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Additional Topic

Games on Reals1

1Cf. The Higher Infinite, by A. Kanamori, Chapter 27
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Infinite Games

For A ⊆ ωω, G(A) denotes the following two-person game:

I x0 x2 · · ·
II x1 x3 · · ·

where each xi ∈ ω.
▶ Each choice is a move of the game.
▶ The result x = ⟨xi : i < ω⟩ ∈ ωω is a play of the game.
▶ A is called the payoff for the game G(A).
▶ Rule: I wins if x ∈ A, otherwise II wins.

For s ∈ <ωω, let Gs(A) be G(A) restricted to Os, i.e.
▶ I wins if s⌢x ∈ Os ∩ A, and II wins if s⌢x ∈ Os − A.
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▶ A strategy for I is a function
σ :

⋃
n
2nω → ω

that tells him what to play next given the previous moves.
Given II’s moves y = ⟨yn = x2n+1 : n < ω⟩ ∈ ωω, σ produces
a play σ ∗ y ∈ ωω.

I u0 = σ(0) u1 = σ(u0
⌢y0) σ(u0

⌢y0⌢u1
⌢y1)

II y0 y1 · · ·

▶ σ is a winning strategy (w.s.) for I iff
{σ ∗ y | y ∈ ωω} ⊆ A,

i.e. no matter what moves II makes, plays according to σ
always yield members of A.
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Analogously,
▶ a strategy for II is a function τ :

⋃
n
2n+1ω → ω.

▶ τ is a winning strategy for II iff
{z ∗ τ | z ∈ ωω} ∩ A = ∅,

where z ∗ τ is the result of applying τ to a move sequence
z played by I.

G(A) is determined iff a player has a winning strategy.

Note that the players cannot both have winning strategies.

A is determined iff G(A) is determined.
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Determined Sets

Theorem 1
1. If |A| < c = |ωω|, then I cannot have a winning strategy.

Similarly, II cannot have a w.s., if |ωω − A| < c.

2. (Gale-Stewart). If A ⊆ ωω is either open or closed then
G(A) is determined.

3. (Gale-Stewart). AC implies that there is a set of reals
which is not determined.
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Proof
1. Each w.s. induces an injective function from ωω to ωω.
2. Let As = A ∩Os. Consider s ∈ 2nω. Note that

▶ If I has no w.s. in Gs(A) then
∀i∃j (I has no w.s. in Gs⌢⟨ij⟩(A)).

In this case, let τ(s⌢⟨i⟩) = least j as above.
▶ If I has no w.s. in Gs(A) then |Os ∩Ac| > 1.

So every play produced by τ is a limit point of Ac.
Suppose A is open and I has no w.s, then every play
produced by τ are in Ac, thus II has a w.s.

3. By AC, there are c many strategies. And for each strategy
σ (or τ), the corresponding set Rσ (or Rτ ) of plays

{σ ∗ x | x ∈ ωω} (for I) or {x ∗ τ | x ∈ ωω} (for II)
has size c. Choose a play (without repetition) from each
Rσ (or Rτ ). This gives two disjoint sets, one from Rσ’s,
the other from Rτ ’s. They are non-determined.
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Regularity Properties

Donald A. Martin (1975) showed that

Every Borel set is determined.

Mycielski and Steinhaus (1962) proposed the following axiom,
now known as the Axiom of Determinacy (AD):

Every set of reals is determined.

Theorem 2
Assume AD. Then every set of reals is Lebesgue measurable,
has the property of Baire, and has the perfect set property.
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Mazur Game

▶ Let G(A,X) denote the game on ωX.
Then G(A) = G(A,ω).

▶ G(A,X) for an X with |X| = ω and A ⊂ ωX is
“equivalent to” a G(A∗) for some A∗ ⊂ ωω.

The game for the property of Baire is the Mazur game GM(A)
formulated as follows:

I s0 s2 · · ·
II s1 s3 · · ·

where si ∈ <ωω − {∅}. Let x = s0
⌢s1

⌢s2
⌢s3

⌢ · · · , then I
wins if x ∈ A, and II wins otherwise.
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Proposition 3 (Mazur, Banach)
For A ⊆ ωω,

1. A is meager iff II has a w.s. in GM(A).
2. Os − A is meager for some s ∈ <ωω iff I has a w.s. in

GM(A).

Corollary 4
For A ⊆ ωω, let CA =

⋃
{Os | Os − A is meager}. If

GM(A− CA) is determined then A has the property of Baire.
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Proof of Proposition 3

1. “⇒”. Suppose {Ci | i < ω} are (decreasing) dense open
sets such that A ∩ (

⋂
i Ci) = ∅. Suppose

p = s0
⌢ · · · ⌢sn−1 is an n-round play. For each s ∈ <ωω,

let τ(p ⌢s) be a t ∈ <ωω such that Op⌢s⌢t ⊆ Cn.

“⇐”. Let τ be a w.s. for II. For each play p, let
Dp = {x ∈ ωω | p ̸⊏ x}∪(

⋃
{Op⌢s⌢t | t = τ(p⌢s), s ∈ <ωω}).

Then A ∩
⋂

p Dp = ∅. Since τ is winning for II, Dp is
open dense.

2. “⇒”. Let σ(∅) be that s.
“⇐”. Given σ, winning for I. σ(∅) is a such s.
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Proof of Corollary 4

1. Note that CA − A is meager. If II wins, then A− CA is
meager, and then A∆ CA = (CA − A) ∪ (A− CA) is
meager, therefore A has the property of Baire.

2. If I wins. For some s ∈ <ωω, Os − (A− CA) is meager.
Os − (A− CA) ⊇ Os − A.

Thus Os − A is meager, and hence Os ⊆ CA. Then
Os ∩ (A− CA) = (Os ∩ A)− (Os ∩OA) = ∅, therefore
Os − (A− CA) = Os. This contradicts to the fact that
Os is not meager.

So I can not win!
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An embedding

We shall present the other two games as games over ω2. The
following embedding π : ωω → ω2 can transfer the results back
to the Baire space ωω.

π(x) = sx(0)
⌢sx(1)

⌢sx(2)
⌢ · · ·

where sx(k) = 1 · · · 1︸ ︷︷ ︸
x(k)

0 for even k, and 0 · · · 0︸ ︷︷ ︸
x(k)

1 for odd k.

It’s easy to check that ω2− ran(π) is countable, and for
φ ∈ {BP, PSP, LM}, for every set X ⊆ ω2,

φ(X) is true in ω2 iff φ(π−1(X)) is true in ωω.
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Homework 4.4

1. Suppose A ⊆ ωω has the property of Baire. Show that A
is nonmeager iff there is a nonempty open set O ⊆ ωω
such that O − A is meager.

2. Show that for any A ⊆ ωω, CA − A contains no
nonmeager sets, where CA is as defined in Corollary 4.

3. Show that ω2− ran(π) is countable, where π is the
embedding defined in the previous slide.

4. Assume AD. Then ACω(
ωω), i.e. every countable set

consisting of non-empty sets of reals has a choice
function. Consequently, ω1 is regular.
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Davis game
Davis game GC(A) is formulated as follows:

I s0 s2 · · ·
II k1 k3 · · ·

where si ∈ <ω2− {∅}, ki ∈ {0, 1}. Let
x = s0

⌢⟨k1⟩⌢s2⌢⟨k3⟩⌢ · · · .
I wins if x ∈ A, otherwise II wins.

Proposition 5 (Davis)
For any A ⊆ ω2,

1. A is countable iff II has a w.s. in GC(A).
2. A contains a perfect subset iff I has a w.s. in GC(A).
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Proof of Proposition 5

1. “⇒” is easy. Argue for “⇐”. Let τ be a w.s. for II. Let
Rτ = {y ∗ τ | y ∈ ω2}, i.e. all the plays produced by τ .
Then A ∩Rτ = ∅. Thus for each x ∈ A, there is a play
px = ⟨s0, k0, . . . , sn, kn⟩ such that

p∗x = s0
⌢⟨k0⟩⌢ · · · sn⌢⟨kn⟩ ⊏ x,

and no matter what I plays with along x, he is defeated
by τ , i.e. for every i ≥ |p∗|, x(i) = 1− τ(x↾i).

2. Let T ⊆ <ω2 be a perfect tree such that [T ] ⊆ A.
Suppose p is an n-round play, let σ(p) to be the next
splitting node extending p∗. Then σ is a w.s. for I.
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Harrington Game

For A ⊂ ω2 and ε ∈ R+, GN (A, ε) is

I i0 i1 · · ·
II s̄0 s̄1 · · ·

where ik ∈ {0, 1}, s̄k ∈ [<ω2− {∅}]<ω with the additional
requirement

µ(Ns̄k) < ε/22(n+1), Ns̄k =
⋃

j Os̄k(j).

Let x = ⟨i0i1 · · ·⟩. I wins iff x ∈ A−
⋃

k Ns̄k , otherwise II wins.

(Here µ(Os) = 1/2dom(s) for each s ∈ <ω2.)
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Proposition 6
In GN (A, ε), A ⊂ ω2 and ε ∈ R+,

1. If I has a w.s. then there is a Lebesgue measurable
B ⊆ A such that µ(B) > 0.

2. If II has a w.s. then there is an open set O ⊇ A s.t.
µ(O) < ε.

Corollary 7
For A ⊆ ωω, let QA ⊇ A be Lebesgue measurable and with
µ(QA) minimal. Then if GN (QA − A, ε) is determined for
every ε > 0, then A is Lebesgue measurable.
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Proof of Corollary 7

By choice of QA, II must have a winning strategy in
GN (QA − A, 1/n) for each n < ω. Hence

QA − A ⊆
⋂

n Cn,

where µ(Cn) < 1/n, for each n. Therefore µ(QA − A) = 0
and A is Lebesgue measurable with µ(A) = µ(QA).
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