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Structures of Numbers

▶ We’ve defined (ω,+ω, ·ω, <ω), via either operations on
ordinals or operations on cardinals.

▶ (Z,+Z, ·Z, <Z) is defined as: Z = ω × ω/ ≈1, where
(a, b) ≈1 (c, d) ⇔ a+ω d = c+ω b

(a, b) +Z (c, d) = (a+ω c, b+ω d)

(a, b) ·Z (c, d) = (ac+ω bd, ad+ω bc)

(a, b)<Z (c, d) ⇔ a+ω d <ω c+ω b

▶ Q = Z× (Z \ {0})/ ≈2, where
(p, q) ≈2 (r, s) ⇔ p ·Z s = q ·Z r

The reader should try to define +Q, ·Q and <Q.
▶ R is the set of Dedekind cuts, and C = R× R.
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Homework 4.1

1. Define +Q, ·Q and <Q and verify that your definitions are
independent of the choice of representatives.

2. Exercises in Ch4: 1-5.
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The Cardinality of the Continuum, I
Theorem 1 (Cantor)
The set of all real numbers is uncountable, i.e. ω ≺ R.

Proof.
Suppose R = {ck | k < ω}. Construct a r ∈ R s.t. r ̸= ck for all k.
Use the theorem of Nested Closed Intervals. Start with an interval
I0 such that c0 /∈ I0. For each n < ω, choose an interval In+1

inductively such that

▶ In+1 ⊂ In, |In+1| ≤ |In|/3 and
▶ ci /∈ In+1, for i ≤ n+ 1.

This produces a nested sequence ⟨In : n < ω⟩. Let r be such that
{r} =

⋂
n In. This r works as desired.
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The Cardinality of the Continuum, II

Next, we find the precise size of R.
▶ Since R is defined by Dedekind cut over Q,

|R| ≤ |P(Q)| = 2ω.

▶ Cantor set is the set
C = {

∑
n f(n)/3

n | f : ω → {0, 2}}
|C| = 2ω, hence |R| ≥ 2ω.

By Cantor-Bernstein, |R| = 2ω.

In fact, there is a natural bijection between P(ω) and R via
“continuous fractions”（连分数）.
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Continuous Fractions
We define f : (ω − {0})≤ω → [0, 1] as follows. f(∅) = 0 and

f(⟨an⟩) =
1

a0 +
1

a1 +
1

. . .
1

an +
1

. . .
f−1: Given r0 ∈ (0, 1], a0 =

[
1
r0

]
and

rn+1 =
{

1
rn

}
, stops if rn+1 = 0; otherwise, an+1 = [ 1

rn+1
].

▶ Every continuous fraction represents a real in [0, 1].
▶ Every rational in [0, 1] can be uniquely expressed as a

finite continuous fraction. ((ω − {0})<ω)
▶ Every irrational in [0, 1] can be uniquely expressed as

an infinite continuous fraction. ((ω − {0})ω)
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Some beautiful continuous fractions

√
5 + 1

2
= [1; 1, 1, 1, 1, · · · ]

√
2 = [1; 2, 2, 2, 2, · · · ]
e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, · · · ]

Generalized continuous fractions [see wikipedia]
π

4
=

1

1 +
12

2 +
32

2 +
52

2 +
72

2 +
. . .

=
1

1 +
12

3 +
22

5 +
32

7 +
42

9 +
. . .
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The Ordering of R
The Order-type of Q

▶ A linear ordering (P,<) is dense if for all a < b there
exists c s.t. a < c < b. P is unbounded if it has neither
a least nor a greatest element.

▶ A set D ⊂ P is a dense subset if for all a < b ∈ P ,
there exists d ∈ D s.t. a < d < b. D is a bounded
above in P if there exist e ∈ P s.t. for all a ∈ D, a < e.
(or simply D < e)

▶ A linear ordering (P,<) is complete if every nonempty
bounded subset of P has a least upper and a largest
lower bound.

Theorem 2 (Cantor)
Any two countable unbounded dense linear orderings are
isomorphic.
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The Ordering of R
The Continuum, uniqueness

Theorem 3 (Cantor-Dedekind)
(R, <) is the unique complete linear ordering that has a
countable unbounded dense subset.

Proof.
Prove the uniqueness only.

▶ Let C,C ′ be two such linear orderings, and P ⊂ C, P ′ ⊂ C ′

be the two countable unbounded dense subset repectively.

▶ Let f : P → P ′ be an isomorphism. Then F : C → C ′ is
defined as: for x ∈ C,

F (x) = sup{f(t) | t ∈ P ∧ t ≤ x}

▶ Verify that F is an isomorphism.
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The Ordering of R
The Continuum, existence

The linear ordering (R, <) is often called continuum and the
size of R is often denoted as c.

Theorem 4
Let (P,<) be a dense unbounded linear ordering. Then there
is a complete unbounded linear ordering (C,≺) s.t.

1. P ⊂ C and <,≺ agree on P .
2. P is dense in C.

▶ If P is countable, then C ∼= R.
▶ If P is not countable, C is not necessarily unique.
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The Ordering of R
Dedekind cut

▶ A D-cut is a pair of disjoint set of rationals (A,B) s.t.
A ∪ B = Q, A <Q B and A has no maximal elements.

▶ (A,B) < (C,D) iff A ⊊ C.
(A,B) + (C,D) = (A+Q C,B +Q D). Thus
−(A,B) = (−(B \ {minB}),−(A ∪ {minB})).
For (A,B), (C,D) >Q 0Q,

(A,B) · (C,D) = (Q− BD,BD)

▶ (R,+, ·) forms a field, and
▶ If x < y then x+ z < y + z.
▶ If x < y and z > 0 then x · z < y · z.

▶ As (R, <) is complete, (R,+, ·, <, 0, 1) is a complete
ordered field. In fact, every complete ordered field is
isomorphic to (R,+, ·, <, 0, 1).
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Trees
Definitions

▶ A tree is a partially ordered set (T,<T ) s.t. for every
t ∈ T , the set (·, t)T = {s ∈ T | s <T t} is well-ordered.

▶ The height of t in T , htT (t) = ordertype(·, t)T .

▶ The α-th level of T , Levα T = {t ∈ T | htT (t) = α}.

▶ The height of T , htT = min{α | Levα T = ∅}.

▶ A chain of T is a <T -well-ordered subset of T . (α-chain).

▶ A path P is a chain which is also an initial part of T , i.e.,
(·, t) ⊂ T for every t ∈ P . (α-path).
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▶ A branch of T is a maximal chain/path of T . (α-branch).
The set of all branches of T is denoted as BT .

▶ A cofinal branch is a branch that intersects each level of
T . The set of all cofinal branches of T is denoted as [T ].

▶ A ⊂ T is an antichain if members of A are pairwise
incompatible, i.e. ∀s, t ∈ A (s ̸= t =⇒ s ⊥T t), where

s ⊥T t ⇔ s ̸<T t ∧ t ̸<T s.

▶ If T is a tree and s, t ∈ T , define δst = (·, s)T ∩ (·, t)T
and nst = ordertype(δst).
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Order a tree linearly
▶ <ω2 and <ωω carry natural tree orderings:

f ⊑ g ⇔ f is an initial segment of g.
▶ The general X-ary tree (<αX,⊑) is defined similarly for

any set X and α ∈ Ord.
▶ Only consider subtrees T ⊆ <ω2 or <ωω that are

downward closed under ⊑.

Let <X be a linear ordering of X, then the lexicographical
ordering ≺ of T is defined by s ≺ t iff

1. s ⊑ t or
2. s ̸⊑ t ∧ t ̸⊑ s ∧ s(nst) <X t(nst).
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Order a tree linearly
Proposition 5
Let T be a tree.

1. If s, t, u ∈ T , then Rstu = {δst, δtu, δsu} has ≤ 2
elements, and p, q ∈ Rstu =⇒ p ⊆ q ∨ q ⊆ p.

2. ≺ is a linear ordering of T which extends ⊏.
3. For every t ∈ T , T t = {s ∈ T | t ⊏ s} is an interval in

(T,≺).

Proof.

1. Key: Rstu is pairwise comparable.
2. By the definition of ≺
3. Suppose s, s′ ∈ T t, σ ∈ T and s ≺ σ ≺ s′.

i) s ⊑ σ; ii) δs,σ ⊐ δs,t; iii) δs,σ = δs,t
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Extend the lex-ordering to cofinal branches
The ordering ≺ on T can be further extended lexicographically
to the set BT of all branches of T .

Proposition 6
Let T,BT be as above.

1. ≺ is a linear ordering of T ∪BT .

2. For every t ∈ T , Bt = {f ∈ T ∪BT | t ∈ f} is an
interval in (T ∪BT ,≺).

The lexicographical ordering of <ωZ is an unbounded dense
linear order (∼= Q), its extension to T ∪BT is complete (∼= R).
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The Standard Topology of R

▶ The standard topology over R is induced by the standard
linear ordering: using intervals of the form

(a, b), a ≤ b ∈ Q,

as basis.

▶ For the Baire space N = ωω, the basis consists of sets of
the form: s ∈ <ωω,

Os = {f ∈ N | s ⊏ f}.

▶ The continuum is the unique linear ordering that is dense,
unbounded, complete and separable.
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Separability & c.c.c.

▶ (Suslin’s Problem). Is it still true if “separable” is
replaced by “countable chain condition” (c.c.c), i.e.,
there is no uncountable pairwise-disjoint collection of
open intervals?

▶ A linear ordering is a Suslin line if it is dense,
unbounded, complete, c.c.c but not separable.

▶ R is separable and has c.c.c. In general,
If X is separable, then X has c.c.c.
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▶ The product of two separable spaces is separable.
However, separability is not preserved under arbitrary
products (for ≥ (2ω)+ factors).

▶ ¬SH implies that the product of two c.c.c spaces is not
necessarily c.c.c. (see Homework 4.2 problem ♯3).
Strangely, if c.c.c is preserved by products with two
factors, then it is preserved by arbitrary products.
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Suslin Hypothesis

Definition 7
A Suslin tree is a tree of size ω1 that has neither uncountable
chain nor uncountable antichain.

Theorem 8 (Kurepa, 1936)
There is an ω1-Suslin tree iff there is a Suslin line.

Suslin’s Hypothesis (SH)
There are no Suslin lines/trees.

SH turns out to be independent of ZFC.
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Homework 4.2

1. Prove Proposition 5.
2. Prove Proposition 6.
3. If X is a Suslin line, then X2 is not c.c.c.

Hint: construct {Uα = (aα, bα)× (bα, cα) | α < ω1}, s.t.
a. aα < bα < cα
b. (aα, bα) ̸= ∅ and (bα, cα) ̸= ∅
c. for every ξ < α, bξ /∈ (aα, cα).

4. Exercises in Ch4: 8-13, 15, 18
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Plan

We shall discuss three properties of sets of reals:

▶ The Perfect Set Property
▶ The Property of Baire
▶ Lebesgue Measurability
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Size of Closed Sets
Consider R together with its standard topology and metric.

d(a, b) = |a− b|.

Some simple counting:
▶ There are c many open sets.
▶ There are c many closed sets.
▶ Every nonempty open set has size c.

What about the size of closed sets? The answer is what Cantor
considered as an evidence to his famous Hypothesis (CH).

Theorem
Every closed set either is countable or has size c.
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Perfect Sets

Definition 9
▶ A nonempty closed set is perfect if it has no isolated

points.
▶ A set has the Perfect Set Property (PSP) if it either is

countable or has a perfect subset.

Example. R, Cantor set, closed intervals, etc.

Theorem 10
Every perfect set has cardinality c.

More generally, every perfect set in a separable complete
metric space contains a copy of Cantor set.
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Cantor-Bendixson

Theorem 11 (Cantor-Bendixson)
If F ⊆ R is an uncountable closed set, then F = P ∪ C,
where P is perfect and |C| ≤ ω.

Proof.
For every A ⊂ R, define the derivative of A as

A′ = {r ∈ A | r is a limit point of A}.

Iterate the process

A0 = A, Aα+1 = (Aα)
′ and Aλ =

⋂
α<λAα for limit λ,

till it stops, say at τ . Let P = Aτ and C = A−Aτ .
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Perfect sets in N = ωω

Proposition 12
1. F ⊆ N is closed iff F = [T ] for some tree T ⊆ <ωω with

ht(T ) = ω.
2. If f is an isolated point of a closed set F ⊆ N , then

there is n ∈ ω s.t. ∀g ∈ F (f ̸= g → f ↾n ̸= g↾n).
3. A closed set F ⊆ N is perfect iff

TF = {f ↾n | f ∈ F, n < ω}
is a perfect tree.

Definition 13
A tree T ⊆ <ωω is perfect iff for every t ∈ T , there exist
s1, s2 ∈ T s.t. t ⊏ s1 and t ⊏ s2, but s1, s2 are incomparable.
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Cantor-Bendixson for N
Proof.
For each T ⊆ <ωω, define

T ′ = {t ∈ T | ∃s1, s2 ∈ T (t ⊏ s1 ∧ t ⊏ s2 ∧ s1 ⊥T s2)}
Iterate the process

T0 = T , Tα+1 = (Tα)
′ and Tλ =

⋂
α<λ Tα for limit λ,

till it stops, say at τ . Then τ < ω1, and

▶ Each [Tα]− [Tα+1] is countable, as Tα is countable. (α < τ)

▶ If Tτ ̸= ∅, then it is perfect.

▶ [
⋂
Tα] =

⋂
[Tα].

Hence [T ]− [Tτ ] =
⋃

α<τ ([Tα]− [Tα+1]) is countable
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σ-Algebra
Definition 14
Fix a set X.

▶ An algebra of sets is a collection S ⊆ P(X) s.t.
(i) X ∈ S.
(ii) U, V ∈ S =⇒ U ∪ V ∈ S.
(iii) U ∈ S =⇒ X − U ∈ S.

▶ A collection I ⊆ P(X) forms an ideal if
(i) X /∈ I.
(ii) U, V ∈ I =⇒ U ∪ V ∈ I.
(iii) U ∈ I ∧ V ⊂ U =⇒ V ∈ I.

▶ A σ-algebra (σ-ideal) is an algebra (ideal) closed under
countable union, i.e.
(iv) {Un | n ∈ ω} ⊆ S =⇒

⋃
n Un ∈ S.

28 / 41



σ-Algebra, II

▶ P(X) is a σ-algebra.
▶ For every A ⊆ P(X), there is a smallest (σ-)algebra

containing A, which is the intersection of all (σ-)algebras
containing A.

▶ A set A ⊆ R is Borel if it belongs to the smallest
σ-algebra that contains all open sets.

▶ The Lebesgue measurable sets form a σ-algebra.
▶ The sets having the Baire property form a σ-algebra.
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Borel Hierarchy, I

Definition 15
For each α < ω1,

Σ˜0
1 = the collection of all open sets;

Π˜0
1 = the collection of all closed sets;

Σ˜0
α = {

⋃
n An | each An ∈ Π˜0

β, some β < α}
Π˜0

α = {A | A ∈ Σ˜0
α} (where A = R \ A)

∆˜ 0
α = Σ˜0

α ∩ Π˜0
α

Σ˜0
1 Σ˜0

2 Σ˜0
α Σ˜0

α+1

Π˜0
1 Π˜0

2 Π˜0
α Π˜0

α+1

A

∩Ai

A A

∩Ai

A
∪Ai ∪Ai
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Borel Hierarchy, II

▶ ∆˜ 0
1 = the collection of all Borel sets.

▶ The construction ends at α = ω1.
▶ The elements of each Σ˜0

α (or Π˜0
α) are Borel sets.

▶ For α < β < ω1,
Σ˜0

α ⊂ Σ˜0
β, Σ˜0

α ⊂ Π˜0
β,

Π˜0
α ⊂ Π˜0

β, Π˜0
α ⊂ Σ˜0

β

▶ All inclusions above are strict.
▶ The collection

⋃
α<ω1

Σ˜0
α =

⋃
α<ω1

Π˜0
α is a σ-algebra.
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▶ Every irrational number has a unique representation by an
infinite continued fraction.

x = a0 +
1

a1 +
1

. . .
1

an +
1

. . .

where a0 ∈ Z and ai ∈ Z+ for i ≥ 1.
▶ Let A be the set of all irrational numbers that correspond to

sequences ⟨ai : i < ω⟩ with the following property:

there exists an infinite subsequence ⟨aki : i < ω⟩ such
that for every i < ω, aki is a factor of aki+1

.
▶ A is not Borel. (Assume ACω)
▶ A is constructed in ZF, however, it cannot be proven to be

non-Borel in ZF alone.
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Meager Sets

Definition 16
▶ A set X ⊆ R is nowhere dense if its closure has empty

interior.
▶ X is of the first category (or meager) if it is the union

of countably many nowhere dense sets. A non-meager set
is called a set of the second category. A set is
comeager if its complement is meager.

▶ A set A ⊆ R has the property of Baire if there exists
an open set G such that G∆ A is meager.

The collection of meager sets is a σ-ideal, and the collection
of sets that have the property of Baire is a σ-algebra.
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The Baire Category Theorem

Theorem 17 (The Baire Category Theorem)
If {Dn | n < ω} are dense open subsets of R (or N ), then the
intersection D =

⋂
n Dn is dense in R.

Equivalent versions:
▶ Replace “dense” by “comeager”.
▶ Every open set (in particular R) is not meager.
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Baire Category for N
Note that
▶ Sets of the form Os, s ∈ <ωω, form a basis.
▶ Every open dense subset of N corresponds to a maximal

antichain in the sequential tree <ωω.

Theorem 18 (The Baire Category Theorem for N )
Let A = {An | n < ω} be a family of maximal antichains of
the sequential tree T = <ωω. Then for every s ∈ T , there is a
cofinal branch f ∈ ωω such that
▶ s ⊏ f , and
▶ for each n, there is exactly one tn ∈ An such that tn ⊏ f .
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Lebesgue Measurable
The standard definition of Lebesgue measure uses the outer
measure:

µ∗(A) = inf{
∑

lh(Ii) | A ⊂
⋃

Ii},
where {Ii | i < ω} refers to a sequence of open intervals.

Definition 19
▶ A set A is Lebesgue measurable if there exist an Fσ-set

F and a Gδ-set G such that F ⊂ A ⊂ G and
µ∗(G− F ) = 0.
When A is measurable, write µ(A) instead of µ∗(A).

▶ A set A is null if µ∗(A) = 0.
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In addition to the properties mentioned before, we add a few
more:

▶ µ is σ-additive: If {An | n < ω} are pairwise disjoint and
measurable, then

µ(
⋃

n An) =
∑

n µ(An).
▶ µ is σ-finite: If A is measurable, then there exist

measurable sets An (n < ω) such that
A =

⋃
n An and µ(An) < ∞ for each n.

▶ Every null set is measurable. The null sets form a σ-ideal
and contain all singletons.
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(Lebesgue) Measure on N

The above theory of Lebesgue measure on R can be carried
over to (N , µ), where µ is the extension of the product
measure ν on open sets in N induced by the probability
measure on ω such that

ν({n}) = 1/2n+1, for every n.

Thus for every nonempty sequence s ∈ <ωω,
µ(Os) =

∏
n∈dom(s) ν({s(n)})

=
∏

n∈dom(s) 1/2
s(n)+1.
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Homework 4.3

1. Prove Proposition 12.
2. Show that

⋃
α<ω1

Σ˜0
α = the collection of all Borel sets.

3. Show that the collection of Lebesgue measurable sets (of
reals) form a σ-algebra.

4. Show that the collection of sets (of reals) having the
property of Baire forms a σ-algebra.
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Solovay model

Theorem (Solovay 1970)
Assume the existence of an (a strongly) inaccessible cardinal is
consistent with ZFC. Then there is an inner model of
ZF + Dependent Choice1 such that every set of reals
▶ is Legesgue measurable,
▶ has the perfect set property, and
▶ has the Baire property.

1HODOrdω or L(R), computed in the generic extension V [G] by
Levy’s poset Coll(ω,<κ), which collapses all cardinals below the least
inaccessible κ to ω.
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The inaccessible cardinal

Theorem
1. (Shelah 1984) The inaccessible cardinal is not necessary

for the Baire property.
2. (Specker 1957, Solovay 1970) The existence of an

inaccessible cardinal is equivalent to the statement that
every set of reals has the perfect set property.

3. (Shelah 1984) If every Σ˜1
3 set of reals is Lebesgue

measurable then ℵ1 is inaccessible in L. So the
inaccessible is also necessary.
Moreover, Shelah also construct a model (without using
an inaccessible cardinal) in which every ∆˜ 1

3 set of reals is
Lebesgue measurable.
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