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Coming up next

Cardinal Numbers
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Cardinality

We use injective functions to compare the size of sets.

1. X = Y iff there is a bijection from X to Y.
2. X <Y iff there is an injection from X to Y.
3. X <Y iff X XY and ~(Y 5 X).

INote that empty function is injective.
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Cardinality

We use injective functions to compare the size of sets.

1. X = Y iff there is a bijection from X to Y.
2. X <Y iff there is an injection from X to Y.
3. X <Y iff X XY and ~(Y 5 X).

Easy to check:

/2 s an equivalence relation.

1.
2. < Is transitive.

INote that empty function is injective.
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Cantor-Bernstein

Next is a much deeper result

Theorem 3 (Cantor-Bernstein-Schroder)

Let X,Y be any two sets. Then
XYANY X = X=rY.
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A bit history

As it is often the case in mathematics, the name of this
theorem does not truly reflect its history.

>

>

The traditional name "Schroder-Bernstein” is based on
two proofs published independently in 1898.

Cantor is often added because he investigated it around
1870s, and first stated it as a theorem in 1895,

while Schroéder’'s name is often omitted because his proof
turned out to be flawed

and while the name of the mathematician who first

proved it (Dedekind, 1887, 1897) is not connected with
the theorem.
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Proof of Cantor-Bernstein

X
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Proof of Cantor-Bernstein

If f (or g) is onto, then we are done!
f (or g71) is a bijection.
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Proof of Cantor-Bernstein

)
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Proof of Cantor-Bernstein

gY]--- - fX]
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Proof of Cantor-Bernstein

glY]---_

- T
gfIXT -

- felY]

glY] = gf[X] =Y — f[X] via 7!
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Proof of Cantor-Bernstein

gi¥l--
9fiX] -
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Proof of Cantor-Bernstein

Thus X - X, =Y - Y,
also we have f: X; = Yy, g: Y1 — X,
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Proof of Cantor-Bernstein

X Y
glY]---_ - fIX]
gYi]---___ - f[X4]
XoXiDXe---DX, D YovioY,---2Y,D---

Let X* =(), X; and Y* =, Y;. By induction, X — X*~Y —Y*
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Proof of Cantor-Bernstein

X Y
givl-- " -]
gl ‘________———f[Xl]
XoXiDXe---DX, D YovioYn---2Y,D---

Let X* =(, X; and Y* =, Y;. By induction, X — X*~Y —Y*
But fIX]DYi D f[Xi] DY, D---. ThusY* =, f[Xi] = f[X*]. O
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Coming up next

Cardinal
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Cardinal

Thus we can assign to each set X its cardinal number | X|
so that

X=~Y iff |X|=]Y]|
Cardinal numbers can be defined
> either via equivalence classes (need Regularity),

» (von Neumann) or using ordinals (need AC).
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Cardinal

Thus we can assign to each set X its cardinal number | X|
so that

X=~Y iff |X|=]Y]|
Cardinal numbers can be defined
> either via equivalence classes (need Regularity),

» (von Neumann) or using ordinals (need AC).
— We shall use this definition.
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Cardinality

One determines the size of a finite set by counting it. More
generally,

If X can be well-ordered, then X ~ « for some a € Ord, and
the least such « is called the cardinality of X, | X].

Some simple facts.

> If X < «, then X can be well-ordered.
> |a| < a, for all & € Ord.

» Under AC, every set can be well-ordered, so | X]| is
defined for every X.

For the rest of this Chapter, we assume AC.
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Cardinal

An ordinal « is a cardinal if |o| = .

We use k, A, 0 etc to denote cardinals.

Some simple facts.

» «is a cardinal iff V5 < o (8 # «).

> If o] < B < a, then |B] = |a.

» Every infinite cardinal is a limit ordinal.
» Foreveryn €w, n#n+ 1.
>

If n € w, then forall o, a =~ n — o =n.
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Finite-Countable-Uncountable

Corollary 6

w Is a cardinal and each n € w is a cardinal.
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Finite-Countable-Uncountable

Corollary 6

w Is a cardinal and each n € w is a cardinal.

» X is finite iff | X| < w. Infinite means not finite.

» X is countable iff | X| < w. Uncountable means not
countable.
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Finite-Countable-Uncountable

» Every n € w is finite.
» w,N,Z,Q is countable. (To be discussed later)
» (Cantor). R is uncountable. (To be proved in Chapter 4)
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Finite-Countable-Uncountable

» Every n € w is finite.
» w,N,Z,Q is countable. (To be discussed later)
» (Cantor). R is uncountable. (To be proved in Chapter 4)

REMARK. One cannot prove on the basis of ZFC — Power Set
that uncountable sets exist. In fact, it is consistent with
ZFC — Power Set that the only infinite cardinal is w.
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Uncountable Cardinal

Before Cantor’s proof of “R is uncountable”, it was not known
that there are more than one infinite cardinal.

For any set X, X < Z(X).
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Uncountable Cardinal
Before Cantor’s proof of “R is uncountable”, it was not known
that there are more than one infinite cardinal.

Theorem 8
For any set X, X < Z(X).

PROOF.
» |dentify every set X with its characteristic function
Cx : X —{0,1}. Hence 2(X) ~ X2.
» Suppose F : X — X2 is an arbitrary injection. Construct an
Z € X2 —ran(F) by diagonalization:
Cz(.%') =1 iff Cf(@(ﬂj’) = 0,
ie. Z={zxe X |z ¢ f(x)}. Fis not surjective!
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In fact, Card is “unbounded” along Ord.

Corollary 9

For any set S C Card, there is a cardinal k s.t.
YA e S (A< k).
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In fact, Card is “unbounded” along Ord.

Corollary 9

For any set S C Card, there is a cardinal k s.t.
YA e S (A< k).

Without assume AC, the following is not easy to prove.

Theorem (Halbeisen and Shelah, 1994)
For all infinite set A,

fin(A) < Z(A),
where fin(A) := {x C A | x is finite}.

14 /49



Coming up next

Cardinal arithmetic, |
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Operations on Cardinals

The arithmetic operations on cardinals are defined as follows

Definition 10

L k+ A=k x {0} UXx {1}
2. K- A=k XAl
3. kN = k.

K, A on the right are referred as sets.
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Operations on Cardinals

The arithmetic operations on cardinals are defined as follows

Definition 10

L k+ A=k x {0} UXx {1}
2. K- A=k XAl
3. kN = k.

K, A on the right are referred as sets.

Exercise

Verify that these definitions are well defined.
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Operations on Cardinals

The arithmetic operations on cardinals are defined as follows

Definition 10

L k+ A=k x {0} UXx {1}
2. K- A=k XAl
3. kN = k.

K, A on the right are referred as sets.

Exercise

Verify that these definitions are well defined.

We've shown that |2 (X)| = 2X| and V& (k < 2%).
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Simple Facts About Cardinal Arithmetics

» Unlike the ordinal operations, + and - are associative,
commutative and distributive.

(K.)\)H:HM.)\N_

AT = A L g

(KMH = rAH,

If v <A thenk+pu <A+ p, k- pu < X-pand k# <\,
If0<)\§,u,then/<ﬂ§/§“.

K=1,1"=1,00=0if Kk > 0.

vV v vV V. vV VY

When k, A < w, K+ A, k- )\ and k" are the same as the
corresponding operations on natural numbers.
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Alephs

Since Card C Ord, Card is well-ordered and the elements of
Card can be enumerated with Ord as indices. Consider
infinite cardinals only.

Definition 11

For any cardinal k, k™ denotes the least cardinal > x. The
Aleph function N is define by the transfinite recursion:

NO = w,
Na-i-l = Nl_a
N, = lim R,, Ais a limit ordinal.
a—o

An infinite cardinal is called a successor cardinal if it is of the
form N, for some a, otherwise is called a limit cardinal.
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Alephs

N, are often written as w,,.

This definition is legitimate due to the following facts

» For every k, thereis a A s.t. Kk < \.
Hence, k™ exists for every cardinal .

» For every set S C Card, sup(S) is a cardinal.
In particular, lim,., X, is a cardinal.

These ensure that dom(X) = Ord. Since for each a € Ord,
N, = min{x € Card | V5 < a (N5 < K)},
ran(RN) = Card \ w.
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Alephs

REMARK. The existence of x* (k infinite) can be shown
without referring to 2% and AC:

kt = sup{ordertype(=<) | (k, <) is a well-ordering.}
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Alephs

REMARK. The existence of x* (k infinite) can be shown
without referring to 2% and AC:

kt = sup{ordertype(=<) | (k, <) is a well-ordering.}

Lemma 12

Card is a proper class.

In general, A C Ord is unbounded iff A is proper.
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Cardinality of Sets,

Corollary 13

The following sets are countable:

» 7,Q are countable.

» The set of all algebraic numbers, A, is countable.
ANssume that |R| = 280, Then the following sets are of size
270,

» The set of all points in the n-dimensional space, R".

» The set of all complex numbers, C.

» The set of all w-sequences of natural numbers, w®.

>

The set of all w-sequences of real numbers, R*
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Lemma 14 (AC)

If|A| < |B| then |B — A| = |B.

In fact, one can prove the following without using AC.

Lemma 15
If AC B, |A] =Xy and |B| = 2%, then |B — A| = 2%.

HINT: View ACR xR~ B. IreRst. An({r} xR)=2.

Corollary 16

The set of irrationals, R — QQ, and the set of transcendental
numbers, R — A, are of cardinality 2%°.
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Addition and Multiplication are trivial

Theorem 17 (AC)

Let k, \ be infinite cardinals. Then

1. K+ A=k =max{k, \}.

2. ’<w

K| = K.

They follow from the lemma on next page.
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Lemma 18 (AC)
For every a € Ord, X, - N, = N,.

PROOF OF THEOREM.

(1) follows immediately from Lemma 18. Below is for (2).
» For each n € w, pick an injection f,, : "k — k.

» Combining them gives us an injection

foUp"s = wxr, f(o) = (lo], fia(2))

whence |<¥k| < w - Kk = K. O

Next, we prove the lemma via pictures.
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A Well-Ordering of kK X Kk, kK = N5,1

Proof of Lemma
(a1,b1) < (ag,bs) <> max(a1,by) < max(az, by)

V (max(a1, by) = max(ag, b2) A by < ba)
V (max(a1, b1) = max(ag, b2) Aby = by Aay < ag)
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A Well-Ordering of kK X Kk, kK = N5,1
Proof of Lemma
(a1,b1) < (ag,bs) <> max(a1,by) < max(az, by)

V (max(a1, by) = max(ag, b2) A by < ba)
V (max(a1, b1) = max(ag, b2) Aby = by Aay < az)
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A Well-Ordering of kK X Kk, kK = N5,1
Proof of Lemma
(a1,b1) < (ag,bs) <> max(a1,by) < max(az, by)

V (max(a1, by) = max(ag, b2) A by < ba)
V (max(a1, b1) = max(ag, b2) Aby = by Aay < az)
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A Well-Ordering of kK X Kk, kK = N5,1
Proof of Lemma
(a1,b1) < (ag,bs) <> max(a1,by) < max(az, by)

V (max(a1, by) = max(ag, b2) A by < ba)
V (max(a1, b1) = max(ag, b2) Aby = by Aay < az)
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A Well-Ordering of kK X Kk, kK = N5,1
Proof of Lemma
(a1,b1) < (ag,bs) <> max(a1,by) < max(az, by)

V (max(a1, by) = max(ag, b2) A by < ba)
V (max(a1, b1) = max(ag, b2) Aby = by Aay < az)
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A Well-Ordering of kK X Kk, kK = N5,1
Proof of Lemma
(a1,b1) < (ag,bs) <> max(a1,by) < max(az, by)

V (max(a1, by) = max(ag, b2) A by < ba)
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A Well-Ordering of kK X Kk, kK = N5,1
Proof of Lemma
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A Well-Ordering of kK X Kk, kK = N5,1
Proof of Lemma
(a1,b1) < (ag,bs) <> max(a1,by) < max(az, by)

V (max(a1, by) = max(ag, b2) A by < ba)
V (max(a1, b1) = max(ag, b2) Aby = by Aay < ag)
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A Well-Ordering of kK X Kk, kK = N5,1

Proof of Lemma
(a1,b1) < (ag,b2) <> max(ay, b;) < max(az, by)
V (max(a1, by) = max(ag, b2) A by < ba)

V (max(a1, b1) = max(ag, b2) Aby = by Aay < ag)

At any (a,b) € N5y X Ngyq, |the initial segment of < up to (a,bd)| < N4
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Another ordering
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Another ordering
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Another ordering
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Another ordering

K

o |
e

A S

o o 6 6 @
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Another ordering

K

o |
e

A S

o o 6 6 @

Homework

Write an explicit formula for this bijection. 26/49




Small cardinals, when no full AC (woodin, 2006)

| Ay

|
|51 % [wi]”|
/ \
|Sl X w1| |Sl @] [wl]‘”|

/ \
|Sl URXOJ]_| |[w1]“’|

—_— _—

‘Sl Uw1|

]RUwﬂ

N N

IR w1
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Impact of AC

AC is equivalent to the assertion that
“Every set can be well-ordered”. (WO)
Many of the basic properties of cardinals need AC.

|
Write X <* Y if X = @ or there is a surjection f: Y — onto, X,

Lemma 19 (AC)

1. FXX'Y, then X Y.
2. Ifk > w and X, <X k for all « < k, then |J N

Oé<K)
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PROOF.

1. Let < well-orders Y. Suppose f : Y — X is surjective.
Define g: X — Y as

g(x) = < -least element of f~({z}).

2. P For each «, pick an injection f, : X, — k.
fa are selected via a well-ordering of Z2(|J X4 X k).

» Fort e |JXa, let F(t) = (fa(t), @), where

«a; = least « such that t € X,,.

Let m: kK X Kk = K be a bijection. 7o F' works. O
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PROOF.

1. Let < well-orders Y. Suppose f : Y — X is surjective.
Define g: X — Y as

g(x) = < -least element of f~({z}).

2. P For each «, pick an injection f, : X, — k.
fa are selected via a well-ordering of Z2(|J X4 X k).

» Fort e |JXa, let F(t) = (fa(t), @), where

«a; = least « such that t € X,,.

Let m: kK X Kk = K be a bijection. 7o F' works. O

An important application of Lemma 19-2 is the Downward
Lowenheim-Skolem-Tarski Theorem in model theory.
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An Application, Definitions

Definition 20

1.

An n-ary operation on X is a function f: X" — X if
n > 0, or an element of X if n = 0.

If Y C X, Y is closed under f iff f[Y"|CY (or f € B
when n = 0).

A finitary operation is an n-ary operation for some
n<w.

If £ is a set of finitary operations on X and Y C X, the
closure of Y under &, denoted as clg(Y'), is the least

Y* C X such that Y C Y*, and Y* is closed under all
the operations in £.
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An Application, Theorem

Theorem 21 (AC)

Let k be an infinite cardinal. Suppose Y C X,Y <k, and £
is a set of < k finitary operations on X. Then |clg(Y)| < k.
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An Application, Theorem

Theorem 21 (AC)

Let k be an infinite cardinal. Suppose Y C X,Y <k, and £
is a set of < k finitary operations on X. Then |clg(Y)| < k.

EXAMPLE. Every infinite group has a countably infinite
subgroup.

31/49



An Application, Theorem

PROOF.

» Let Ey C £ be the set of all O-ary operations in £.

» Let Cy =Y U Ey. We may assume that £ has no 0-ary
operations.

» By induction on n < w, define
Cri1 = Co U(ULfIFCal | f €€, s k-ary.})
» Take C, =J,, Cn. Check that C,, = clg(Y).
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Homework (Midterm Quiz)

1. Prove the following statements.

1l fzny=@andzUy <y, thenw Xz X y.
12 fzNy=@andw xz gy, then zUy ~ y.

Ex.3.1-3.3 in textbook.

Prove that x" < 2%,

If A< B, then A <X* B.

If A<* B, then 2(A) < #(B).2

Let X be a set. If there is an injective function
f:X — X such that ran(f) C X, then X is infinite.

AN T

2Don’t forget the case A = @.
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REMARK.
» Assuming AC, the converse of (4) is true (see Lemma 19).

» (6) is related to so called "“Dedekind-infinite”. (see
textbook Ex.3.14-3.16)
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Exercises*

1. «ais called an epsilon number iff & = w* (ordinal
exponentiation). Show that
P the first epsilon number ¢ is countable.

» for each a € Ord — {0}, R, is an epsilon number.

» for each a € Ord — {0}, the set of epsilon numbers is
unbounded below X,. Hence, there are X, epsilon
numbers below X, .

2. There is a well-ordering of the class of all finite sequences
of ordinals such that for each «, the set of all finite
sequences in w, is an initial segment and its order-type is
Wey-
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Continuum Hypothesis

Since Cantor could show (under AC) that X; < 2, and had
no way producing cardinals between R; and 2%, he
conjectured that

CoNTINUUM HyYPOTHESIS (CH)

Ny = 2%0?
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Continuum Hypothesis

More generally,

GENERALIZED CONTINUUM HYPOTHESIS (GCH)

For every oo € Ord,

Na+1 = 2Na ?
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Continuum Hypothesis

More generally,

GENERALIZED CONTINUUM HYPOTHESIS (GCH)

For every oo € Ord,
Na+1 = 2&‘1?

REMARK. Without AC, it is possible that Ny £ 2%°; however,

one can still show that N, < 22" for every a € Ord. (see
textbook Ex.3.7-3.11)
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Coming up next

Cofinality
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Exponentiation of Cardinals
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Exponentiation of Cardinals
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Exponentiation of Cardinals

1*=1 2< k<A w<A
\)\ﬁ$ ”””””” \ ***** |
0*=0 KA = 22
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Exponentiation of Cardinals

If\>wand 2 < k < )\, then Kk* = 2*.
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Exponentiation of Cardinals

Lemma 22
If\>wand 2 < k < )\, then Kk* = 2*.

Under GCH, x* can be easily computed, but the notion of
cofinality is needed.
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Cofinality

Definition 23

» If f:a— B, f maps a cofinally (into () iff ran(f) is
unbounded in 3, i.e. Vb € 8, Ja € a, f(a) > 0.

» The cofinality of 3, cf(/3), is the least « s.t. there is a
map from « cofinally into .

41/49



Cofinality

Definition 23

» If f:a— B, f maps a cofinally (into () iff ran(f) is
unbounded in 3, i.e. Vb € 8, Ja € a, f(a) > 0.

» The cofinality of 3, cf(/3), is the least « s.t. there is a
map from « cofinally into .

Revise f to get a strictly increasing function f|A: A C a — £,
and then gy 4 : otp(A) — 3. Clearly otp(A) < a. Thus we have

Lemma 24

There is a cofinal map f : cf(«t) — « which is strictly
increasing, i.e. £ <n — f(§) < f(n).

In general, it is not true for v > cf(«).
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Properties of cf(+)

Lemma 25

If a is a limit ordinal and f : o« — (3 is a strictly increasing
cofinal map, then cf(a)) = cf(B).

PROOF.

“>": Let v = cf(a) and g : v — « be cofinal, then fog:~v— (s
cofinal. Thus y > cf(3), as cf(/) is minimal.

“<": Lety=cf(8) and g: v — B. A map h:vy — «is defined as
follows: for a € 7,

h(a) = min{b € a | g(b) > f(a)}.
h is well defined by the strictly-increasing-ness of f.
Verify that h is strictly increasing and cofinal.
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Properties of cf(+)

Corollary 26

1. cf(cf()) = cf(a).
2. If a is a limit ordinal, then cf(X,) = cf(«).

43 /49



Properties of cf(-)

Corollary 26

1. cf(cf()) = cf(a).
2. If a is a limit ordinal, then cf(X,) = cf(«).

Clearly,
|
> cf(a) < a,
» if « is a successor, cf(a) = 1.

» if « is a limit ordinal, cf(«) is a limit ordinal > w.

EXAMPLE. cf(w™) = cf(R,) = w.
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Regular Cardinal

Definition 27

« is regular iff « is a limit ordinal and cf(a) = a. Otherwise,
« is singular.
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Regular Cardinal

Definition 27

« is regular iff « is a limit ordinal and cf(a) = a. Otherwise,
« is singular.

1. For every limit ordinal o, cf(«) is regular.
In particular, w is regular.

2. If a is regular, then « is a cardinal.
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Regular Cardinal

Definition 27

« is regular iff « is a limit ordinal and cf(a) = a. Otherwise,
« is singular.

Lemma 28

1. For every limit ordinal o, cf(«) is regular.
In particular, w is regular.

2. If a is regular, then « is a cardinal.

Proof of (2): Suppose v < a and 7 : v — « were bijective. 7
would be unbounded, thus v > cf(«) = .. Contradiction!
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Singular Cardinal

Lemma 29

Suppose k = X, for some a € Ord. k is singular iff there
exists a cardinal A < k and a family {S¢ | £ < A} of subsets of
r with each |S¢| < K, § <k, such that k = J._, S¢. The
least cardinal \ that satisfies the condition is cf(k).
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Singular Cardinal

Lemma 29

Suppose k = X, for some a € Ord. k is singular iff there
exists a cardinal A < k and a family {S¢ | £ < A} of subsets of
k with each |S¢| < K, £ < K, such that k = U£</\ Se. The
least cardinal \ that satisfies the condition is cf(k).

PROOF.

“=": Suppose A < k and f: A — k is cofinal. For each £ < A, let
Se¢ = f(§) (as subset of k). Then r = supe ) S¢ = Ugoy Se-
Moreover, least such A < cf(k).

“<=": Let A be least such. For § < X, let f(8) = otp(U¢.45S¢)-
Each f(0) < k. f is nondecreasing. By the minimality of A,
f(0) <k, for 6 < A. Clearly, ky :=sups f(0) < k.

K= ‘U§<)\ 5’5‘ <A X Ky =max{\ Kk}

Since A < k, k = Ky. fis cofinal in K, so XA > cf(k).
45 /49



Singular Cardinal

Corollary 30 (AC)

For each o, N1 is regular.
REMARK. Without AC, it is consistent that cf(w;) = w,
i.e. wy is a countable union of countable sets. In contrast, in

ZF one can show that wsy cannot be a countable union of
countable sets.
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Large

cardinals

There are arbitrarily large singular cardinals.
For each «, cf(Rpyw) = w.

It is unknown whether one can prove in ZF that there
exists a cardinal x with cf(rk) > w.

(Hausdroff, 1908) « is weakly inaccessible if « is a
regular limit cardinal (VA < k, At < k). Every weak
inaccessible is a fix point of the R-sequence (X, = «).
The first weakly inaccessible cardinal is rather large. And
its existence is independent of ZFC.

(Sierpinski-Tarski, Zermelo, 1930). « is strongly

inaccessible iff xk > w, k is regular and V\ < & (2} < k).

Strong inaccessibles are weak inaccessibles. Under GCH,
these two notions coincide.
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Konig's Theorem
Theorem 31 (Konig)
cf(k)

If k is an infinite cardinal then k < K“\*).
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Konig's Theorem
Theorem 31 (Konig)
cf(k)

If k is an infinite cardinal then k < K“\*).

PROOF. Key: “No injection is surjective”.

» Let {f, | & < Kk} be an arbitrary subset of “/*)x of size .
» Construct an f : cf(k) — & different from all f,, o < k.

» Suppose k = limg¢_f(x) . For each & < cf(k), f(€) is
selected to ensure that at &, f # f, for all o < . O
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Theorem 31 (Konig)
cf(k)

If k is an infinite cardinal then k < K“\*).

PROOF. Key: “No injection is surjective”.
» Let {f, | & < Kk} be an arbitrary subset of “/*)x of size .
» Construct an f : cf(k) — & different from all f,, o < k.

» Suppose k = limg¢_f(x) . For each & < cf(k), f(€) is
selected to ensure that at &, f # f, for all o < . O

Corollary 32 (AC)

If X\ > w, then cf(2*) > .

49 /49



Konig's Theorem
Theorem 31 (Konig)
cf(k)

If k is an infinite cardinal then k < K“\*).

PROOF. Key: “No injection is surjective”.

» Let {f, | & < Kk} be an arbitrary subset of “/*)x of size .
» Construct an f : cf(k) — & different from all f,, o < k.

» Suppose k = limg¢_f(x) . For each & < cf(k), f(€) is
selected to ensure that at &, f # f, for all o < . O

Corollary 32 (AC)

If X\ > w, then cf(2*) > .

Hint: Otherwise, 2} < (2)‘)Cf(2A) < (2/\)A = 2\,

Further results in cardinal arithmetics will appear in Chapter 5.
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