank(x) < α.
▶ If x ∈ y then rank(x) < rank(y).
▶ rank(α) = α.
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Equivalence classes over a proper class

▶ Given a class C, let
C∗ = {x ∈ C | x has minimal rank}.

Then C ̸= ∅ =⇒ C∗ ̸= ∅ and C∗ ∈ Vα+2 for some α.
▶ Given an equivalence relation ≡ over a proper class C,

the previous definition of quotient class:
C/≡ = {[x] | x ∈ C} is a class of classes.

▶ With the rank function, one can refer to each equivalence
class [x] via [x]∗ (as sets). In particular, one can define
isomorphism types for a given isomorphism.
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∈-induction

The method of transfinite induction, which is along Ord, can
be extended to arbitrary transitive class.

Theorem 2 (∈-induction)
Let T be a transitive class, let φ be a property. Assume that

1. φ(∅) holds;
2. if x ∈ T and φ(z) holds for every z ∈ x, then φ(x) holds.

Then φ(x) holds for every x ∈ T .
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∈-recursion

Theorem 3 (∈-Recursion)
Let T be a transitive class and G be a function over V . Then
there is a function F on T s.t. F (x) = G(F ↾x) for every
x ∈ T .

Proof.

F (x) = y ↔∃f s.t. dom(f) ⊂ T is transitive and
(i) ∀u ∈ dom(f) (f(u) = G(f ↾u))
(ii) f(x) = y

The uniqueness of F follows from ∈-induction.
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Nontrivial ∈-isomorphism

Theorem 4
Let T1, T2 be two classes, π : T1 → T2 be an ∈-isomorphism.
If T1, T2 are transitive, then T1 = T2 and π(u) = u for every
u ∈ T1 = TC(T1).

Proof.
Assume that π(z) = z for every z ∈ x. We show that π(x) = x.

▶ By inductive hypothesis, x ⊆ π(x).

▶ Suppose t ∈ π(x). As π is an isomorphism, π(u) = t for some
u ∈ T1. π(u) ∈ π(x) implies u ∈ x. So t = π(u) = u ∈ x.
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Well-Founded Relations

We extend these to a broader class: well-founded relations.
Let E be a binary relation on a class P , for each x ∈ P , define
ExtE(x) = {z ∈ P | z E x} to be the E-extension of x.

Definition 5
A relation E on P is well-founded if

1. every nonempty set x ⊂ P has an E-minimal element.
2. ExtE(x) is a set, for every x ∈ P .

The Axiom of Regularity implies that ∈ is well-founded.
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E-minimal element

Lemma 6
If E is a well-founded on P , then every nonempty class C ⊂ P
has an E-minimal element.

Proof.
For an S ∈ P , define TCE(S) =

∪
Sn, where

S0 = ExtE(S) and Sn+1 =
∪
{ExtE(x) | x ∈ Sn}.

Then pick an S ∈ C and an E-minimal of TCE(S) ∩ C is an
E-minimal of C.
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Well-Founded Induction

Theorem 7 (E-induction)
Let T be a transitive class on P , φ be a property. Assume that

1. Every E-minimal element x has property φ.
2. if x ∈ P and if φ(z) holds for every z s.t. z E x, then

φ(x) holds.
Then every x ∈ P has property φ.
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Well-Founded Recursion

Theorem 8 (Well-Founded Recursion)
Let E be a well-founded relation on P . Let G be a function
on V × V . Then there is a unique function F on P s.t.

F (x) = G(x, F ↾ ExtE(x)), for every x ∈ P.
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Rank Function

Example 9 (The Rank Function)
Let E be a well-founded relation on P . Define, by induction,
for all x ∈ P .

ρE(x) = sup{ρE(z) + 1 | z E x}.

For all x, y ∈ P , x E y ↔ ρE(x) < ρE(y). The range of ρE is
either an ordinal or the class Ord.
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Mostowski Collapse

Definition 10
A well-founded relation E on a class P is extensional if
ExtE(x) ̸= ExtE(y) whenever x, y ∈ P and x ̸= y.

Theorem 11
If E is a well-founded and extensional relation on a class P ,
then there is a unique transitive class M and a unique
isomorphism π : (P,E) ∼= (M,∈).
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