# Elementary Set Theory

#### Xianghui Shi

School of Mathematical Sciences Beijing Normal University



Fall 2024



#### **Cardinal Numbers**

Cardinal

Cardinal arithmetic,

Cofinality

# Cardinality

We use injective functions to compare the size of sets.

### Definition 1

- 1.  $X \approx Y$  iff there is a bijection from X to Y.
- 2.  $X \preccurlyeq Y$  iff there is an injection from X to Y.<sup>1</sup>
- 3.  $X \prec Y$  iff  $X \preccurlyeq Y$  and  $\neg(Y \preccurlyeq X)$ .

<sup>&</sup>lt;sup>1</sup>Note that empty function is injective.

# Cardinality

We use injective functions to compare the size of sets.

### Definition 1

- 1.  $X \approx Y$  iff there is a bijection from X to Y.
- 2.  $X \preccurlyeq Y$  iff there is an injection from X to Y.<sup>1</sup>
- 3.  $X \prec Y$  iff  $X \preccurlyeq Y$  and  $\neg(Y \preccurlyeq X)$ .

Easy to check:

### Proposition 2

- 1.  $\approx$  is an equivalence relation.
- 2.  $\preccurlyeq$  is transitive.

<sup>&</sup>lt;sup>1</sup>Note that empty function is injective.

Next is a much deeper result

Theorem 3 (Cantor-Bernstein-Schröder)

Let X, Y be any two sets. Then  $X \preccurlyeq Y \land Y \preccurlyeq X \implies X \approx Y.$ 

# A bit history

As it is often the case in mathematics, the name of this theorem does not truly reflect its history.

- The traditional name "Schröder-Bernstein" is based on two proofs published independently in 1898.
- Cantor is often added because he investigated it around 1870s, and first stated it as a theorem in 1895,
- while Schröder's name is often omitted because his proof turned out to be flawed
- and while the name of the mathematician who first proved it (Dedekind, 1887, 1897) is not connected with the theorem.





If f (or g) is onto, then we are done! f (or  $g^{-1}$ ) is a bijection.







$$g[Y] - gf[X] \approx Y - f[X]$$
 via  $g^{-1}$ 



$$g[Y] - gf[X] \approx Y - f[X]$$
 via  $g^{-1}$   $X - g[Y] \approx f[X] - fg[Y]$  via  $f$ 



 $\label{eq:constraint} \begin{array}{l} \mbox{Thus } X-X_1\approx Y-Y_1, \\ \mbox{also we have } f:X_1\rightarrow Y_1, \ g:Y_1\rightarrow X_1. \end{array}$ 



 $X \supset X_1 \supset X_2 \cdots \supset X_n \supset \cdots$   $Y \supset Y_1 \supset Y_2 \cdots \supset Y_n \supset \cdots$ Let  $X^* = \bigcap_i X_i$  and  $Y^* = \bigcap_i Y_i$ . By induction,  $X - X^* \approx Y - Y^*$ 



$$\begin{split} X \supset X_1 \supset X_2 \cdots \supset X_n \supset \cdots & Y \supset Y_1 \supset Y_2 \cdots \supset Y_n \supset \cdots \\ \text{Let } X^* = \bigcap_i X_i \text{ and } Y^* = \bigcap_i Y_i. \text{ By induction, } X - X^* \approx Y - Y^* \\ \text{But } f[X] \supset Y_1 \supset f[X_1] \supset Y_2 \supset \cdots. \text{ Thus } Y^* = \bigcap_i f[X_i] = f[X^*]. \end{split}$$



Cardinal Numbers

Cardinal

Cardinal arithmetic,

Cofinality

## Cardinal

Thus we can assign to each set X its **cardinal number** |X| so that

$$X \approx Y$$
 iff  $|X| = |Y|$ 

Cardinal numbers can be defined

- either via equivalence classes (need Regularity),
- (von Neumann) or using ordinals (need AC).

## Cardinal

Thus we can assign to each set X its **cardinal number** |X| so that

$$X \approx Y$$
 iff  $|X| = |Y|$ 

Cardinal numbers can be defined

- either via equivalence classes (need Regularity),
- (von Neumann) or using ordinals (need AC).

- We shall use this definition.

# Cardinality

One determines the size of a finite set by counting it. More generally,

### Definition 4

If X can be well-ordered, then  $X \approx \alpha$  for some  $\alpha \in \text{Ord}$ , and the least such  $\alpha$  is called the **cardinality** of X, |X|.

### Some simple facts.

- If  $X \preccurlyeq \alpha$ , then X can be well-ordered.
- $|\alpha| \leq \alpha, \text{ for all } \alpha \in \text{Ord.}$
- Under AC, every set can be well-ordered, so |X| is defined for every X.

For the rest of this Chapter, we assume AC.

## Cardinal

### Definition 5

An ordinal  $\alpha$  is a cardinal if  $|\alpha| = \alpha$ .

We use  $\kappa, \lambda, \delta$  etc to denote cardinals.

### Some simple facts.

- $\alpha$  is a cardinal iff  $\forall \beta < \alpha \ (\beta \not\approx \alpha)$ .
- If  $|\alpha| \leq \beta \leq \alpha$ , then  $|\beta| = |\alpha|$ .
- Every infinite cardinal is a limit ordinal.
- For every  $n \in \omega$ ,  $n \not\approx n+1$ .
- If  $n \in \omega$ , then for all  $\alpha$ ,  $\alpha \approx n \rightarrow \alpha = n$ .

### Corollary 6

 $\omega$  is a cardinal and each  $n \in \omega$  is a cardinal.

### Corollary 6

 $\omega$  is a cardinal and each  $n \in \omega$  is a cardinal.

### Definition 7

- ► X is finite iff  $|X| < \omega$ . Infinite means not finite.
- ► X is countable iff  $|X| \le \omega$ . Uncountable means not countable.

#### Example

- Every  $n \in \omega$  is finite.
- $\omega, \mathbb{N}, \mathbb{Z}, \mathbb{Q}$  is countable. (To be discussed later)
- (Cantor).  $\mathbb{R}$  is uncountable. (To be proved in Chapter 4)

#### Example

- Every  $n \in \omega$  is finite.
- $\omega, \mathbb{N}, \mathbb{Z}, \mathbb{Q}$  is countable. (To be discussed later)
- ▶ (Cantor).  $\mathbb{R}$  is uncountable. (To be proved in Chapter 4)

REMARK. One cannot prove on the basis of ZFC – **Power Set** that uncountable sets exist. In fact, it is consistent with ZFC – **Power Set** that the only infinite cardinal is  $\omega$ .

## Uncountable Cardinal

Before Cantor's proof of " $\mathbb{R}$  is uncountable", it was not known that there are more than one infinite cardinal.

#### Theorem 8

```
For any set X, X \prec \mathscr{P}(X).
```

## Uncountable Cardinal

Before Cantor's proof of " $\mathbb{R}$  is uncountable", it was not known that there are more than one infinite cardinal.

#### Theorem 8

For any set  $X, X \prec \mathscr{P}(X)$ .

#### <u>Proof</u>.

- ▶ Identify every set X with its characteristic function  $C_X : X \to \{0, 1\}$ . Hence  $\mathscr{P}(X) \approx {}^X 2$ .
- Suppose F : X → <sup>X</sup>2 is an arbitrary injection. Construct an Z ∈ <sup>X</sup>2 ran(F) by diagonalization:
   C<sub>Z</sub>(x) = 1 iff C<sub>f(x)</sub>(x) = 0,
   i.e. Z = {x ∈ X | x ∉ f(x)}. F is not surjective!

In fact, Card is "unbounded" along Ord.

### Corollary 9

### For any set $S \subset Card$ , there is a cardinal $\kappa$ s.t. $\forall \lambda \in S \ (\lambda < \kappa).$

14 / 49

In fact, Card is "unbounded" along Ord.

### Corollary 9

For any set  $S \subset Card$ , there is a cardinal  $\kappa$  s.t.  $\forall \lambda \in S \ (\lambda < \kappa).$ 

#### Without assume AC, the following is not easy to prove.

Theorem (Halbeisen and Shelah, 1994)

For all infinite set A,

$$in(A) \prec \mathscr{P}(A),$$

where  $fin(A) := \{x \subseteq A \mid x \text{ is finite}\}.$ 



**Cardinal Numbers** 

Cardinal

#### Cardinal arithmetic, I

Cofinality

# **Operations on Cardinals**

The arithmetic operations on cardinals are defined as follows

### Definition 10

1. 
$$\kappa + \lambda = |\kappa \times \{0\} \cup \lambda \times \{1\}|$$
  
2.  $\kappa \cdot \lambda = |\kappa \times \lambda|$ .

3. 
$$\kappa^{\lambda} = |{}^{\lambda}\kappa|$$
.

 $\kappa,\lambda$  on the right are referred as sets.

# **Operations on Cardinals**

The arithmetic operations on cardinals are defined as follows

Definition 10

1. 
$$\kappa + \lambda = |\kappa \times \{0\} \cup \lambda \times \{1\}|$$

2. 
$$\kappa \cdot \lambda = |\kappa \times \lambda|$$
.

3. 
$$\kappa^{\lambda} = |{}^{\lambda}\kappa|$$
.

 $\kappa,\lambda$  on the right are referred as sets.

#### Exercise

Verify that these definitions are well defined.

# **Operations on Cardinals**

The arithmetic operations on cardinals are defined as follows

Definition 10

1. 
$$\kappa + \lambda = |\kappa \times \{0\} \cup \lambda \times \{1\}|$$
  
2.  $\kappa \cdot \lambda = |\kappa \times \lambda|$ .

$$2. \quad \kappa \cdot \lambda = |\kappa \times \lambda|$$

3. 
$$\kappa^{\lambda} = |{}^{\lambda}\kappa|$$
.

 $\kappa,\lambda$  on the right are referred as sets.

#### Exercise

Verify that these definitions are well defined.

We've shown that  $|\mathscr{P}(X)| = 2^{|X|}$  and  $\forall \kappa (\kappa < 2^{\kappa})$ .

## Simple Facts About Cardinal Arithmetics

Unlike the ordinal operations, + and · are associative, commutative and distributive.

$$\blacktriangleright \ (\kappa \cdot \lambda)^{\mu} = \kappa^{\mu} \cdot \lambda^{\mu}.$$

$$\blacktriangleright \ \kappa^{\lambda+\mu} = \kappa^{\lambda} \cdot \kappa^{\mu}.$$

$$\blacktriangleright \ (\kappa^{\lambda})^{\mu} = \kappa^{\lambda \cdot \mu}.$$

 $\blacktriangleright \ \, \text{If} \ \kappa \leq \lambda \text{, then} \ \kappa + \mu \leq \lambda + \mu \text{, } \kappa \cdot \mu \leq \lambda \cdot \mu \text{ and } \kappa^{\mu} \leq \lambda^{\mu}.$ 

• If 
$$0 < \lambda \leq \mu$$
, then  $\kappa^{\lambda} \leq \kappa^{\mu}$ .

- $\kappa^0 = 1$ ,  $1^{\kappa} = 1$ ,  $0^{\kappa} = 0$  if  $\kappa > 0$ .
- ▶ When  $\kappa, \lambda < \omega, \kappa + \lambda, \kappa \cdot \lambda$  and  $\kappa^{\lambda}$  are the same as the corresponding operations on natural numbers.

# Alephs

Since  $Card \subset Ord$ , Card is well-ordered and the elements of Card can be enumerated with Ord as indices. Consider infinite cardinals only.

### Definition 11

For any cardinal  $\kappa$ ,  $\kappa^+$  denotes the least cardinal  $> \kappa$ . The Aleph function  $\aleph$  is define by the transfinite recursion:

$$egin{aligned} &\aleph_0 = \omega, \ &\aleph_{lpha+1} = \aleph_{lpha}^+, \ &\aleph_{\sigma} = \lim_{lpha o \sigma} \aleph_{lpha}, \quad \lambda ext{ is a limit ordinal.} \end{aligned}$$

An infinite cardinal is called a **successor** cardinal if it is of the form  $\aleph_{\alpha+1}$  for some  $\alpha$ , otherwise is called a **limit** cardinal.

# Alephs

 $\aleph_{\alpha}$  are often written as  $\omega_{\alpha}$ .

This definition is legitimate due to the following facts

For every set S ⊂ Card, sup(S) is a cardinal. In particular, lim<sub>α<σ</sub> ℵ<sub>α</sub> is a cardinal.

These ensure that  $dom(\aleph) = Ord$ . Since for each  $\alpha \in Ord$ ,

$$\aleph_{\alpha} = \min\{\kappa \in \text{Card} \mid \forall \beta < \alpha \, (\aleph_{\beta} < \kappa)\},\\ \operatorname{ran}(\aleph) = \operatorname{Card} \setminus \omega.$$

# Alephs

<u>**REMARK</u></u>. The existence of \kappa^+ (\kappa infinite) can be shown without referring to 2^{\kappa} and AC:</u>** 

 $\kappa^+ = \sup\{ \operatorname{ordertype}(\prec) \mid (\kappa, \prec) \text{ is a well-ordering.} \}$
## Alephs

<u>REMARK</u>. The existence of  $\kappa^+$  ( $\kappa$  infinite) can be shown without referring to  $2^{\kappa}$  and AC:

 $\kappa^+ = \sup\{ \operatorname{ordertype}(\prec) \mid (\kappa, \prec) \text{ is a well-ordering.} \}$ 

#### Lemma 12

Card is a proper class.

In general,  $A \subset Ord$  is unbounded iff A is proper.

# Cardinality of Sets,

### Corollary 13

The following sets are countable:

- $\blacktriangleright \mathbb{Z}, \mathbb{Q}$  are countable.
- ► The set of all algebraic numbers, A, is countable.

Assume that  $|\mathbb{R}| = 2^{\aleph_0}$ . Then the following sets are of size  $2^{\aleph_0}$ .

- The set of all points in the *n*-dimensional space,  $\mathbb{R}^n$ .
- ▶ The set of all complex numbers, ℂ.
- The set of all  $\omega$ -sequences of natural numbers,  $\omega^{\omega}$ .
- The set of all  $\omega$ -sequences of real numbers,  $\mathbb{R}^{\omega}$

### Lemma 14 (AC)

If 
$$|A| < |B|$$
 then  $|B - A| = |B|$ .

In fact, one can prove the following without using AC.

#### Lemma 15

If 
$$A \subseteq B$$
,  $|A| = \aleph_0$  and  $|B| = 2^{\aleph_0}$ , then  $|B - A| = 2^{\aleph_0}$ .

HINT: View  $A \subseteq \mathbb{R} \times \mathbb{R} \approx B$ .  $\exists r \in \mathbb{R} \text{ s.t. } A \cap (\{r\} \times \mathbb{R}) = \emptyset$ .

#### Corollary 16

The set of irrationals,  $\mathbb{R} - \mathbb{Q}$ , and the set of transcendental numbers,  $\mathbb{R} - \mathbb{A}$ , are of cardinality  $2^{\aleph_0}$ .

## Addition and Multiplication are trivial

### Theorem 17 (AC)

Let  $\kappa, \lambda$  be infinite cardinals. Then

1. 
$$\kappa + \lambda = \kappa \cdot \lambda = \max{\{\kappa, \lambda\}}.$$

2. 
$$|{}^{<\omega}\kappa| = \kappa$$
.

They follow from the lemma on next page.

#### Lemma 18 (AC)

For every  $\alpha \in \text{Ord}$ ,  $\aleph_{\alpha} \cdot \aleph_{\alpha} = \aleph_{\alpha}$ .

PROOF OF THEOREM.

(1) follows immediately from Lemma 18. Below is for (2).

For each  $n \in \omega$ , pick an injection  $f_n : {}^n\kappa \to \kappa$ .

• Combining them gives us an injection  $f: \bigcup_n {}^n\kappa \to \omega \times \kappa, \quad f(\sigma) = (|\sigma|, f_{|\alpha|}(\sigma))$ whence  $|^{<\omega}\kappa| \le \omega \cdot \kappa = \kappa$ .

Next, we prove the lemma via pictures.

$$\begin{aligned} (a_1, b_1) \prec (a_2, b_2) &\leftrightarrow \max(a_1, b_1) < \max(a_2, b_2) \\ &\vee (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2) \\ &\vee (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2) \end{aligned}$$

$$\begin{aligned} (a_1, b_1) \prec (a_2, b_2) &\leftrightarrow \max(a_1, b_1) < \max(a_2, b_2) \\ &\vee (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2) \\ &\vee (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2) \end{aligned}$$



$$\begin{aligned} (a_1, b_1) \prec (a_2, b_2) &\leftrightarrow \max(a_1, b_1) < \max(a_2, b_2) \\ &\vee (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2) \\ &\vee (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2) \end{aligned}$$



$$\begin{aligned} (a_1, b_1) \prec (a_2, b_2) &\leftrightarrow \max(a_1, b_1) < \max(a_2, b_2) \\ &\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2) \\ &\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2) \end{aligned}$$



$$\begin{aligned} (a_1, b_1) \prec (a_2, b_2) &\leftrightarrow \max(a_1, b_1) < \max(a_2, b_2) \\ &\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2) \\ &\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2) \end{aligned}$$



$$\begin{aligned} (a_1, b_1) \prec (a_2, b_2) &\leftrightarrow \max(a_1, b_1) < \max(a_2, b_2) \\ &\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2) \\ &\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2) \end{aligned}$$



$$\begin{aligned} (a_1, b_1) \prec (a_2, b_2) &\leftrightarrow \max(a_1, b_1) < \max(a_2, b_2) \\ &\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2) \\ &\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2) \end{aligned}$$



$$\begin{aligned} (a_1, b_1) \prec (a_2, b_2) &\leftrightarrow \max(a_1, b_1) < \max(a_2, b_2) \\ &\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2) \\ &\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2) \end{aligned}$$



$$\begin{aligned} (a_1, b_1) \prec (a_2, b_2) &\leftrightarrow \max(a_1, b_1) < \max(a_2, b_2) \\ &\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2) \\ &\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2) \end{aligned}$$



$$\begin{aligned} (a_1, b_1) \prec (a_2, b_2) &\leftrightarrow \max(a_1, b_1) < \max(a_2, b_2) \\ &\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2) \\ &\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2) \end{aligned}$$



$$\begin{aligned} (a_1, b_1) \prec (a_2, b_2) &\leftrightarrow \max(a_1, b_1) < \max(a_2, b_2) \\ &\vee (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2) \\ &\vee (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2) \end{aligned}$$



$$(a_1, b_1) \prec (a_2, b_2) \leftrightarrow \max(a_1, b_1) < \max(a_2, b_2) \lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2) \lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2)$$

At any  $(a,b) \in \aleph_{\delta+1} \times \aleph_{\delta+1}$ , |the initial segment of  $\prec$  up to  $(a,b)| \leq \aleph_{\delta}$ 















#### Homework

#### Write an explicit formula for this bijection.

## Small cardinals, when no full AC (Woodin, 2006)



## Impact of AC

AC is equivalent to the assertion that

"Every set can be well-ordered". (WO)

Many of the basic properties of cardinals need AC.

Write  $X \preccurlyeq^* Y$  if  $X = \emptyset$  or there is a surjection  $f: Y \xrightarrow{\text{onto}} X$ .

#### Lemma 19 (AC)

1. If  $X \preccurlyeq^* Y$ , then  $X \preccurlyeq Y$ . 2. If  $\kappa \ge \omega$  and  $X_{\alpha} \preccurlyeq \kappa$  for all  $\alpha < \kappa$ , then  $\bigcup_{\alpha \le \kappa} X_{\alpha} \preccurlyeq \kappa$ .

#### <u>Proof</u>.

1. Let  $\prec$  well-orders Y. Suppose  $f:Y \to X$  is surjective. Define  $g:X \to Y$  as

$$g(x) = \prec$$
 -least element of  $f^{-1}(\{x\})$ .

For each α, pick an injection f<sub>α</sub> : X<sub>α</sub> → κ. f<sub>α</sub> are selected via a well-ordering of 𝒫(⋃ X<sub>α</sub> × κ).
For t ∈ ⋃ X<sub>α</sub>, let F(t) = (f<sub>α</sub>(t), α), where α<sub>t</sub> = least α such that t ∈ X<sub>α</sub>. Let π : κ × κ → κ be a bijection. π ∘ F works.

#### <u>Proof</u>.

1. Let  $\prec$  well-orders Y. Suppose  $f:Y \to X$  is surjective. Define  $g:X \to Y$  as

$$g(x) = \prec$$
 -least element of  $f^{-1}(\{x\})$ .

2. For each α, pick an injection f<sub>α</sub> : X<sub>α</sub> → κ. f<sub>α</sub> are selected via a well-ordering of 𝒫(⋃ X<sub>α</sub> × κ).
For t ∈ ⋃ X<sub>α</sub>, let F(t) = (f<sub>α</sub>(t), α), where α<sub>t</sub> = least α such that t ∈ X<sub>α</sub>. Let π : κ × κ → κ be a bijection. π ∘ F works.

An important application of Lemma 19-2 is the **Downward Löwenheim-Skolem-Tarski Theorem** in model theory.

## An Application, Definitions

#### Definition 20

- 1. An *n*-ary operation on X is a function  $f : X^n \to X$  if n > 0, or an element of X if n = 0.
- 2. If  $Y \subset X$ , Y is closed under f iff  $f[Y^n] \subset Y$  (or  $f \in B$  when n = 0).
- 3. A **finitary operation** is an *n*-ary operation for some  $n < \omega$ .
- 4. If  $\mathcal{E}$  is a set of finitary operations on X and  $Y \subset X$ , the closure of Y under  $\mathcal{E}$ , denoted as  $\mathrm{cl}_{\mathcal{E}}(Y)$ , is the least  $Y^* \subset X$  such that  $Y \subset Y^*$ , and  $Y^*$  is closed under all the operations in  $\mathcal{E}$ .

## An Application, Theorem

### Theorem 21 (AC)

Let  $\kappa$  be an infinite cardinal. Suppose  $Y \subset X$ ,  $Y \leq \kappa$ , and  $\mathcal{E}$  is a set of  $\leq \kappa$  finitary operations on X. Then  $|\operatorname{cl}_{\mathcal{E}}(Y)| \leq \kappa$ .

## An Application, Theorem

#### Theorem 21 (AC)

Let  $\kappa$  be an infinite cardinal. Suppose  $Y \subset X$ ,  $Y \leq \kappa$ , and  $\mathcal{E}$  is a set of  $\leq \kappa$  finitary operations on X. Then  $|\operatorname{cl}_{\mathcal{E}}(Y)| \leq \kappa$ .

 $\ensuremath{\operatorname{Example}}$  . Every infinite group has a countably infinite subgroup.

## An Application, Theorem

#### <u>Proof</u>.

- Let  $E_0 \subset \mathcal{E}$  be the set of all 0-ary operations in  $\mathcal{E}$ .
- Let C<sub>0</sub> = Y ∪ E<sub>0</sub>. We may assume that E has no 0-ary operations.

▶ By induction on  $n < \omega$ , define  $C_{n+1} = C_n \cup (\bigcup \{f[^kC_n] \mid f \in \mathcal{E}, f \text{ is } k\text{-ary.}\})$ ▶ Take  $C_\omega = \bigcup_n C_n$ . Check that  $C_\omega = \operatorname{cl}_{\mathcal{E}}(Y)$ .

# Homework (Midterm Quiz)

1. Prove the following statements.

1.1 If  $x \cap y = \emptyset$  and  $x \cup y \preccurlyeq y$ , then  $\omega \times x \preccurlyeq y$ . 1.2 If  $x \cap y = \emptyset$  and  $\omega \times x \preccurlyeq y$ , then  $x \cup y \approx y$ .

- 2. Ex.3.1-3.3 in textbook.
- 3. Prove that  $\kappa^{\kappa} \leq 2^{\kappa \cdot \kappa}$ .
- 4. If  $A \preccurlyeq B$ , then  $A \preccurlyeq^* B$ .
- 5. If  $A \preccurlyeq^* B$ , then  $\mathscr{P}(A) \preccurlyeq \mathscr{P}(B)$ .<sup>2</sup>
- 6. Let X be a set. If there is an injective function  $f: X \to X$  such that  $ran(f) \subsetneq X$ , then X is infinite.

<sup>&</sup>lt;sup>2</sup>Don't forget the case  $A = \emptyset$ .

#### <u>Remark</u>.

- Assuming AC, the converse of (4) is true (see Lemma 19).
- (6) is related to so called "Dedekind-infinite". (see textbook Ex.3.14-3.16)

## Exercises\*

- 1.  $\alpha$  is called an **epsilon number** iff  $\alpha = \omega^{\alpha}$  (ordinal exponentiation). Show that
  - the first epsilon number  $\varepsilon_0$  is countable.
  - for each  $\alpha \in \text{Ord} \{0\}$ ,  $\aleph_{\alpha}$  is an epsilon number.
  - For each α ∈ Ord − {0}, the set of epsilon numbers is unbounded below ℵ<sub>α</sub>. Hence, there are ℵ<sub>α</sub> epsilon numbers below ℵ<sub>α</sub>.
- 2. There is a well-ordering of the class of all finite sequences of ordinals such that for each  $\alpha$ , the set of all finite sequences in  $\omega_{\alpha}$  is an initial segment and its order-type is  $\omega_{\alpha}$ .

Since Cantor could show (under AC) that  $\aleph_1 \leq 2^{\aleph_0}$ , and had no way producing cardinals between  $\aleph_1$  and  $2^{\aleph_0}$ , he conjectured that

CONTINUUM HYPOTHESIS (CH)

$$\aleph_1 = 2^{\aleph_0}$$
?

## Continuum Hypothesis

More generally,

GENERALIZED CONTINUUM HYPOTHESIS (GCH)

For every  $\alpha \in Ord$ ,

$$\aleph_{\alpha+1} = 2^{\aleph_{\alpha}}?$$
## Continuum Hypothesis

More generally,

GENERALIZED CONTINUUM HYPOTHESIS (GCH)

For every  $\alpha \in \text{Ord}$ ,

$$\aleph_{\alpha+1} = 2^{\aleph_{\alpha}}?$$

<u>REMARK</u>. Without AC, it is possible that  $\aleph_1 \nleq 2^{\aleph_0}$ ; however, one can still show that  $\aleph_{\alpha+1} < 2^{2^{\aleph_\alpha}}$ , for every  $\alpha \in \text{Ord.}$  (see textbook Ex.3.7-3.11)

# Coming up next

**Cardinal Numbers** 

Cardinal

Cardinal arithmetic,

Cofinality







#### Lemma 22

#### If $\lambda \geq \omega$ and $2 \leq \kappa \leq \lambda$ , then $\kappa^{\lambda} = 2^{\lambda}$ .

#### Lemma 22

If  $\lambda \geq \omega$  and  $2 \leq \kappa \leq \lambda$ , then  $\kappa^{\lambda} = 2^{\lambda}$ .

Under GCH,  $\kappa^{\lambda}$  can be easily computed, but the notion of **cofinality** is needed.

# Cofinality

#### Definition 23

- ▶ If  $f : \alpha \to \beta$ , f maps  $\alpha$  cofinally (into  $\beta$ ) iff ran(f) is <u>unbounded</u> in  $\beta$ , i.e.  $\forall b \in \beta$ ,  $\exists a \in \alpha$ ,  $f(a) \ge b$ .
- The cofinality of β, cf(β), is the least α s.t. there is a map from α cofinally into β.

# Cofinality

#### Definition 23

- ▶ If  $f : \alpha \to \beta$ , f maps  $\alpha$  cofinally (into  $\beta$ ) iff ran(f) is <u>unbounded</u> in  $\beta$ , i.e.  $\forall b \in \beta$ ,  $\exists a \in \alpha$ ,  $f(a) \ge b$ .
- The cofinality of β, cf(β), is the least α s.t. there is a map from α cofinally into β.

Revise f to get a strictly increasing function  $f|A : A \subset \alpha \to \beta$ , and then  $g_{f|A} : \operatorname{otp}(A) \to \beta$ . Clearly  $\operatorname{otp}(A) \le \alpha$ . Thus we have

#### Lemma 24

There is a cofinal map  $f : cf(\alpha) \to \alpha$  which is strictly increasing, i.e.  $\xi < \eta \to f(\xi) < f(\eta)$ .

In general, it is not true for  $\gamma > cf(\alpha)$ .

# Properties of $\mathrm{cf}(\cdot)$

#### Lemma 25

If  $\alpha$  is a limit ordinal and  $f : \alpha \to \beta$  is a strictly increasing cofinal map, then  $cf(\alpha) = cf(\beta)$ .

Proof.

- " $\geq$ ": Let  $\gamma = cf(\alpha)$  and  $g : \gamma \to \alpha$  be cofinal, then  $f \circ g : \gamma \to \beta$  is cofinal. Thus  $\gamma \ge cf(\beta)$ , as  $cf(\beta)$  is minimal.
- "  $\leq ": \text{ Let } \gamma = \operatorname{cf}(\beta) \text{ and } g: \gamma \to \beta. \text{ A map } h: \gamma \to \alpha \text{ is defined as follows: for } a \in \gamma,$

$$h(a) = \min\{b \in \alpha \mid g(b) > f(a)\}.$$

h is well defined by the strictly-increasing-ness of f. Verify that h is strictly increasing and cofinal.

# Properties of $cf(\cdot)$

#### Corollary 26

1.  $\operatorname{cf}(\operatorname{cf}(\alpha)) = \operatorname{cf}(\alpha)$ .

2. If  $\alpha$  is a limit ordinal, then  $cf(\aleph_{\alpha}) = cf(\alpha)$ .

# Properties of $\mathrm{cf}(\cdot)$

### Corollary 26

- 1.  $\operatorname{cf}(\operatorname{cf}(\alpha)) = \operatorname{cf}(\alpha)$ .
- 2. If  $\alpha$  is a limit ordinal, then  $cf(\aleph_{\alpha}) = cf(\alpha)$ .

#### Clearly,



#### <u>EXAMPLE</u>. $cf(\omega^n) = cf(\aleph_\omega) = \omega$ .

# **Regular Cardinal**

### Definition 27

 $\alpha$  is regular iff  $\alpha$  is a limit ordinal and  $cf(\alpha) = \alpha$ . Otherwise,  $\alpha$  is singular.

# **Regular Cardinal**

### Definition 27

 $\alpha$  is regular iff  $\alpha$  is a limit ordinal and  $cf(\alpha) = \alpha$ . Otherwise,  $\alpha$  is singular.

#### Lemma 28

- 1. For every limit ordinal  $\alpha$ ,  $cf(\alpha)$  is regular. In particular,  $\omega$  is regular.
- 2. If  $\alpha$  is regular, then  $\alpha$  is a cardinal.

# **Regular Cardinal**

### Definition 27

 $\alpha$  is regular iff  $\alpha$  is a limit ordinal and  $cf(\alpha) = \alpha$ . Otherwise,  $\alpha$  is singular.

#### Lemma 28

- 1. For every limit ordinal  $\alpha$ , cf( $\alpha$ ) is regular. In particular,  $\omega$  is regular.
- 2. If  $\alpha$  is regular, then  $\alpha$  is a cardinal.

Proof of (2): Suppose  $\gamma < \alpha$  and  $\pi : \gamma \to \alpha$  were bijective.  $\pi$  would be unbounded, thus  $\gamma \ge cf(\alpha) = \alpha$ . Contradiction!

## Singular Cardinal

#### Lemma 29

Suppose  $\kappa = \aleph_{\alpha}$  for some  $\alpha \in \text{Ord. } \kappa$  is singular iff there exists a cardinal  $\lambda < \kappa$  and a family  $\{S_{\xi} \mid \xi < \lambda\}$  of subsets of  $\kappa$  with each  $|S_{\xi}| < \kappa, \xi < \kappa$ , such that  $\kappa = \bigcup_{\xi < \lambda} S_{\xi}$ . The least cardinal  $\lambda$  that satisfies the condition is  $\operatorname{cf}(\kappa)$ .

## Singular Cardinal

#### Lemma 29

Suppose  $\kappa = \aleph_{\alpha}$  for some  $\alpha \in \text{Ord. } \kappa$  is singular iff there exists a cardinal  $\lambda < \kappa$  and a family  $\{S_{\xi} \mid \xi < \lambda\}$  of subsets of  $\kappa$  with each  $|S_{\xi}| < \kappa, \xi < \kappa$ , such that  $\kappa = \bigcup_{\xi < \lambda} S_{\xi}$ . The least cardinal  $\lambda$  that satisfies the condition is  $\operatorname{cf}(\kappa)$ .

Proof.

- "  $\Rightarrow$ ": Suppose  $\lambda < \kappa$  and  $f : \lambda \to \kappa$  is cofinal. For each  $\xi < \lambda$ , let  $S_{\xi} = f(\xi)$  (as subset of  $\kappa$ ). Then  $\kappa = \sup_{\xi < \lambda} S_{\xi} = \bigcup_{\xi < \lambda} S_{\xi}$ . Moreover, least such  $\lambda \leq \operatorname{cf}(\kappa)$ .
- " $\Leftarrow$ ": Let  $\lambda$  be least such. For  $\delta < \lambda$ , let  $f(\delta) = \operatorname{otp}(\bigcup_{\xi < \delta} S_{\xi})$ . Each  $f(\delta) \le \kappa$ . f is nondecreasing. By the minimality of  $\lambda$ ,  $f(\delta) < \kappa$ , for  $\delta < \lambda$ . Clearly,  $\kappa_f := \sup_{\delta < \lambda} f(\delta) \le \kappa$ .  $\kappa = |\bigcup_{\xi < \lambda} S_{\xi}| \le \lambda \times \kappa_f = \max\{\lambda, \kappa_f\}$ . Since  $\lambda < \kappa$ ,  $\kappa = \kappa_f$ . f is cofinal in  $\kappa$ , so  $\lambda \ge \operatorname{cf}(\kappa)$ .

#### Corollary 30 (AC)

For each  $\alpha$ ,  $\aleph_{\alpha+1}$  is regular.

<u>**REMARK</u></u>. Without AC, it is consistent that cf(\omega\_1) = \omega, i.e. \omega\_1 is a countable union of countable sets. In contrast, in ZF one can show that \omega\_2 cannot be a countable union of countable sets.</u>** 

## Large cardinals

- There are arbitrarily large singular cardinals.
  For each α, cf(ℵ<sub>α+ω</sub>) = ω.
- It is unknown whether one can prove in ZF that there exists a cardinal κ with cf(κ) > ω.
- (Hausdroff, 1908) κ is weakly inaccessible if κ is a regular limit cardinal (∀λ < κ, λ<sup>+</sup> < κ). Every weak inaccessible is a fix point of the ℵ-sequence (ℵ<sub>α</sub> = α). The first weakly inaccessible cardinal is rather large. And its existence is independent of ZFC.
- (Sierpiński-Tarski, Zermelo, 1930). κ is strongly inaccessible iff κ > ω, κ is regular and ∀λ < κ (2<sup>λ</sup> < κ). Strong inaccessibles are weak inaccessibles. Under GCH, these two notions coincide.</li>





## Theorem 31 (König)

If  $\kappa$  is an infinite cardinal then  $\kappa < \kappa^{\mathrm{cf}(\kappa)}$ .

## Theorem 31 (König)

If  $\kappa$  is an infinite cardinal then  $\kappa < \kappa^{\mathrm{cf}(\kappa)}$ .

PROOF. Key: "No injection is surjective".

- Let  $\{f_{\alpha} \mid \alpha < \kappa\}$  be an arbitrary subset of  $cf(\kappa)\kappa$  of size  $\kappa$ .
- Construct an  $f : cf(\kappa) \to \kappa$  different from all  $f_{\alpha}$ ,  $\alpha < \kappa$ .
- Suppose  $\kappa = \lim_{\xi < cf(\kappa)} \alpha_{\xi}$ . For each  $\xi < cf(\kappa)$ ,  $f(\xi)$  is selected to ensure that at  $\xi$ ,  $f \neq f_{\alpha}$  for all  $\alpha < \alpha_{\xi}$ .

## Theorem 31 (König)

If  $\kappa$  is an infinite cardinal then  $\kappa < \kappa^{\mathrm{cf}(\kappa)}$ .

PROOF. Key: "No injection is surjective".

- Let  $\{f_{\alpha} \mid \alpha < \kappa\}$  be an arbitrary subset of  $cf(\kappa)\kappa$  of size  $\kappa$ .
- Construct an  $f : cf(\kappa) \to \kappa$  different from all  $f_{\alpha}$ ,  $\alpha < \kappa$ .
- Suppose  $\kappa = \lim_{\xi < cf(\kappa)} \alpha_{\xi}$ . For each  $\xi < cf(\kappa)$ ,  $f(\xi)$  is selected to ensure that at  $\xi$ ,  $f \neq f_{\alpha}$  for all  $\alpha < \alpha_{\xi}$ .

#### Corollary 32 (AC)

If  $\lambda \geq \omega$ , then  $cf(2^{\lambda}) > \lambda$ .

## Theorem 31 (König)

If  $\kappa$  is an infinite cardinal then  $\kappa < \kappa^{\mathrm{cf}(\kappa)}$ .

PROOF. Key: "No injection is surjective".

- Let  $\{f_{\alpha} \mid \alpha < \kappa\}$  be an arbitrary subset of  $cf(\kappa)\kappa$  of size  $\kappa$ .
- Construct an  $f : cf(\kappa) \to \kappa$  different from all  $f_{\alpha}$ ,  $\alpha < \kappa$ .
- Suppose  $\kappa = \lim_{\xi < cf(\kappa)} \alpha_{\xi}$ . For each  $\xi < cf(\kappa)$ ,  $f(\xi)$  is selected to ensure that at  $\xi$ ,  $f \neq f_{\alpha}$  for all  $\alpha < \alpha_{\xi}$ .

#### Corollary 32 (AC)

If  $\lambda \geq \omega$ , then  $cf(2^{\lambda}) > \lambda$ .

 $\text{Hint: Otherwise, } 2^{\lambda} < (2^{\lambda})^{\mathrm{cf}(2^{\lambda})} \leq (2^{\lambda})^{\lambda} = 2^{\lambda}.$ 

Further results in cardinal arithmetics will appear in Chapter 5.