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Additional Topic

GAMES ON REALS!

LCf. The Higher Infinite, by A. Kanamori, Chapter 27
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Infinite Games

For A C “w, G(A) denotes the following two-person game:

| ‘ ZTo i)

I ‘ T T3
where each z; € w.
» Each choice is a move of the game.
» The result z = (z; : i < w) € “w is a play of the game.
> A is called the payoff for the game G(A).

» Rule: | wins if z € A, otherwise Il wins.

For s € <“w, let Gs(A) be G(A) restricted to O, i.e.
» | winsif sz € O, N A, and Il wins if s"z € O, — A.
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» A strategy for [ is a function

o:,"w—w
that tells him what to play next given the previous moves.
Given II's moves y = (y, = Top41 : 1 < w) € “w, o produces
aplay oxy € “w.

| ‘ up = 0(0) ur = o(up"Yo)

o(uo”yo " u1"y1)
I

Yo Y1

» o is a winning strategy (w.s.) for | iff
{oxy|ye“w} C A,

i.e. no matter what moves Il makes, plays according to o
always yield members of A.
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Analogously,
> a strategy for Il is a function 7 : |, *""'w — w.
» 7 is a winning strategy for Il iff
{zx7|2z€“w}NA=0,
where z * 7 is the result of applying 7 to a move sequence
z played by I.
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Analogously,
H H . 2n+1
» a strategy for Il is a function 7: |, *""'w — w.

» 7 is a winning strategy for Il iff
{zx7|2z€ w}NA=2a,

where z * 7 is the result of applying 7 to a move sequence
z played by I.

|
G(A) is determined iff a player has a winning strategy.
Note that the players cannot both have winning strategies.

A is determined iff G(A) is determined.
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Determined Sets

1. If|A] < ¢ = |“w|, then | cannot have a winning strategy.
Similarly, Il cannot have a w.s., if [“w — A| < c.

2. (Gale-Stewart). If A C “w is either open or closed then
G(A) is determined.

3. (Gale-Stewart). AC implies that there is a set of reals
which is not determined.
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Proof

1. Each w.s. induces an injective function from “w to “w.
2. Let A, = AN O,. Consider s € >"w. Note that
» If | has no w.s. in G4(A) then
Vidj (I has no w.s. in Gy ;5 (A)).
In this case, let T(s™(i)) = least j as above.
» If | has no w.s. in Gs(A) then |Os N A¢| > 1.
So every play produced by T is a limit point of A°.
Suppose A is open and | has no w.s, then every play
produced by 7 are in A€, thus Il has a w.s.
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Proof

1. Each w.s. induces an injective function from “w to “w.
2. Let A, = AN O,. Consider s € >"w. Note that
» If | has no w.s. in G4(A) then
Vidj (I has no w.s. in Gy ;5 (A)).
In this case, let T(s™(i)) = least j as above.
» If | has no w.s. in Gs(A) then |Os N A¢| > 1.

So every play produced by T is a limit point of A°.
Suppose A is open and | has no w.s, then every play
produced by 7 are in A€, thus Il has a w.s.

3. By AC, there are ¢ many strategies. And for each strategy
o (or 7), the corresponding set R, (or R;) of plays
{oxx|ze“w} (forl) or {xx7|xec“w} (forll)
has size ¢. Choose a play (without repetition) from each
R, (or R;). This gives two disjoint sets, one from R,’s,
the other from R,'s. They are non-determined.
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Regularity Properties

Donald A. Martin (1975) showed that
Every Borel set is determined.

Mycielski and Steinhaus (1962) proposed the following axiom,
now known as the Axiom of Determinacy (AD):

Every set of reals is determined.

Theorem 2

Assume AD. Then every set of reals is Lebesgue measurable,
has the property of Baire, and has the perfect set property.
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Mazur Game

> Let G(A, X) denote the game on “X.
Then G(A) = G(A,w).

» G(A,X) for an X with | X|=wand A C“X is
“equivalent to” a G(A*) for some A* C “w.

The game for the property of Baire is the Mazur game Gy(A)
formulated as follows:

| ‘ So S9

[ ‘ S1 S3

where s; € <“w — {T}. Let x = s07517 827837 - - -, then |
wins if z € A, and Il wins otherwise.
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Proposition 3 (Mazur, Banach)

For A C “w),
1. A is meager iff Il has a w.s. in Gy(A).

2. O, — A is meager for some s € <“w iff | has a w.s. in

Ga(A).

Corollary 4

For A C“w, let Cy = |J{Os | O5s — A is meager}. If
Gum(A — Cy) is determined then A has the property of Baire.
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Proof of Proposition 3

1. “=". Suppose {C; | i < w} are (decreasing) dense open
sets such that AN (), C;) = @. Suppose
p =89 -+ "8,_1 is an n-round play. For each s € <“w,
let 7(p~s) be at € <“w such that Op-4~, C C,.
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1. “=". Suppose {C; | i < w} are (decreasing) dense open
sets such that AN (), C;) = @. Suppose
p =89 -+ "8,_1 is an n-round play. For each s € <“w,
let 7(p~s) be at € <“w such that Op-4~, C C,.

“«<". Let 7 be a w.s. for Il. For each play p, let

Dp = {ZL‘ € ww | p IZ x}U(U{Op“s“t | = T(pr\3>a ENS <ww})'
Then AN, D, = @. Since 7 is winning for Il, D, is
open dense.

2. "=". Let 0(@) be that s.

“«<". Given o, winning for |. ¢(@) is a such s.
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Proof of Corollary 4

1. Note that C'y — A is meager. If Il wins, then A — Cy is
meager, and then AACy = (Ca — A)U (A —Cjy) is
meager, therefore A has the property of Baire.
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Proof of Corollary 4

1. Note that C'y — A is meager. If Il wins, then A — Cy is
meager, and then AACy = (Ca — A)U (A —Cjy) is
meager, therefore A has the property of Baire.

2. If I wins. For some s € <“w, Oy — (A — C}4) is meager.
Os — (A—=Cy) 20, — A.

Thus O, — A is meager, and hence O, C C'4. Then
OsN(A—=Cy)=(0sNA)— (0sNO4) =, therefore
Os — (A — Cy4) = Os. This contradicts to the fact that
Oy is not meager.
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Proof of Corollary 4

1. Note that C'y — A is meager. If Il wins, then A — Cy is
meager, and then AACy = (Cy — A)U(A—Chy)is
meager, therefore A has the property of Baire.

2. If I wins. For some s € <“w, Oy — (A — C}4) is meager.

Os — (A—=Cy) 20, — A.
Thus O, — A is meager, and hence O, C C'4. Then
OsN(A—=Cy)=(0sNA)— (0sNO4) =, therefore
Os — (A — Cy4) = Os. This contradicts to the fact that
Oy is not meager.

So | can not win!
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An embedding

We shall present the other two games as games over “2. The
following embedding 7 : “w — “2 can transfer the results back
to the Baire space “w.
m(z) = S2(0) Sz(1) Sz(2) -
where s, = 1 -(- -)10 for even k, and 0 ~(~ -)01 for odd k.
z(k z(k
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An embedding

We shall present the other two games as games over “2. The
following embedding 7 : “w — “2 can transfer the results back
to the Baire space “w.

m(z) = S2(0) Sz(1) Sz(2) -
where s,y =1---10 for even k, and 0---01 for odd k.
(k) (k)

It's easy to check that “2 — ran(7) is countable, and for
¢ € {BP, PSP, LM}, for every set X C “2,

©(X) is true in “2 iff o(771(X)) is true in “w.
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Homework 4.4

1. Suppose A C “w has the property of Baire. Show that A
is nonmeager iff there is a nonempty open set O C “w
such that O — A is meager.

2. Show that for any A C “w, C4 — A contains no
nonmeager sets, where C'4 is as defined in Corollary 4.

3. Show that “2 — ran(w) is countable, where 7 is the
embedding defined in the previous slide.

4. Assume AD. Then AC,(“w), i.e. every countable set
consisting of non-empty sets of reals has a choice
function. Consequently, w; is regular.
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Davis game

Davis game G¢(A) is formulated as follows:

| ‘ S0 S9

Il ki ks

where s; € <“2 — {@}, k; € {0,1}. Let
xr = SOA<I€1>A82A<I€3>A e

| wins if z € A, otherwise Il wins.
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Davis game

Davis game G¢(A) is formulated as follows:

| ‘ S0 S9

Il ki ks

where s; € <“2 — {@}, k; € {0,1}. Let
xr = SOA<I€1>A82A<I€3>A e

| wins if z € A, otherwise Il wins.

Proposition 5 (Davis)

For any A C “2,
1. A is countable iff Il has a w.s. in G¢(A).
2. A contains a perfect subset iff | has a w.s. in G¢(A).
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Proof of Proposition 5

1. “="is easy. Argue for “<". Let 7 be a w.s. for II. Let
R. ={y=*7 |y €“2}, ie. all the plays produced by 7.
Then AN R, = &. Thus for each x € A, there is a play
Pz = (S0, ko, - - -, Sn, kn) such that

Py = 80" (ko) -+ 80" (kn) C ,

and no matter what | plays with along x, he is defeated
by 7, i.e. for every i > |p*|, x(i) = 1 — 7(x[17).
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1. “="is easy. Argue for “<". Let 7 be a w.s. for II. Let
R. ={y=*7 |y €“2}, ie. all the plays produced by 7.
Then AN R, = &. Thus for each x € A, there is a play
Pz = (S0, ko, - - -, Sn, kn) such that

Py = 80" (ko) -+ 80" (kn) C ,
and no matter what | plays with along x, he is defeated
by 7, i.e. for every i > |p*|, x(i) = 1 — 7(x[17).

2. Let T C <¥2 be a perfect tree such that [T] C A.
Suppose p is an n-round play, let o(p) to be the next
splitting node extending p*. Then o is a w.s. for .
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Harrington Game

For A C“2 and e € RY, Gy (4,¢) is

L i

I ‘ So S1

where i, € {0,1}, 5, € [*¥2 — {@}]<“ with the additional
requirement

1(Ns,) < 5/22(n+1)7 N5, = Uj Os,.()-

Let © = (igty ---). | wins iff z € A—{J, N;,, otherwise Il wins.

(Here p(Og) = 1/29°m(9) for each s € <<2.)
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In Gy (Aye), AC¥2 and e € RT,

1. If | has a w.s. then there is a Lebesgue measurable
B C A such that u(B) > 0.

2. If Il has a w.s. then there is an open set O O A s.t.
u(0) < e.
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Proposition 6
In Gy (Aye), AC¥2 and e € RT,

1. If | has a w.s. then there is a Lebesgue measurable
B C A such that u(B) > 0.

2. If Il has a w.s. then there is an open set O D A s.t.
u(0) < e.

Corollary 7

For A C“w, let Q4 O A be Lebesgue measurable and with
w(Qa) minimal. Then if Gy(Qa — A, €) is determined for
every € > 0, then A is Lebesgue measurable.
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Proof of Corollary 7

By choice of @4, Il must have a winning strategy in
Gy (Qa — A, 1/n) for each n < w. Hence

QA_AgﬂnCna

where u(C,,) < 1/n, for each n. Therefore p(Qa — A) =
and A is Lebesgue measurable with p(A) = u(Qa4).
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