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Cardinal Numbers
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Cardinality
We use injective functions to compare the size of sets.

Definition 1
1. X ≈ Y iff there is a bijection from X to Y .
2. X ≼ Y iff there is an injection from X to Y .1
3. X ≺ Y iff X ≼ Y and ¬(Y ≼ X).

Easy to check:

Proposition 2
1. ≈ is an equivalence relation.
2. ≼ is transitive.

1Note that empty function is injective.
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Cantor-Bernstein

Next is a much deeper result

Theorem 3 (Cantor-Bernstein-Schröder)
Let X,Y be any two sets. Then

X ≼ Y ∧ Y ≼ X =⇒ X ≈ Y.
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A bit history

As it is often the case in mathematics, the name of this
theorem does not truly reflect its history.
▶ The traditional name ”Schröder-Bernstein” is based on

two proofs published independently in 1898.
▶ Cantor is often added because he investigated it around

1870s, and first stated it as a theorem in 1895,
▶ while Schröder’s name is often omitted because his proof

turned out to be flawed
▶ and while the name of the mathematician who first

proved it (Dedekind, 1887, 1897) is not connected with
the theorem.
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If f (or g) is onto, then we are done!
f (or g−1) is a bijection.
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Thus X −X1 ≈ Y − Y1,
also we have f : X1 → Y1, g : Y1 → X1.
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Let X∗ =
⋂

i Xi and Y ∗ =
⋂

i Yi. By induction, X −X∗ ≈ Y − Y ∗

But f [X] ⊃ Y1 ⊃ f [X1] ⊃ Y2 ⊃ · · · . Thus Y ∗ =
⋂

i f [Xi] = f [X∗]. □

6 / 49



Coming up next

Cardinal Numbers
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Cardinal

Thus we can assign to each set X its cardinal number |X|
so that

X ≈ Y iff |X| = |Y |
Cardinal numbers can be defined
▶ either via equivalence classes (need Regularity),
▶ (von Neumann) or using ordinals (need AC).

— We shall use this definition.
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Cardinality
One determines the size of a finite set by counting it. More
generally,

Definition 4
If X can be well-ordered, then X ≈ α for some α ∈ Ord, and
the least such α is called the cardinality of X, |X|.

Some simple facts.
▶ If X ≼ α, then X can be well-ordered.
▶ |α| ≤ α, for all α ∈ Ord.
▶ Under AC, every set can be well-ordered, so |X| is

defined for every X.

For the rest of this Chapter, we assume AC.
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Cardinal

Definition 5
An ordinal α is a cardinal if |α| = α.

We use κ, λ, δ etc to denote cardinals.

Some simple facts.
▶ α is a cardinal iff ∀β < α (β ̸≈ α).
▶ If |α| ≤ β ≤ α, then |β| = |α|.
▶ Every infinite cardinal is a limit ordinal.
▶ For every n ∈ ω, n ̸≈ n+ 1.
▶ If n ∈ ω, then for all α, α ≈ n → α = n.
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Finite-Countable-Uncountable

Corollary 6
ω is a cardinal and each n ∈ ω is a cardinal.

Definition 7
▶ X is finite iff |X| < ω. Infinite means not finite.
▶ X is countable iff |X| ≤ ω. Uncountable means not

countable.
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Finite-Countable-Uncountable

Example
▶ Every n ∈ ω is finite.
▶ ω,N,Z,Q is countable. (To be discussed later)
▶ (Cantor). R is uncountable. (To be proved in Chapter 4)

Remark. One cannot prove on the basis of ZFC−Power Set
that uncountable sets exist. In fact, it is consistent with
ZFC − Power Set that the only infinite cardinal is ω.
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Uncountable Cardinal
Before Cantor’s proof of “R is uncountable”, it was not known
that there are more than one infinite cardinal.

Theorem 8
For any set X, X ≺ P(X).

Proof.
▶ Identify every set X with its characteristic function

CX : X → {0, 1}. Hence P(X) ≈ X2.

▶ Suppose F : X → X2 is an arbitrary injection. Construct an
Z ∈ X2− ran(F ) by diagonalization:

CZ(x) = 1 iff Cf(x)(x) = 0,

i.e. Z = {x ∈ X | x /∈ f(x)}. F is not surjective!
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In fact, Card is “unbounded” along Ord.

Corollary 9
For any set S ⊂ Card, there is a cardinal κ s.t.

∀λ ∈ S (λ < κ).

Without assume AC, the following is not easy to prove.

Theorem (Halbeisen and Shelah, 1994)
For all infinite set A,

fin(A) ≺ P(A),

where fin(A) := {x ⊆ A | x is finite}.
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Operations on Cardinals

The arithmetic operations on cardinals are defined as follows

Definition 10
1. κ+ λ = |κ× {0} ∪ λ× {1}|
2. κ · λ = |κ× λ|.
3. κλ = |λκ|.

κ, λ on the right are referred as sets.

Exercise
Verify that these definitions are well defined.

We’ve shown that |P(X)| = 2|X| and ∀κ (κ < 2κ).
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Simple Facts About Cardinal Arithmetics
▶ Unlike the ordinal operations, + and · are associative,

commutative and distributive.
▶ (κ · λ)µ = κµ · λµ.
▶ κλ+µ = κλ · κµ.
▶ (κλ)µ = κλ·µ.
▶ If κ ≤ λ, then κ+ µ ≤ λ+ µ, κ · µ ≤ λ · µ and κµ ≤ λµ.
▶ If 0 < λ ≤ µ, then κλ ≤ κµ.
▶ κ0 = 1, 1κ = 1, 0κ = 0 if κ > 0.
▶ When κ, λ < ω, κ+ λ, κ · λ and κλ are the same as the

corresponding operations on natural numbers.
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Alephs
Since Card ⊂ Ord, Card is well-ordered and the elements of
Card can be enumerated with Ord as indices. Consider
infinite cardinals only.

Definition 11
For any cardinal κ, κ+ denotes the least cardinal > κ. The
Aleph function ℵ is define by the transfinite recursion:

ℵ0 = ω,

ℵα+1 = ℵ+
α ,

ℵσ = lim
α→σ

ℵα, λ is a limit ordinal.

An infinite cardinal is called a successor cardinal if it is of the
form ℵα+1 for some α, otherwise is called a limit cardinal.
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Alephs

ℵα are often written as ωα.
This definition is legitimate due to the following facts
▶ For every κ, there is a λ s.t. κ < λ.

Hence, κ+ exists for every cardinal κ.
▶ For every set S ⊂ Card, sup(S) is a cardinal.

In particular, limα<σ ℵα is a cardinal.
These ensure that dom(ℵ) = Ord. Since for each α ∈ Ord,

ℵα = min{κ ∈ Card | ∀β < α (ℵβ < κ)},
ran(ℵ) = Card \ ω.
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Alephs

Remark. The existence of κ+ (κ infinite) can be shown
without referring to 2κ and AC:

κ+ = sup{ordertype(≺) | (κ,≺) is a well-ordering.}

Lemma 12
Card is a proper class.

In general, A ⊂ Ord is unbounded iff A is proper.
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Cardinality of Sets,

Corollary 13
The following sets are countable:
▶ Z,Q are countable.
▶ The set of all algebraic numbers, A, is countable.

Assume that |R| = 2ℵ0 . Then the following sets are of size
2ℵ0 .
▶ The set of all points in the n-dimensional space, Rn.
▶ The set of all complex numbers, C.
▶ The set of all ω-sequences of natural numbers, ωω.
▶ The set of all ω-sequences of real numbers, Rω
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Lemma 14 (AC)
If |A| < |B| then |B − A| = |B|.

In fact, one can prove the following without using AC.

Lemma 15
If A ⊆ B, |A| = ℵ0 and |B| = 2ℵ0 , then |B − A| = 2ℵ0 .

Hint: View A ⊆ R× R ≈ B. ∃r ∈ R s.t. A ∩ ({r} × R) = ∅.

Corollary 16
The set of irrationals, R−Q, and the set of transcendental
numbers, R− A, are of cardinality 2ℵ0 .
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Addition and Multiplication are trivial

Theorem 17 (AC)
Let κ, λ be infinite cardinals. Then

1. κ+ λ = κ · λ = max{κ, λ}.
2. |<ωκ| = κ.

They follow from the lemma on next page.
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Lemma 18 (AC)
For every α ∈ Ord, ℵα · ℵα = ℵα.

Proof of Theorem.
(1) follows immediately from Lemma 18. Below is for (2).

▶ For each n ∈ ω, pick an injection fn : nκ → κ.

▶ Combining them gives us an injection
f :

⋃
n
nκ → ω × κ, f(σ) = (|σ|, f|α|(σ))

whence |<ωκ| ≤ ω · κ = κ.

Next, we prove the lemma via pictures.
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A Well-Ordering of κ× κ, κ = ℵδ+1
Proof of Lemma

(a1, b1) ≺ (a2, b2) ↔max(a1, b1) < max(a2, b2)
∨ (max(a1, b1) = max(a2, b2) ∧ b1 < b2)

∨ (max(a1, b1) = max(a2, b2) ∧ b1 = b2 ∧ a1 < a2)

At any (a, b) ∈ ℵδ+1 × ℵδ+1, | the initial segment of ≺ up to (a, b)| ≤ ℵδ

0 ¬

 ®

¯

°

± ² ³

κ

κ

(α, β)•

α
+

1

α + 1
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Another ordering
κ

κ

0 ¬



®

¯

°

±

²

³

´

µ

Homework
Write an explicit formula for this bijection.
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Small cardinals, when no full AC (Woodin, 2006)

|A1|

|S1 × [ω1]
ω|

|S1 × ω1| |S1 ∪ [ω1]
ω|

|S1 ∪ R× ω1| |[ω1]
ω|

|R× ω1|

|S1 ∪ ω1|

|R ∪ ω1|

|S1|

|R| ω1
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Impact of AC

AC is equivalent to the assertion that

“Every set can be well-ordered”. (WO)

Many of the basic properties of cardinals need AC.

Write X ≼∗ Y if X = ∅ or there is a surjection f : Y
onto−−→ X.

Lemma 19 (AC)
1. If X ≼∗ Y , then X ≼ Y .
2. If κ ≥ ω and Xα ≼ κ for all α < κ, then

⋃
α<κ Xα ≼ κ.
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Proof.

1. Let ≺ well-orders Y . Suppose f : Y → X is surjective.
Define g : X → Y as

g(x) =≺ -least element of f−1({x}).

2. ▶ For each α, pick an injection fα : Xα → κ.
fα are selected via a well-ordering of P(

⋃
Xα × κ).

▶ For t ∈
⋃
Xα, let F (t) = (fα(t), α), where

αt = least α such that t ∈ Xα.

Let π : κ× κ → κ be a bijection. π ◦ F works.

An important application of Lemma 19-2 is the Downward
Löwenheim-Skolem-Tarski Theorem in model theory.
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An Application, Definitions

Definition 20
1. An n-ary operation on X is a function f : Xn → X if

n > 0, or an element of X if n = 0.
2. If Y ⊂ X, Y is closed under f iff f [Y n] ⊂ Y (or f ∈ B

when n = 0).
3. A finitary operation is an n-ary operation for some

n < ω.
4. If E is a set of finitary operations on X and Y ⊂ X, the

closure of Y under E , denoted as clE(Y ), is the least
Y ∗ ⊂ X such that Y ⊂ Y ∗, and Y ∗ is closed under all
the operations in E .
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An Application, Theorem

Theorem 21 (AC)
Let κ be an infinite cardinal. Suppose Y ⊂ X, Y ≤ κ, and E
is a set of ≤ κ finitary operations on X. Then | clE(Y )| ≤ κ.

Example. Every infinite group has a countably infinite
subgroup.

31 / 49



An Application, Theorem

Theorem 21 (AC)
Let κ be an infinite cardinal. Suppose Y ⊂ X, Y ≤ κ, and E
is a set of ≤ κ finitary operations on X. Then | clE(Y )| ≤ κ.

Example. Every infinite group has a countably infinite
subgroup.

31 / 49



An Application, Theorem

Proof.

▶ Let E0 ⊂ E be the set of all 0-ary operations in E .

▶ Let C0 = Y ∪ E0. We may assume that E has no 0-ary
operations.

▶ By induction on n < ω, define
Cn+1 = Cn ∪ (

⋃
{f [kCn] | f ∈ E , f is k-ary.})

▶ Take Cω =
⋃

nCn. Check that Cω = clE(Y ).
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Homework (Midterm Quiz)

1. Prove the following statements.
1.1 If x ∩ y = ∅ and x ∪ y ≼ y, then ω × x ≼ y.
1.2 If x ∩ y = ∅ and ω × x ≼ y, then x ∪ y ≈ y.

2. Ex.3.1-3.3 in textbook.
3. Prove that κκ ≤ 2κ·κ.
4. If A ≼ B, then A ≼∗ B.
5. If A ≼∗ B, then P(A) ≼ P(B).2

6. Let X be a set. If there is an injective function
f : X → X such that ran(f) ⊊ X, then X is infinite.

2Don’t forget the case A = ∅.
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Remark.

▶ Assuming AC, the converse of (4) is true (see Lemma 19).

▶ (6) is related to so called “Dedekind-infinite”. (see
textbook Ex.3.14-3.16)
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Exercises*

1. α is called an epsilon number iff α = ωα (ordinal
exponentiation). Show that
▶ the first epsilon number ε0 is countable.
▶ for each α ∈ Ord − {0}, ℵα is an epsilon number.
▶ for each α ∈ Ord − {0}, the set of epsilon numbers is

unbounded below ℵα. Hence, there are ℵα epsilon
numbers below ℵα.

2. There is a well-ordering of the class of all finite sequences
of ordinals such that for each α, the set of all finite
sequences in ωα is an initial segment and its order-type is
ωα.
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Continuum Hypothesis

Since Cantor could show (under AC) that ℵ1 ≤ 2ℵ0 , and had
no way producing cardinals between ℵ1 and 2ℵ0 , he
conjectured that

Continuum Hypothesis (CH)

ℵ1 = 2ℵ0?
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Continuum Hypothesis

More generally,

Generalized Continuum Hypothesis (GCH)

For every α ∈ Ord,
ℵα+1 = 2ℵα?

Remark. Without AC, it is possible that ℵ1 ≰ 2ℵ0 ; however,
one can still show that ℵα+1 < 22

ℵα , for every α ∈ Ord. (see
textbook Ex.3.7-3.11)
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Coming up next

Cardinal Numbers

Cardinal

Cardinal arithmetic, I

Cofinality
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Exponentiation of Cardinals

λ

κ

ω

ω

κλ = 2λ

0λ = 0

mn

1λ = 1

κ0 = 1

2 ≤ κ ≤ λ, ω ≤ λ

κ > λ ≥ ω

κn = κ κ ≥ ω
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Exponentiation of Cardinals

Lemma 22
If λ ≥ ω and 2 ≤ κ ≤ λ, then κλ = 2λ.

Under GCH, κλ can be easily computed, but the notion of
cofinality is needed.
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Cofinality
Definition 23
▶ If f : α → β, f maps α cofinally (into β) iff ran(f) is

unbounded in β, i.e. ∀b ∈ β, ∃a ∈ α, f(a) ≥ b.
▶ The cofinality of β, cf(β), is the least α s.t. there is a

map from α cofinally into β.

Revise f to get a strictly increasing function f |A : A ⊂ α → β,
and then gf |A : otp(A) → β. Clearly otp(A) ≤ α. Thus we have

Lemma 24
There is a cofinal map f : cf(α) → α which is strictly
increasing, i.e. ξ < η → f(ξ) < f(η).

In general, it is not true for γ > cf(α).
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Properties of cf(·)

Lemma 25
If α is a limit ordinal and f : α → β is a strictly increasing
cofinal map, then cf(α) = cf(β).

Proof.

“≥”: Let γ = cf(α) and g : γ → α be cofinal, then f ◦ g : γ → β is
cofinal. Thus γ ≥ cf(β), as cf(β) is minimal.

“≤”: Let γ = cf(β) and g : γ → β. A map h : γ → α is defined as
follows: for a ∈ γ,

h(a) = min{b ∈ α | g(b) > f(a)}.
h is well defined by the strictly-increasing-ness of f .
Verify that h is strictly increasing and cofinal.
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Properties of cf(·)

Corollary 26
1. cf(cf(α)) = cf(α).
2. If α is a limit ordinal, then cf(ℵα) = cf(α).

Clearly,

▶ cf(α) ≤ α,
▶ if α is a successor, cf(α) = 1.
▶ if α is a limit ordinal, cf(α) is a limit ordinal ≥ ω.

Example. cf(ωn) = cf(ℵω) = ω.

43 / 49



Properties of cf(·)

Corollary 26
1. cf(cf(α)) = cf(α).
2. If α is a limit ordinal, then cf(ℵα) = cf(α).

Clearly,

▶ cf(α) ≤ α,
▶ if α is a successor, cf(α) = 1.
▶ if α is a limit ordinal, cf(α) is a limit ordinal ≥ ω.

Example. cf(ωn) = cf(ℵω) = ω.

43 / 49



Regular Cardinal

Definition 27
α is regular iff α is a limit ordinal and cf(α) = α. Otherwise,
α is singular.

Lemma 28
1. For every limit ordinal α, cf(α) is regular.

In particular, ω is regular.
2. If α is regular, then α is a cardinal.

Proof of (2): Suppose γ < α and π : γ → α were bijective. π
would be unbounded, thus γ ≥ cf(α) = α. Contradiction!
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Singular Cardinal
Lemma 29
Suppose κ = ℵα for some α ∈ Ord. κ is singular iff there
exists a cardinal λ < κ and a family {Sξ | ξ < λ} of subsets of
κ with each |Sξ| < κ, ξ < κ, such that κ =

⋃
ξ<λ Sξ. The

least cardinal λ that satisfies the condition is cf(κ).

Proof.
“⇒”: Suppose λ < κ and f : λ → κ is cofinal. For each ξ < λ, let

Sξ = f(ξ) (as subset of κ). Then κ = supξ<λ Sξ =
⋃

ξ<λ Sξ.
Moreover, least such λ ≤ cf(κ).

“⇐”: Let λ be least such. For δ < λ, let f(δ) = otp
(⋃

ξ<δ Sξ

)
.

Each f(δ) ≤ κ. f is nondecreasing. By the minimality of λ,
f(δ) < κ, for δ < λ. Clearly, κf := supδ<λ f(δ) ≤ κ.

κ =
∣∣⋃

ξ<λ Sξ

∣∣ ≤ λ× κf = max{λ, κf}.
Since λ < κ, κ = κf . f is cofinal in κ, so λ ≥ cf(κ).
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Singular Cardinal

Corollary 30 (AC)
For each α, ℵα+1 is regular.

Remark. Without AC, it is consistent that cf(ω1) = ω,
i.e. ω1 is a countable union of countable sets. In contrast, in
ZF one can show that ω2 cannot be a countable union of
countable sets.
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Large cardinals
▶ There are arbitrarily large singular cardinals.

For each α, cf(ℵα+ω) = ω.
▶ It is unknown whether one can prove in ZF that there

exists a cardinal κ with cf(κ) > ω.
▶ (Hausdroff, 1908) κ is weakly inaccessible if κ is a

regular limit cardinal (∀λ < κ, λ+ < κ). Every weak
inaccessible is a fix point of the ℵ-sequence (ℵα = α).
The first weakly inaccessible cardinal is rather large. And
its existence is independent of ZFC.

▶ (Sierpiński-Tarski, Zermelo, 1930). κ is strongly
inaccessible iff κ > ω, κ is regular and ∀λ < κ (2λ < κ).
Strong inaccessibles are weak inaccessibles. Under GCH,
these two notions coincide.
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From
The Higher Infinite,
by A. Kanamori
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König’s Theorem
Theorem 31 (König)
If κ is an infinite cardinal then κ < κcf(κ).

Proof. Key: “No injection is surjective”.
▶ Let {fα | α < κ} be an arbitrary subset of cf(κ)κ of size κ.
▶ Construct an f : cf(κ) → κ different from all fα, α < κ.
▶ Suppose κ = limξ<cf(κ) αξ. For each ξ < cf(κ), f(ξ) is

selected to ensure that at ξ, f ̸= fα for all α < αξ.

Corollary 32 (AC)
If λ ≥ ω, then cf(2λ) > λ.

Hint: Otherwise, 2λ < (2λ)cf(2λ) ≤ (2λ)λ = 2λ.
Further results in cardinal arithmetics will appear in Chapter 5.
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