Elementary Set Theory

Xianghui Shi

School of Mathematical Sciences Beijing Normal University

Fall 2024

Additional Topic

GAMES ON REALS¹

¹Cf. The Higher Infinite, by A. Kanamori, Chapter 27

Infinite Games

For $A \subseteq {}^{\omega}\omega$, G(A) denotes the following two-person game:

where each $x_i \in \omega$.

- Each choice is a **move** of the game.
- The result $x = \langle x_i : i < \omega \rangle \in {}^{\omega}\omega$ is a play of the game.
- A is called the **payoff** for the game G(A).
- Rule: I wins if $x \in A$, otherwise II wins.

For $s \in {}^{<\omega}\omega$, let $G_s(A)$ be G(A) restricted to O_s , i.e.

▶ I wins if $s^{\uparrow}x \in O_s \cap A$, and II wins if $s^{\uparrow}x \in O_s - A$.

A strategy for I is a function

$$\sigma: \bigcup_n {}^{2n}\omega \to \omega$$

that tells him what to play next given the previous moves. Given II's moves $y = \langle y_n = x_{2n+1} : n < \omega \rangle \in {}^{\omega}\omega$, σ produces a play $\sigma * y \in {}^{\omega}\omega$.

• σ is a winning strategy (w.s.) for I iff

$$\{\sigma * y \mid y \in {}^{\omega}\omega\} \subseteq A,$$

i.e. no matter what moves II makes, plays according to σ always yield members of A.

Analogously,

▶ a strategy for II is a function $\tau : \bigcup_n {}^{2n+1}\omega \to \omega$.

 $\blacktriangleright \ \tau$ is a winning strategy for II iff

$$\{z * \tau \mid z \in {}^{\omega}\omega\} \cap A = \emptyset,$$

where $z\ast\tau$ is the result of applying τ to a move sequence z played by I.

Analogously,

• a strategy for II is a function $\tau : \bigcup_n {}^{2n+1}\omega \to \omega$.

 $\blacktriangleright \ \tau$ is a winning strategy for II iff

$$\{z * \tau \mid z \in {}^{\omega}\omega\} \cap A = \emptyset,$$

where $z\ast\tau$ is the result of applying τ to a move sequence z played by I.

G(A) is **determined** iff a player has a winning strategy.

Note that the players cannot both have winning strategies.

A is **determined** iff G(A) is determined.

Determined Sets

Theorem 1

- 1. If $|A| < \mathfrak{c} = |^{\omega}\omega|$, then I cannot have a winning strategy. Similarly, II cannot have a w.s., if $|^{\omega}\omega - A| < \mathfrak{c}$.
- 2. (Gale-Stewart). If $A \subseteq {}^{\omega}\omega$ is either open or closed then G(A) is determined.
- 3. (*Gale-Stewart*). AC implies that there is a set of reals which is not determined.

Proof

- 1. Each w.s. induces an injective function from $^{\omega}\omega$ to $^{\omega}\omega.$
- 2. Let $A_s = A \cap O_s$. Consider $s \in {}^{2n}\omega$. Note that
 - If I has no w.s. in $G_s(A)$ then

 $\forall i \exists j \ (I \text{ has no w.s. in } G_{s^{\frown}\langle ij \rangle}(A)).$

In this case, let $\tau(s^{\frown}\langle i \rangle) =$ least j as above.

 If I has no w.s. in G_s(A) then |O_s ∩ A^c| > 1. So every play produced by τ is a limit point of A^c.
 Suppose A is open and I has no w.s, then every play produced by τ are in A^c, thus II has a w.s.

Proof

- 1. Each w.s. induces an injective function from ${}^{\omega}\omega$ to ${}^{\omega}\omega$.
- 2. Let $A_s = A \cap O_s$. Consider $s \in {}^{2n}\omega$. Note that
 - If I has no w.s. in $G_s(A)$ then

 $\forall i \exists j \ (I \text{ has no w.s. in } G_{s^{\frown}\langle ij \rangle}(A)).$

In this case, let $\tau(s^{\frown}\langle i \rangle) =$ least j as above.

- If I has no w.s. in G_s(A) then |O_s ∩ A^c| > 1. So every play produced by τ is a limit point of A^c.
 Suppose A is open and I has no w.s, then every play produced by τ are in A^c, thus II has a w.s.
- By AC, there are c many strategies. And for each strategy σ (or τ), the corresponding set R_σ (or R_τ) of plays {σ * x | x ∈ ^ωω} (for I) or {x * τ | x ∈ ^ωω} (for II) has size c. Choose a play (without repetition) from each R_σ (or R_τ). This gives two disjoint sets, one from R_σ's, the other from R_τ's. They are non-determined.

Regularity Properties

Donald A. Martin (1975) showed that

Every Borel set is determined.

Mycielski and Steinhaus (1962) proposed the following axiom, now known as the **Axiom of Determinacy** (AD):

Every set of reals is determined.

Theorem 2

Assume AD. Then every set of reals is Lebesgue measurable, has the property of Baire, and has the perfect set property.

Mazur Game

• Let G(A, X) denote the game on ${}^{\omega}X$. Then $G(A) = G(A, \omega)$.

• G(A, X) for an X with $|X| = \omega$ and $A \subset {}^{\omega}X$ is "equivalent to" a $G(A^*)$ for some $A^* \subset {}^{\omega}\omega$.

The game for the property of Baire is the Mazur game $G_{\mathcal{M}}(A)$ formulated as follows:

where $s_i \in {}^{<\omega}\omega - \{\emptyset\}$. Let $x = s_0 {}^{\circ}s_1 {}^{\circ}s_2 {}^{\circ}s_3 {}^{\circ}\cdots$, then I wins if $x \in A$, and II wins otherwise.

Proposition 3 (Mazur, Banach)

For $A \subseteq {}^{\omega}\omega$,

- 1. A is meager iff II has a w.s. in $G_{\mathcal{M}}(A)$.
- 2. $O_s A$ is meager for some $s \in {}^{<\omega}\omega$ iff I has a w.s. in $G_{\mathcal{M}}(A)$.

Corollary 4

For $A \subseteq {}^{\omega}\omega$, let $C_A = \bigcup \{O_s \mid O_s - A \text{ is meager}\}$. If $G_{\mathcal{M}}(A - C_A)$ is determined then A has the property of Baire.

1. " \Rightarrow ". Suppose $\{C_i \mid i < \omega\}$ are (decreasing) dense open sets such that $A \cap (\bigcap_i C_i) = \emptyset$. Suppose $p = s_0^{\frown} \cdots ^{\frown} s_{n-1}$ is an *n*-round play. For each $s \in {}^{<\omega}\omega$, let $\tau(p \cap s)$ be a $t \in {}^{<\omega}\omega$ such that $O_{p \cap s \cap t} \subseteq C_n$.

"⇒". Suppose {C_i | i < ω} are (decreasing) dense open sets such that A ∩ (∩_i C_i) = Ø. Suppose p = s₀[^] ··· [^] s_{n-1} is an n-round play. For each s ∈ ^{<ω}ω, let τ(p[^]s) be a t ∈ ^{<ω}ω such that O_{p[^]s[^]t} ⊆ C_n.
 "⇐". Let τ be a w.s. for II. For each play p, let D_p = {x ∈ ^ωω | p ⊭ x}∪(∪{O_{p[^]s[^]t} | t = τ(p[^]s), s ∈ ^{<ω}ω}). Then A ∩ ∩_p D_p = Ø. Since τ is winning for II, D_p is open dense.

- "⇒". Suppose {C_i | i < ω} are (decreasing) dense open sets such that A ∩ (∩_i C_i) = Ø. Suppose p = s₀[^] ··· [^] s_{n-1} is an n-round play. For each s ∈ ^{<ω}ω, let τ(p[^]s) be a t ∈ ^{<ω}ω such that O_{p[^]s[^]t} ⊆ C_n.
 "⇐". Let τ be a w.s. for II. For each play p, let D_p = {x ∈ ^ωω | p ⊭ x}∪(∪{O_{p[^]s[^]t} | t = τ(p[^]s), s ∈ ^{<ω}ω}). Then A ∩ ∩_p D_p = Ø. Since τ is winning for II, D_p is open dense.
- 2. " \Rightarrow ". Let $\sigma(\emptyset)$ be that s.

- "⇒". Suppose {C_i | i < ω} are (decreasing) dense open sets such that A ∩ (∩_i C_i) = Ø. Suppose p = s₀ ^ · · · ^ s_{n-1} is an n-round play. For each s ∈ ^{<ω}ω, let τ(p ^ s) be a t ∈ ^{<ω}ω such that O_{p^{*}s⁺t} ⊆ C_n.
 "⇐". Let τ be a w.s. for II. For each play p, let D_p = {x ∈ ^ωω | p ⊄ x}∪(∪{O_{p^{*}s⁺t} | t = τ(p^{*}s), s ∈ ^{<ω}ω}). Then A ∩ ∩_p D_p = Ø. Since τ is winning for II, D_p is open dense.
- "⇒". Let σ(Ø) be that s.
 "⇐". Given σ, winning for I. σ(Ø) is a such s.

1. Note that $C_A - A$ is meager. If II wins, then $A - C_A$ is meager, and then $A \Delta C_A = (C_A - A) \cup (A - C_A)$ is meager, therefore A has the property of Baire.

- 1. Note that $C_A A$ is meager. If II wins, then $A C_A$ is meager, and then $A \Delta C_A = (C_A A) \cup (A C_A)$ is meager, therefore A has the property of Baire.
- 2. If I wins. For some $s \in {}^{<\omega}\omega, O_s (A C_A)$ is meager. $O_s - (A - C_A) \supset O_s - A.$

Thus $O_s - A$ is meager, and hence $O_s \subseteq C_A$. Then $O_s \cap (A - C_A) = (O_s \cap A) - (O_s \cap O_A) = \emptyset$, therefore $O_s - (A - C_A) = O_s$. This contradicts to the fact that O_s is not meager.

- 1. Note that $C_A A$ is meager. If II wins, then $A C_A$ is meager, and then $A \Delta C_A = (C_A A) \cup (A C_A)$ is meager, therefore A has the property of Baire.
- 2. If I wins. For some $s \in {}^{<\omega}\omega, O_s (A C_A)$ is meager. $O_s - (A - C_A) \supset O_s - A.$

Thus $O_s - A$ is meager, and hence $O_s \subseteq C_A$. Then $O_s \cap (A - C_A) = (O_s \cap A) - (O_s \cap O_A) = \emptyset$, therefore $O_s - (A - C_A) = O_s$. This contradicts to the fact that O_s is not meager.

So I can not win!

An embedding

We shall present the other two games as games over ${}^{\omega}2$. The following embedding $\pi : {}^{\omega}\omega \to {}^{\omega}2$ can transfer the results back to the Baire space ${}^{\omega}\omega$.

$$\pi(x) = s_{x(0)} \, s_{x(1)} \, s_{x(2)} \, \cdots$$

where $s_{x(k)} = \underbrace{1 \cdots 1}_{x(k)} 0$ for even k, and $\underbrace{0 \cdots 0}_{x(k)} 1$ for odd k.

An embedding

We shall present the other two games as games over ${}^{\omega}2$. The following embedding $\pi : {}^{\omega}\omega \to {}^{\omega}2$ can transfer the results back to the Baire space ${}^{\omega}\omega$.

$$\pi(x) = s_{x(0)} \, s_{x(1)} \, s_{x(2)} \, \cdots$$

where $s_{x(k)} = \underbrace{1 \cdots 1}_{x(k)} 0$ for even k, and $\underbrace{0 \cdots 0}_{x(k)} 1$ for odd k.

It's easy to check that ${}^{\omega}2 - \operatorname{ran}(\pi)$ is countable, and for $\varphi \in \{\text{BP, PSP, LM}\}$, for every set $X \subseteq {}^{\omega}2$,

 $\varphi(X)$ is true in ${}^{\omega}2$ iff $\varphi(\pi^{-1}(X))$ is true in ${}^{\omega}\omega$.

Homework 4.4

- 1. Suppose $A \subseteq {}^{\omega}\omega$ has the property of Baire. Show that A is nonmeager iff there is a nonempty open set $O \subseteq {}^{\omega}\omega$ such that O A is meager.
- 2. Show that for any $A \subseteq {}^{\omega}\omega$, $C_A A$ contains no nonmeager sets, where C_A is as defined in Corollary 4.
- 3. Show that ${}^{\omega}2 ran(\pi)$ is countable, where π is the embedding defined in the previous slide.
- 4. Assume AD. Then $AC_{\omega}(^{\omega}\omega)$, i.e. every countable set consisting of non-empty sets of reals has a choice function. Consequently, ω_1 is regular.

Davis game

Davis game $G_{\mathcal{C}}(A)$ is formulated as follows:

where $s_i \in {}^{<\omega}2 - \{\varnothing\}$, $k_i \in \{0, 1\}$. Let $x = s_0 {}^{\land} \langle k_1 \rangle {}^{\land} s_2 {}^{\land} \langle k_3 \rangle {}^{\land} \cdots$.

I wins if $x \in A$, otherwise II wins.

Davis game

Davis game $G_{\mathcal{C}}(A)$ is formulated as follows:

where $s_i \in {}^{<\omega}2 - \{\varnothing\}$, $k_i \in \{0, 1\}$. Let $x = s_0 {}^{\land} \langle k_1 \rangle {}^{\land} s_2 {}^{\land} \langle k_3 \rangle {}^{\land} \cdots$.

I wins if $x \in A$, otherwise II wins.

Proposition 5 (Davis)

For any $A \subseteq {}^{\omega}2$,

- 1. A is countable iff II has a w.s. in $G_{\mathcal{C}}(A)$.
- 2. A contains a perfect subset iff I has a w.s. in $G_{\mathcal{C}}(A)$.

1. "⇒" is easy. Argue for "⇐". Let τ be a w.s. for II. Let $R_{\tau} = \{y * \tau \mid y \in {}^{\omega}2\}$, i.e. all the plays produced by τ . Then $A \cap R_{\tau} = \emptyset$. Thus for each $x \in A$, there is a play $p_x = \langle s_0, k_0, \ldots, s_n, k_n \rangle$ such that

$$p_x^* = s_0^{\frown} \langle k_0 \rangle^{\frown} \cdots s_n^{\frown} \langle k_n \rangle \sqsubset x,$$

and no matter what I plays with along x, he is defeated by τ , i.e. for every $i \ge |p^*|$, $x(i) = 1 - \tau(x \restriction i)$.

1. " \Rightarrow " is easy. Argue for " \Leftarrow ". Let τ be a w.s. for II. Let $R_{\tau} = \{y * \tau \mid y \in {}^{\omega}2\}$, i.e. all the plays produced by τ . Then $A \cap R_{\tau} = \varnothing$. Thus for each $x \in A$, there is a play $p_x = \langle s_0, k_0, \ldots, s_n, k_n \rangle$ such that

$$p_x^* = s_0^{\frown} \langle k_0 \rangle^{\frown} \cdots s_n^{\frown} \langle k_n \rangle \sqsubset x,$$

and no matter what I plays with along x, he is defeated by $\tau,$ i.e. for every $i\geq |p^*|,$ $x(i)=1-\tau(x{\upharpoonright} i).$

2. Let $T \subseteq {}^{<\omega}2$ be a perfect tree such that $[T] \subseteq A$. Suppose p is an n-round play, let $\sigma(p)$ to be the next splitting node extending p^* . Then σ is a w.s. for I.

Harrington Game

For
$$A \subset {}^{\omega}2$$
 and $\varepsilon \in \mathbb{R}^+$, $G_{\mathcal{N}}(A, \varepsilon)$ is
$$\begin{array}{c|c} \mathbf{I} & i_0 & i_1 & \cdots \\ \hline \mathbf{II} & \bar{s}_0 & \bar{s}_1 & \cdots \end{array}$$

where $i_k \in \{0,1\}$, $\bar{s}_k \in [{}^{<\omega}2 - \{\varnothing\}]{}^{<\omega}$ with the additional requirement

$$\mu(N_{\bar{s}_k}) < \varepsilon/2^{2(n+1)}, \quad N_{\bar{s}_k} = \bigcup_j O_{\bar{s}_k(j)}.$$

Let $x = \langle i_0 i_1 \cdots \rangle$. I wins iff $x \in A - \bigcup_k N_{\bar{s}_k}$, otherwise II wins.

(Here $\mu(O_s) = 1/2^{\text{dom}(s)}$ for each $s \in {}^{<\omega}2$.)

Proposition 6

In
$$G_{\mathcal{N}}(A,\varepsilon)$$
, $A\subset {}^\omega 2$ and $\varepsilon\in \mathbb{R}^+$,

- 1. If I has a w.s. then there is a Lebesgue measurable $B \subseteq A$ such that $\mu(B) > 0$.
- 2. If II has a w.s. then there is an open set $O \supseteq A$ s.t. $\mu(O) < \varepsilon$.

Proposition 6

In
$$G_{\mathcal{N}}(A,\varepsilon)$$
, $A\subset {}^\omega 2$ and $\varepsilon\in \mathbb{R}^+$,

- 1. If I has a w.s. then there is a Lebesgue measurable $B \subseteq A$ such that $\mu(B) > 0$.
- 2. If II has a w.s. then there is an open set $O \supseteq A$ s.t. $\mu(O) < \varepsilon$.

Corollary 7

For $A \subseteq {}^{\omega}\omega$, let $Q_A \supseteq A$ be Lebesgue measurable and with $\mu(Q_A)$ minimal. Then if $G_{\mathcal{N}}(Q_A - A, \varepsilon)$ is determined for every $\varepsilon > 0$, then A is Lebesgue measurable.

By choice of $Q_A,$ II must have a winning strategy in $G_{\!\mathcal{N}}(Q_A-A,1/n)$ for each $n<\omega.$ Hence

$$Q_A - A \subseteq \bigcap_n C_n,$$

where $\mu(C_n) < 1/n$, for each n. Therefore $\mu(Q_A - A) = 0$ and A is Lebesgue measurable with $\mu(A) = \mu(Q_A)$.