Elementary Set Theory

Xianghui Shi

School of Mathematical Sciences Beijing Normal University

Fall 2024

Additional Topic

GAMES ON REALS¹

¹Cf. *The Higher Infinite*, by A. Kanamori, Chapter 27

Infinite Games

For $A \subseteq \omega$, $G(A)$ denotes the following two-person game:

where each $x_i \in \omega$.

- ▶ Each choice is a **move** of the game.
- ▶ The result $x = \langle x_i : i < \omega \rangle \in \omega \omega$ is a play of the game.
- \blacktriangleright *A* is called the **payoff** for the game $G(A)$.
- ▶ Rule: I wins if *x ∈ A*, otherwise II wins.

For $s \in \langle \omega \omega, \text{ let } G_s(A) \text{ be } G(A)$ restricted to O_s , i.e.

▶ I wins if $s^x \in O_s \cap A$, and II wins if $s^x \in O_s - A$.

▶ A **strategy** for *I* is a function

$$
\sigma: \bigcup\nolimits_{n} {}^{2n}\omega \to \omega
$$

that tells him what to play next given the previous moves. Given II's moves $y = \langle y_n = x_{2n+1} : n \langle \omega \rangle \in \omega$, σ produces a play *σ ∗ y ∈ ^ωω*.

$$
\begin{array}{c|cc}\n1 & u_0 = \sigma(0) & u_1 = \sigma(u_0^{\frown} y_0) & \sigma(u_0^{\frown} y_0^{\frown} u_1^{\frown} y_1) \\
\hline\n\end{array}
$$

 \triangleright *σ* is a **winning strategy** (w.s.) for l iff

$$
\{\sigma * y \mid y \in {}^{\omega}\omega\} \subseteq A,
$$

i.e. no matter what moves II makes, plays according to *σ* always yield members of *A*.

Analogously,

 \blacktriangleright a strategy for II is a function $\tau: \bigcup_n {}^{2n+1}\omega \to \omega$.

 \blacktriangleright τ is a winning strategy for II iff

$$
\{z*\tau \mid z\in {}^{\omega}\omega\}\cap A=\varnothing,
$$

where $z * \tau$ is the result of applying τ to a move sequence *z* played by I.

Analogously,

- \blacktriangleright a strategy for II is a function $\tau: \bigcup_n {}^{2n+1}\omega \to \omega$.
- ▶ *τ* is a winning strategy for II iff

$$
\{z*\tau \mid z\in {}^{\omega}\omega\}\cap A=\varnothing,
$$

where $z * \tau$ is the result of applying τ to a move sequence *z* played by I.

G(*A*) is **determined** iff a player has a winning strategy.

Note that the players cannot both have winning strategies.

A is **determined** iff *G*(*A*) is determined.

Determined Sets

Theorem 1

- 1. If $|A| < c = |\omega_{\omega}|$, then I cannot have a winning strategy. *Similarly, II cannot have a w.s., if* $|\omega \omega - A| < \mathfrak{c}$.
- 2. (*Gale-Stewart*)*. If A ⊆ ^ωω is either open or closed then G*(*A*) *is determined.*
- 3. (*Gale-Stewart*)*.* AC *implies that there is a set of reals which is not determined.*

Proof

- 1. Each w.s. induces an injective function from *^ωω* to *^ωω*.
- 2. Let $A_s = A \cap O_s$. Consider $s \in {}^{2n}\omega$. Note that
	- \blacktriangleright If I has no w.s. in $G_s(A)$ then

[∀]i∃^j (*I has no w.s. in ^Gs*⌢*⟨ij⟩* (*A*))*.*

In this case, let $\tau(s^{\frown}\langle i \rangle) =$ *least* j *as above.*

▶ If I has no w.s. in $G_s(A)$ then $|O_s \cap A^c| > 1$.

So every play produced by τ *is a limit point of* A^c *.*

Suppose *A* is open and I has no w.s, then every play produced by τ are in A^c , thus II has a w.s.

Proof

- 1. Each w.s. induces an injective function from *^ωω* to *^ωω*.
- 2. Let $A_s = A \cap O_s$. Consider $s \in {}^{2n}\omega$. Note that
	- \blacktriangleright If I has no w.s. in $G_s(A)$ then

[∀]i∃^j (*I has no w.s. in ^Gs*⌢*⟨ij⟩* (*A*))*.*

In this case, let $\tau(s^{\frown}\langle i \rangle) =$ *least* j *as above.*

▶ If I has no w.s. in $G_s(A)$ then $|O_s \cap A^c| > 1$. *So every play produced by* τ *is a limit point of* A^c *.*

Suppose *A* is open and I has no w.s, then every play produced by τ are in A^c , thus II has a w.s.

3. By AC, there are c many strategies. And for each strategy *σ* (or *τ*), the corresponding set R_σ (or R_τ) of plays *{σ ∗ x | x ∈ ^ωω}* (for I) or *{x ∗ τ | x ∈ ^ωω}* (for II) has size c. Choose a play (without repetition) from each R_{σ} (or R_{τ}). This gives two disjoint sets, one from R_{σ} 's, the other from R_{τ} 's. They are non-determined.

Regularity Properties

Donald A. Martin (1975) showed that

Every Borel set is determined.

Mycielski and Steinhaus (1962) proposed the following axiom, now known as the **Axiom of Determinacy** (AD):

Every set of reals is determined.

Theorem 2

Assume AD*. Then every set of reals is Lebesgue measurable, has the property of Baire, and has the perfect set property.*

Mazur Game

 \blacktriangleright Let $G(A, X)$ denote the game on ${}^{\omega}X$. Then $G(A) = G(A, \omega)$.

▶ *G*(*A, X*) for an *X* with $|X| = \omega$ and $A \subset \omega X$ is "equivalent to" a *G*(*A[∗]*) for some *A[∗] ⊂ ^ωω*.

The game for the property of Baire is the Mazur game $G_{\mathcal{M}}(A)$ formulated as follows:

$$
\begin{array}{c|cccc}\n1 & s_0 & s_2 & \cdots \\
\hline\n\end{array}
$$

where $s_i \in \langle^\omega \omega - \{\varnothing\}$. Let $x = s_0^\frown s_1^\frown s_2^\frown s_3^\frown \cdots$, then I wins if $x \in A$, and II wins otherwise.

Proposition 3 (Mazur, Banach)

For $A \subseteq \omega_{\omega}$,

- 1. *A* is meager iff II has a w.s. in $G_{\mathcal{M}}(A)$.
- 2. *O^s − A is meager for some s ∈ <ωω iff I has a w.s. in* $G_M(A)$.

Corollary 4

For $A \subseteq \omega$, let $C_A = \bigcup \{O_s \mid O_s - A$ is meager}. If $G_M(A - C_A)$ *is determined then A has the property of Baire.*

1. "*⇒*". Suppose *{Cⁱ | i < ω}* are (decreasing) dense open sets such that $A \cap (\bigcap_i C_i) = \varnothing$. Suppose $p = s_0$ [∼] · · · [∼] s_{n-1} is an *n*-round play. For each $s \in \frac{<\omega}{\omega}$, Let $\tau(p \cap s)$ be a $t \in \langle \omega \rangle \omega$ such that $O_{p \cap s \cap t} \subseteq C_n$.

1. "*⇒*". Suppose *{Cⁱ | i < ω}* are (decreasing) dense open sets such that $A \cap (\bigcap_i C_i) = \varnothing$. Suppose $p = s_0$ [∼] · · · [∼] s_{n-1} is an *n*-round play. For each $s \in \frac{<\omega}{\omega}$, Let $\tau(p \cap s)$ be a $t \in \langle \omega \rangle \omega$ such that $O_{p \cap s \cap t} \subseteq C_n$. " \Leftarrow ". Let τ be a w.s. for II. For each play p , let $D_p = \{x \in \omega \mid p \not\sqsubset x\} \cup (\bigcup \{O_{p^{\frown}s^{\frown}t} \mid t = \tau(p^{\frown}s), s \in \omega\})$. Then $A \cap \bigcap_p D_p = \varnothing$. Since τ is winning for II, D_p is open dense.

1. "*⇒*". Suppose *{Cⁱ | i < ω}* are (decreasing) dense open sets such that $A \cap (\bigcap_i C_i) = \varnothing$. Suppose $p = s_0$ [∼] · · · [∼] s_{n-1} is an *n*-round play. For each $s \in \frac{<\omega}{\omega}$, Let $\tau(p \cap s)$ be a $t \in \langle \omega \rangle \omega$ such that $O_{p \cap s \cap t} \subseteq C_n$. " \Leftarrow ". Let τ be a w.s. for II. For each play p , let $D_p = \{x \in \omega \mid p \not\sqsubset x\} \cup (\bigcup \{O_{p^{\frown}s^{\frown}t} \mid t = \tau(p^{\frown}s), s \in \omega\})$. Then $A \cap \bigcap_p D_p = \varnothing$. Since τ is winning for II, D_p is open dense. 2. " \Rightarrow ". Let $\sigma(\emptyset)$ be that *s*.

- 1. "*⇒*". Suppose *{Cⁱ | i < ω}* are (decreasing) dense open sets such that $A \cap (\bigcap_i C_i) = \varnothing$. Suppose $p = s_0$ [∼] · · · [∼] s_{n-1} is an *n*-round play. For each $s \in \frac{<\omega}{\omega}$, Let $\tau(p \cap s)$ be a $t \in \langle \omega \rangle \omega$ such that $O_{p \cap s \cap t} \subseteq C_n$. " \Leftarrow ". Let τ be a w.s. for II. For each play p , let $D_p = \{x \in \omega \mid p \not\sqsubset x\} \cup (\bigcup \{O_{p^{\frown}s^{\frown}t} \mid t = \tau(p^{\frown}s), s \in \omega\})$. Then $A \cap \bigcap_p D_p = \varnothing$. Since τ is winning for II, D_p is
- 2. " \Rightarrow ". Let $\sigma(\emptyset)$ be that *s*.

open dense.

" \Leftarrow ". Given σ , winning for I. $\sigma(\emptyset)$ is a such *s*.

1. Note that $C_A - A$ is meager. If II wins, then $A - C_A$ is meager, and then $A \Delta C_A = (C_A - A) \cup (A - C_A)$ is meager, therefore *A* has the property of Baire.

- 1. Note that $C_A A$ is meager. If II wins, then $A C_A$ is meager, and then $A \Delta C_A = (C_A - A) \cup (A - C_A)$ is meager, therefore *A* has the property of Baire.
- 2. If I wins. For some $s \in \langle \omega \omega, O_s (A C_A) \rangle$ is meager. $O_s - (A - C_A) \supset O_s - A$.

Thus $O_s - A$ is meager, and hence $O_s \subseteq C_A$. Then $O_s \cap (A - C_A) = (O_s \cap A) - (O_s \cap O_A) = \emptyset$, therefore $O_s - (A - C_A) = O_s$. This contradicts to the fact that *O^s* is not meager.

- 1. Note that $C_A A$ is meager. If II wins, then $A C_A$ is meager, and then $A \Delta C_A = (C_A - A) \cup (A - C_A)$ is meager, therefore *A* has the property of Baire.
- 2. If I wins. For some $s \in \langle \omega \omega, O_s (A C_A) \rangle$ is meager. $O_s - (A - C_A) \supset O_s - A$.

Thus $O_s - A$ is meager, and hence $O_s \subseteq C_A$. Then $O_s \cap (A - C_A) = (O_s \cap A) - (O_s \cap O_A) = \emptyset$, therefore $O_s - (A - C_A) = O_s$. This contradicts to the fact that *O^s* is not meager.

So I can not win!

An embedding

We shall present the other two games as games over *^ω*2. The following embedding *π* : *^ωω → ^ω*2 can transfer the results back to the Baire space *^ωω*.

$$
\pi(x) = s_{x(0)}^\frown s_{x(1)}^\frown s_{x(2)}^\frown \cdots
$$

where $s_{x(k)} = \underbrace{1 \cdots 1}$ $\sum_{x (k)}$ $x(k)$ 0 for even k , and $\underline{0\cdots 0}$ $\sum_{x (k)}$ *x*(*k*) 1 for odd k .

An embedding

We shall present the other two games as games over *^ω*2. The following embedding *π* : *^ωω → ^ω*2 can transfer the results back to the Baire space *^ωω*.

$$
\pi(x) = s_{x(0)}^\frown s_{x(1)}^\frown s_{x(2)}^\frown \cdots
$$

where $s_{x(k)} = \underbrace{1\cdots 1}0$ for even k , and $\underbrace{0\cdots 0}1$ for odd $k.$ ${\bf x}(k)$ ${\bf x}(k)$

It's easy to check that $\omega_2 - \text{ran}(\pi)$ is countable, and for *φ ∈ {*BP, PSP, LM*}*, for every set *X ⊆ ^ω*2,

 $\varphi(X)$ is true in $^\omega 2$ iff $\varphi(\pi^{-1}(X))$ is true in $^\omega \omega.$

Homework 4.4

- 1. Suppose *A ⊆ ^ωω* has the property of Baire. Show that *A* is nonmeager iff there is a nonempty open set *O ⊆ ^ωω* such that $O - A$ is meager.
- 2. Show that for any $A \subseteq \omega$, $C_A A$ contains no nonmeager sets, where *C^A* is as defined in Corollary 4.
- 3. Show that $\omega_2 \text{ran}(\pi)$ is countable, where π is the embedding defined in the previous slide.
- 4. Assume AD. Then AC*ω*(*^ωω*), i.e. every countable set consisting of non-empty sets of reals has a choice function. Consequently, $ω_1$ is regular.

Davis game

Davis game $G_{\mathcal{C}}(A)$ is formulated as follows:

$$
\begin{array}{c|cccc}\n1 & s_0 & s_2 & \cdots \\
\hline\n\end{array}
$$

 $\mathsf{where} \ s_i \in {}^{<\omega}2 - \{\varnothing\}, \ k_i \in \{0,1\}.$ Let $x = s_0^\frown \langle k_1 \rangle^\frown s_2^\frown \langle k_3 \rangle^\frown \cdots$.

I wins if *x ∈ A*, otherwise II wins.

Davis game

Davis game $G_{\mathcal{C}}(A)$ is formulated as follows:

$$
\begin{array}{c|cccc}\n1 & s_0 & s_2 & \cdots \\
\hline\n\end{array}
$$

 $\mathsf{where} \ s_i \in {}^{<\omega}2 - \{\varnothing\}, \ k_i \in \{0,1\}.$ Let $x = s_0^\frown \langle k_1 \rangle^\frown s_2^\frown \langle k_3 \rangle^\frown \cdots$.

I wins if *x ∈ A*, otherwise II wins.

Proposition 5 (Davis)

For any $A \subseteq {}^{\omega}2$,

- 1. *A* is countable iff II has a w.s. in $G_c(A)$.
- 2. A contains a perfect subset iff I has a w.s. in $G_c(A)$.

1. "*⇒*" is easy. Argue for "*⇐*". Let *τ* be a w.s. for II. Let *R*_{*τ*} = { $y * \tau | y \in \omega$ 2}, i.e. all the plays produced by τ . Then $A \cap R_{\tau} = \emptyset$. Thus for each $x \in A$, there is a play $p_x = \langle s_0, k_0, \dots, s_n, k_n \rangle$ such that

$$
p_x^* = s_0^{\widehat{\ }} \langle k_0 \rangle^{\widehat{\ }} \cdots s_n^{\widehat{\ }} \langle k_n \rangle \sqsubset x,
$$

and no matter what I plays with along *x*, he is defeated by τ , i.e. for every $i \geq |p^*|$, $x(i) = 1 - \tau(x \mid i)$.

1. "*⇒*" is easy. Argue for "*⇐*". Let *τ* be a w.s. for II. Let *R*_{*τ*} = { $y * \tau | y \in \omega$ 2}, i.e. all the plays produced by τ . Then $A \cap R_{\tau} = \emptyset$. Thus for each $x \in A$, there is a play $p_x = \langle s_0, k_0, \ldots, s_n, k_n \rangle$ such that

$$
p_x^* = s_0^{\widehat{\ }} \langle k_0 \rangle^{\widehat{\ }} \cdots s_n^{\widehat{\ }} \langle k_n \rangle \sqsubset x,
$$

and no matter what I plays with along *x*, he is defeated by τ , i.e. for every $i \geq |p^*|$, $x(i) = 1 - \tau(x \mid i)$.

2. Let $T \subseteq \langle \omega_2 \rangle$ be a perfect tree such that $[T] \subseteq A$. Suppose p is an n -round play, let $\sigma(p)$ to be the next splitting node extending p^* . Then σ is a w.s. for I.

Harrington Game

For
$$
A \subset \omega_2
$$
 and $\varepsilon \in \mathbb{R}^+$, $G_N(A, \varepsilon)$ is
\n
$$
\begin{array}{c|ccccc}\n & i_0 & i_1 & \cdots \\
\hline\n\text{II} & \bar{s}_0 & \bar{s}_1 & \cdots\n\end{array}
$$

where $i_k \in \{0,1\}$, $\bar{s}_k \in [\text{``}2-\{\varnothing\}]^{<\omega}$ with the additional requirement

$$
\mu(N_{\bar{s}_k}) < \varepsilon/2^{2(n+1)}, \quad N_{\bar{s}_k} = \bigcup_j O_{\bar{s}_k(j)}.
$$

Let $x = \langle i_0 i_1 \cdots \rangle$. I wins iff $x \in A - \bigcup_k N_{\bar{s}_k}$, otherwise II wins.

(Here $\mu(O_s) = 1/2^{\text{dom}(s)}$ for each $s \in \frac{<\omega_2}{s}$.)

Proposition 6

In
$$
G_N(A, \varepsilon)
$$
, $A \subset {}^{\omega}2$ and $\varepsilon \in \mathbb{R}^+$,

- 1. *If I has a w.s. then there is a Lebesgue measurable* $B \subseteq A$ *such that* $\mu(B) > 0$ *.*
- 2. If II has a w.s. then there is an open set $O \supseteq A$ s.t. $\mu(O) < \varepsilon$.

Proposition 6

In
$$
G_N(A, \varepsilon)
$$
, $A \subset {}^{\omega}2$ and $\varepsilon \in \mathbb{R}^+$,

- 1. *If I has a w.s. then there is a Lebesgue measurable* $B \subseteq A$ *such that* $\mu(B) > 0$ *.*
- 2. If II has a w.s. then there is an open set $O \supseteq A$ s.t. $\mu(O) < \varepsilon$.

Corollary 7

For A ⊆ ^ωω, let Q^A ⊇ A be Lebesgue measurable and with $\mu(Q_A)$ *minimal. Then if* $G_N(Q_A-A,\varepsilon)$ *is determined for every* $\varepsilon > 0$, then *A is Lebesgue measurable.*

By choice of *QA*, II must have a winning strategy in $G_N(Q_A - A, 1/n)$ for each $n < \omega$. Hence

$$
Q_A - A \subseteq \bigcap_n C_n,
$$

where $\mu(C_n) < 1/n$, for each *n*. Therefore $\mu(Q_A - A) = 0$ and *A* is Lebesgue measurable with $\mu(A) = \mu(Q_A)$.