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Axiom of Choice
The Axiom of Choice asserts that: Every family of nonempty
sets has a choice function.

Axiom of Choice (AC)
Let A be such that ∀a ∈ A (a ̸= ∅). Then there exists a
function f such that dom(f) = A and

for every a ∈ A, f(a) ∈ a.

▶ AC(X) denotes the version that
⋃

A = X.
▶ Suppose κ is an (infinite) cardinal. Let ACκ denote the

version that |A| ≤ κ.

So AC ≡ (∀κ)ACκ.
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The Choice Function
ZF-cases that a choice function exists:
▶ For each a ∈ A, |a| = 1.
▶ ACn holds for every n < ω. i.e. |A| < ω.
▶ Each a ∈ A is a finite set of reals.

The existence of a choice function is not certain even for the
case that A is infinite and for all a ∈ A, |a| = 2.

Remark
The point is that: the choice function needs to be well defined
relative to known parameters, such as A and, if exists, a well
ordering of

⋃
A.
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The Axiom of Well Orderings

The Axiom of Well Orderings (WO)
Every set can be well ordered.

Theorem
AC ⇔ WO.

Proof.
WO ⇒ AC is trivial. For the other direction, fixing a set X ̸= ∅,
we need a choice function

f : P(X)− {∅} → X.

and the enumerating process to well order X.1

1We showed WO(X) ⇒ AC(X) and AC2|X|(X) ⇒ WO(X).
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Other Equivalent Versions in Set Theory

▶ If A is an infinite set, then |A| = |A× A|.
▶ Any two sets can be compared by their cardinalities.
▶ The Cartesian product of any nonempty family of

nonempty sets is nonempty.
▶ Every surjective function has a right inverse, i.e. if

f : A → B is onto, then |B| ≤ |A|.
▶ (König’s Theorem).

∑
α<λ κα <

∏
α<λ κα, where λ > 1

and each κα > 2.

Next are two equivalent versions in the theory of orderings.
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Zorn’s Lemma and Maximal Principal
Two more well-known equivalent version of AC.

Zorn’s Lemma (ZL)
Let (P,<) be a partial order. If every chain in P has an upper
bound, then P has a maximal element.

The Maximum Principle (MP)
Every partial order (P,<) has a maximal chain.

Theorem
ZL ⇔ MP.
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ZL ⇔ MP

Proof.
MP ⇒ ZL: The upper bound of a maximal chain is a maximal (not
necessarily the greatest!) element for the whole partial ordered set.

ZL ⇒ MP: Consider the partial order (P ∗,⊂):
P ∗ = {A ⊂ P | (A,<) is a chain in (P,<)}

▶ Every ⊂-chain A∗ in P ∗ has an upper bound: (
⋃
A∗, <).

▶ A ⊂-maximal element of P ∗ is a maximal <-chain in P .
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AC ⇔ WO ⇔ ZL ⇔ MP

Proof.
WO ⇒ MP: Use an enumeration (a well ordering) of P to
construct a maximal chain.

ZL ⇒ WO: Given X ̸= ∅, consider the partial order (PX , <):
PX = {(A,≺) | (A,≺) is a well ordered subset of X}, and
(A1,≺1) < (A2,≺2) iff

(A1,≺1) is a proper initial segment of (A2,≺2)

Every maximal element PX is a well ordering of X.
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Equivalent Versions of AC in Other Area

▶ Every vector space has a basis.

▶ Every nontrivial unitary ring contains a maximal ideal.

▶ (Tychonoff Theorem). Any product of compact spaces
is compact in the product topology.

▶ In the product topology, the closure of a product of
subsets is equal to the product of the closures.

▶ Any product of complete uniform spaces is complete.
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Weaker Consequences of AC, I

▶ The union of a countable family of countable sets is
countable. (ACω)

▶ For each property P ∈ {Perfect Set Property, Lebesgue
Measurable, Baire Property }, there is a set without
property P .

▶ The Lebesgue measure of a countable disjoint union of
measurable sets is equal to the sum of the measures of
the individual sets. (σ-additivity)

▶ (Banach-Tarski Paradox). A solid ball in R3 can be
split into several disjoint pieces, which can be reassembled
only by shifting and rotating (without changing their
shapes) to yield two identical copies of the original ball.
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Weaker Consequences of AC, II
▶ Every field has a unique algebraic closure.
▶ Every field extension has a transcendence basis.
▶ Every subgroup of a free group is free.
▶ (Hahn-Banach Extension Theorem). Every bounded

linear functional on a subspace of some vector space can
be extended to the whole space.

▶ The Baire Category Theorem.
▶ On every infinite-dimensional topological vector space

there is a discontinuous linear map.
▶ Every Tychonoff space has a Stone-Čech

compactification.
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Weaker Versions of AC

The Countable Axiom of Choice (ACω)
Every countable family of nonempty sets has a choice function.

▶ The union of countably many countable sets is countable.
▶ The collection of all countable subsets of R form a proper

ideal.
▶ ℵ1 is regular.
▶ Every ˜Σ0

α is closed under countable union. In particular,
the union of countably many Fσ sets (˜Σ0

2) is Fσ.
▶ The Lebesgue measure is countably additive.

However, ACω does not imply that R can be well ordered.
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The Principle of Dependent Choice
The following consequence of AC is more preferred in modern
Descriptive Set Theory.

Let A be nonempty. Let DC(A) be the following statement:

Suppose ≺ ⊆ A× A. If for every a ∈ A, there is a b ∈ A
s.t. b ≺ a,2 then there is a ≺-descending ω-sequence
⟨an : n < ω⟩ contained in A.3

The Principle of Dependent Choices (DC)
∀A, DC(A) holds.

2Or equivalently, “for any n < ω and any ≺-descending ⟨ai : i < n⟩
contained in A, there is a b ∈ A s.t. b ≺ an−1”.

3This sequence can start with any a0 ∈ A.
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Corollary 1 (DC)
1. A linear ordering (P,<) is a well ordering iff there is no

infinite <-descending sequence in P .
2. A relation E on P is well-founded iff there is no infinite

E-descending sequence in P .

Proof.

1. “⇒”: A <-descending ω-sequence is a nonempty subset
without <-least element.

“⇐”: Suppose (P,<) is ill-ordered, and ∅ ̸= A ⊂ P contains
no <-minimal element. Then for any p ∈ A, there is a q ∈ A
such that q < p.

2. The same argument.
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Remark. AC ⇒ DC is a strict implication.4

Recall ACω(X) is the assertion that:

If {Xn | n < ω} is a family of nonempty subsets of X, then
there is a choice function f : ω → X such that f(n) ∈ Xn.

Theorem 2
If |X × ω| = |X|, then DC(X) implies ACω(X).

Sketch of proof.
For disjoint family {Xn | n < ω}, set

y ≺ x ⇐⇒ ∃n [x ∈ Xn ∧ y ∈ Xn+1].

Use |X × ω| = |X| to convert Xn to {n} ×Xn.

4WO(X) ⇒ DC(X).
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AC and Regularity Properties

AC produces many unpleasant sets: assuming AC,

▶ there is a set that is not Lebesgue measurable.
▶ there is a set that does not have the Baire property.
▶ there is a set that does not have the Perfect set property.
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Bernstein Set

Theorem 3 (Bernstein)
Assume AC. There is a set B ⊂ R such that both B and its
complement B̄ meet every perfect (hence every uncountable
closed) set.

Such B is called a Bernstein set. So is the complement B̄.

Theorem 4 (AC)
An Bernstein set B is not Lebesgue measurable and lacks the
property of Baire and the perfect set property.
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Proof

▶ B (so is B̄) does not have the PSP, by definition.
▶ In fact, every Lebesgue measurable subset of B (B̄ as

well) has measure zero. We need the fact that every
Lebesgue measurable set A can be written as A = F ∪P ,
where F is Fσ and P is null. The key is that every closed
subset of B (or B̄) is a null set.

▶ Similarly, we show that every subset of B (or B̄) that has
the Baire property is meager. We use the fact that every
set A that has the Baire property can be written as
A = G ∪ P , where G is Gδ and P is meager. The key is
that every uncountable Gδ set contains a closed set,
which is a homeomorphic copy of Cantor set.
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Cardinal Arithmetic, Cont’d

We continue to calculate the sums and products of infinite
cardinals. We assume AC for the rest of this chapter.

Plan
▶ Infinite sums and products.
▶ Calculating the continuum function, 2κ.
▶ Calculating the cardinal exponentiation, κλ.
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Lemma 5
For λ ≤ κ, the set of all size-λ subset of κ, [κ]λ has size κλ.

Proof.

▶ |[κ]λ| ≤ κλ is trivial.

▶ Every f : λ → κ is a subset of λ× κ and |f | = λ. Thus
κλ ≤ |[λ× κ]λ| ≤ |[κ]λ|.
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Notation
▶ κ<λ = sup{κµ | µ ∈ Card ∧ µ < κ}.
▶ Let κ be an infinite cardinal and |A| ≥ κ. Let

[A]<κ = Pκ(A) = {X ⊂ A | |X| < κ}.

By definition,
κ<λ ≤ κλ.

By the next lemma, we’ll see that
|[A]<κ| = |A|<κ.
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Infinite Sums and Products

AC is needed to ensure that the following definitions are well
defined. (See textbook Ex.5.9, 5.10)

Definition 6
Let {κi}i∈I be an infinite set of cardinals, and X = {Xi}i∈I
be a family of sets such that each |Xi| = κi. Define

▶ ∑
i κi = |

⋃
i Xi|,

where Xi’s, in addition, are pairwise disjoint.

▶ ∏
i κi = |

∏
i Xi|,

where
∏

i Xi = {f | f is a choice function over X }.
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Infinite Sums

Lemma 7
If λ ≥ ω and κi > 0, for each i < λ, then∑

i<λ κi = λ · supi<λ κi

Proof.
For the nontrivial direction,

λ ≤
∑

i<λ1 ≤
∑

i<λ κi

κj ≤
∑

i<λ κi, for each j < λ.
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Infinite Products

Lemma 8
1.

∏
i κ

λ
i = (

∏
i κi)

λ.
2.

∏
i κ

λi = κ
∑

i λi .
3. If I =

⋃
j∈J Aj, where Aj are pairwise disjoint. then∏

i∈I κi =
∏

j∈J(
∏

i∈Aj
κi).

4. If κi ≥ 2 for each i, then
∑

i κi ≤
∏

i κi.
5. Suppose λ ≥ ω and ⟨κi | i < λ⟩ is a nondecreasing

sequence of cardinals > 0. Then∏
i<λ κi = (supi κi)

λ.
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Proof

4. Let X = {Xi | i ∈ I} be pairwise disjoint and each
|Xi| = κi. Fix a choice function g over X . For
a ∈

⋃
i Xi, define F (a) = (i, fa), where

fa(i) =

{
a if a ∈ Xi

g(i) if a /∈ Xi

F :
⋃

i Xi → I ×
∏

i Xi is an injection. Note that∏
i κi ≥ 2|I| > |I|.∑

i κi ≤ |I| ·
∏

i κi =
∏

i κi.

Remark. Note that König Theorem is equivalent to AC.
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Proof, Cont’d

5. Let κ = supi<λ κi. For the nontrivial direction, we use a
partition of λ: {Ai | i < λ} with each |Ai| = λ. Note
that for each j < λ,∏

i∈Aj
κi ≥

∑
i∈Aj

κi = supi∈Aj
κi = κ.

Then by the associativity of infinite products, we have∏
i<λ κi =

∏
j<λ(

∏
i∈Aj

κi) ≥
∏

j<λ κ = κλ.
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König’s Theorem

Theorem 9 (König)
If κi < λi for each i ∈ I, then

∑
i κi <

∏
i λi.

Corollary 10
1. κ < 2κ, for any cardinal κ.

2. cf(κλ) > λ, for any cardinals κ > 1 and λ ≥ ω. In
particular, cf(2λ) > λ, for any infinite cardinal λ.

3. κcf(κ) > κ, for any infinite cardinal κ.
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Proof of König’s Theorem

Proof.
We prove the strict part. Let F :

⋃
iXi →

∏
i λi, where Xi’s are

pairwise disjoint and each |Xi| = κi. We construct an
f ∈

∏
i λi − ran(F ).

For each i ∈ I, let pi be the projection function for the i-th
coordinate. Define

f(i) = min(λi − pi(F [Xi])).

Then each f(i) witnesses that f /∈ F [Xi].
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Cardinal Exponentiations under GCH
Theorem 11
Assume GCH. Let κ, λ be infinite cardinals. Then

κλ =


κ, if λ < cf(κ);
κ+, if cf(κ) ≤ λ < κ;

λ+, if κ ≤ λ.

Proof.
Only the case λ < cf(κ) needs proof. In this case, for every
f ∈ κλ, ran(f) is bounded by some α < κ. So κλ =

⋃
α<κ α

λ, and
then κλ ≤

∑
α<κ |α|λ.5 For each α < κ,
αλ ≤ 2|α|·λ = (|α| · λ)+ ≤ κ.

So κλ ≤ κ · κ = κ.
5In fact, it is equal (see Homework). The case κ = ℵα+1 is

Hausdorff formula: ℵℵβ

α+1 = ℵℵβ
α · ℵα+1.
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Continuum Function, without GCH

Beth function:
▶ ℶ0 = ℵ0.
▶ ℶα+1 = 2ℶα .
▶ ℶλ = supα<λ ℶα, for limit ordinal λ.

Continuum function: C(κ) = 2κ.

Gimel function: (κ)ג = κcf(κ).

Let S(ℵα) = ℵα+1. Then
GCH ⇒ S = C = ,ג and ℵ = ℶ.

Next we work without GCH.
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Proposition 12
1. κ < λ ⇒ 2κ ≤ 2λ.
2. cf(2κ) > κ.
3. If κ is a limit cardinal, then (2<κ)cf(κ) = 2κ.

In particular,
4. If κ is singular and there exists µ0 s.t. 2µ0 = 2µ for all

µ0 ≤ µ < κ, then 2κ = 2µ0 .

Proof of 3..
First, (2<κ)cf(κ) ≤ (2κ)cf(κ) = 2κ. Let κ = supi<cf(κ) κi. Then

2κ = 2
∑

i κi =
∏

i 2
κi ≤

∏
i(supj 2

κj ) = (2<κ)cf(κ).
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Corollary 13
1. If κ is a successor cardinal, then 2κ = .(κ)ג
2. If κ is a limit cardinal, there are two cases:

2.1 if there exists µ0 < κ s.t. 2µ = 2µ0 for all µ0 ≤ µ < κ,
then 2κ = 2<κ · ;(κ)ג

2.2 otherwise, 2κ = .(κ>2)ג

Proof.
1. Trivial, since κ = cf(κ) and 2κ = κκ.
For 2.2, the key is that cf(2<κ) = cf(κ).
For 2.1, clearly 2κ ≥ 2<κ · .(κ)ג

If κ is singular, 2κ ≤ 2<κ;
if κ is regular, then 2κ = κκ = κcf(κ).
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Cardinal Exponentiation

Theorem 14
Let κ, λ be two infinite cardinals. Then

κλ =


2λ, (a). κ ≤ λ;

µλ, (b). µλ ≥ κ, for some µ < κ;

κ, (c). neither (a) nor (b), and cf(κ) > λ;

κcf(κ), (d). neither (a) nor (b), and cf(κ) ≤ λ;

Corollary 15
κλ is either 2λ, or κ, or (µ)ג for some µ s.t. cf(µ) ≤ λ < µ.
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Proof

(b). µλ ≤ κλ ≤ (µλ)λ = µλ.

(c). If cf(κ) > λ, every f : λ → κ is bounded in κ, so
κλ = κ · supα<κ α

λ = κ.

(d). If cf(κ) ≤ λ, then
κλ = (

∑
i<cf(κ) κi)

λ ≤ (
∏

i<cf(κ) κi)
λ

= (
∏

i<cf(κ) κ
λ
i ) ≤ (supi<cf(κ) κ

λ
i )

cf(κ)

≤ κcf(κ).

The last inequality is because for all µ < κ, µλ < κ.
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Singular Cardinal Hypothesis

▶ Easton (1970) showed that for regular cardinals κ, the
value of 2κ could be any ℵα, as long as cf(ℵα) > κ.

— GCH can fail at all regular cardinals.
▶ The Singular Cardinals Hypothesis (SCH) arose from

the question of whether the least cardinal number for
which the generalized continuum hypothesis (GCH)
might fail could be a singular cardinal.

Singular Cardinal Hypothesis (two versions)
▶ If κ is any singular strong limit cardinal, then 2κ = κ+.
▶ (Stronger) If κ is singular and 2cf(κ) < κ, then κcfκ = κ+.
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SCH is a consequence of GCH. It reduces values of κλ to
values of the continuum function at regular cardinals.

Theorem 16
Assume SCH.

1. If κ is a singular cardinal, then
1.1 2κ = 2<κ, if the continuum function is eventually

constant below κ.
1.2 2κ = (2<κ)+, otherwise.

2. If κ, λ are infinite cardinals, then
2.1 If κ ≤ 2λ, then κλ = 2λ.
2.2 If 2λ < κ and λ < cf(κ), then κλ = κ.
2.3 If 2λ < κ and cf(κ) ≤ λ, then κλ = κ+.
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Homework

The rest problems are from Textbook Exercise for Chapter 5.

1. 5.4, 5.11-5.13
Assume AC.

2. 5.8 (only the case κ = ω), 5.9
3. 5.17

(Hint: Discuss the ≥-direction in two cases: λ is finite and λ
is infinite.)

4. 5.18
(Hint: ℵℵ1

ω ⊂ ℵ0ℵ1 ·
∏

n
ℵ1ℵn+1 and Hausdroff formula.)
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