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Overview

▶ Orderings: partial, total

▶ Well-Ordering: order-type

▶ Ordinal numbers, natural numbers

Theorem. Every well-ordered set is uniquely isomorphic
to an ordinal number.

▶ Transfinite induction and transfinite recursion

▶ Ordinal arithmetic: Cantor’s Normal Form
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Coming up next

Ordinal Numbers

Well-Ordering

Ordinal Numbers

Induction and Recursion

Ordinal Arithmetic
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Orderings
Definition 1
A binary relation < on a set P is a partial ordering (or
partially ordered set, poset) of P if for any p, q, r ∈ P ,

1. (irreflexive) p ̸< p;
2. (transitive) p < q ∧ q < r → p < r.

(P,<) is called a partial order. Define ≤ as
p ≤ q ⇐⇒ p < q ∨ p = q

(P,≤) is reflexive and transitive. It is called a preorder.
Partial orders are strict preorders.

A partial ordering < of P is a linear ordering (or total
ordering if moreover for any p, q ∈ P ,

3. (trichotomous) p < q ∨ p = q ∨ q < p.
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Max-N-Mins

Definition 2
If (P,<) is a poset, ∅ ̸= X ⊆ P and a ∈ P , then:
▶ a is a maximal element of X if a ∈ X and

∀x ∈ X (a ̸< x)
▶ a is a minimal element of X if a ∈ X and

∀x ∈ X (x ̸< a)
▶ a is a greatest element of X if a ∈ X and

∀x ∈ X (x ≤ a)
▶ a is a least element of X if a ∈ X and

∀x ∈ X (a ≤ x)

5 / 85



Max-N-Mins

Definition 2 (Cont’d)
▶ a is a upper bound of X if ∀x ∈ X (x ≤ a).

▶ a is a lower bound of X if ∀x ∈ X (a ≤ x).

▶ a is a supremum of X, sup(X), if a is the least upper
bound of X.

▶ a is a infimum of X, inf(X), if a is the greatest lower
bound of X.

6 / 85



Max-N-Mins

The following remarks apply to their counterparts as well.
▶ “Greatest” =⇒ “Maximal”.

▶ “Greatest” is unique, if exists.

▶ “Maximal” is not necessary unique, unless (X,<) is
linear.

▶ “Upper bound” and “Supremum” refer to elements
outside X.
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Max-N-Mins

▶ “Upper bound” may not exists. If not, X is unbounded
in P .

▶ sup(X) may not exists, even when upper bounds exist.
If exists, it must be unique.

▶ When “Greatest” exists,
“Greatest” = “Supremum”.

▶ If X is linear and “Maximal” exists,
“Greatest” = “Maximal” = “Supremum”.
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Order-Preserving Function

Definition 3
If (P,<P ) and (Q,<Q) are posets and f : P → Q, then f is
order-preserving if ∀x, y ∈ P (x <P y → f(x) <Q f(y)).

▶ An order-preserving function is a monomorphism.

▶ If P and Q are linear, then an order-preserving function is
also called increasing.
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Order-Preserving Function

Definition 4
▶ A bijection f : P → Q is an isomorphism of P and Q if

∀x, y ∈ P (x <P y ←→ f(x) <Q f(y)).

▶ An isomorphism of P onto itself is an automorphism of
(P,<).

If two orderings are isomorphic, we say they have the same
order-type.
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Coming up next

Ordinal Numbers

Well-Ordering

Ordinal Numbers

Induction and Recursion

Ordinal Arithmetic
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Well-Ordering

Definition 5
We say (P,<) is a well-ordering, or < well-orders P , if
(P,<) is a linear ordering and every nonempty subset of P has
a least element.

The notion of well-orderings gives us a convenient way of
stating an equivalent version of the Axiom of Choice (AC).

Axiom 9 (Choice)

∀X∃R (R well-orders X).
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Properties of Well-Orderings

Proposition 6
▶ If (W,<) is a well ordering and U ⊂ W , then

(U,< ∩ (U × U)) is a well ordering.
▶ If (W1, <1) and (W2, <2) are two well orderings and

W1 ∩W2 = ∅, then W1 ⊕W2 = (W1 ∪W2,≺) is a well
ordering, where

≺ = <1 ∪<2 ∪ {(a, b) | a ∈ W1 ∧ b ∈ W2}
▶ If (W1, <1) and (W2, <2) are two well orderings, then

W1 ⊗W2 = (W1 ×W2,≺) is a well ordering, where
(a1, b1) ≺ (a2, b2)↔ b1 <2 b2 ∨ (b1 = b2 ∧ a1 <1 a2).
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Plan

Things to do:

▶ Well-ordered sets can be compared by their lengths.

▶ In fact, the class of all well-orderings can be (non-strictly)
well-ordered.

▶ Ordinal numbers will be introduced as order-types of
well-ordered sets.
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A Lemma

Lemma 7
If (W,<) is a well-ordered set and f : W → W is an
increasing function, then f(x) ≥ x for each x ∈ W .

Proof.
Suppose NOT. Consider z, the least element of

Sf = {x ∈W | f(x) < x}.

f(z) < z =⇒ f(z) /∈ Sf =⇒ f2(z) ≥ f(z). But f is increasing,
f(z) < z =⇒ f2(z) < f(z), Contradiction!
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The converse to this lemma holds for countable linear ordering.

Theorem
Let W be a countable linear ordering and suppose that for
every function f : W → W ,

if f is order-preserving, then f(x) ≥ x for every x ∈ W .

Then W is a well ordering.1

Notation: Fix a well-ordered set (W,<). For x ∈ W , let

Wx = {y ∈ W | y < x}.

It can be well-ordered by <x≡< ∩ (Wx ×Wx).

1Reference: Rosenstein, Joseph G. Linear orderings. Pure and Applied
Mathematics, 98. Academic Press, Inc. New York-London, 1982.
xvii+487 pp.
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Corollaries

Corollary 8
If (W,<) is a well-ordering, then for all x ∈ W ,

(W,<) ≇ (Wx, <x).

Proof.
Suppose NOT. Let f : W →Wx be an isomorphism. Then
f(x) < x, contradicting Lemma 7.
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Corollaries

Corollary 9
If f : W → W is an automorphism, then f = id.

The point is that f−1 is order-preserving as well.

Corollary 10
If W1 and W2 are isomorphic well-orderings and
f, g : W1 → W2 are two isomorphisms, then

f ◦ g−1 = idW2 and g−1 ◦ f = idW1 .

Thus f = g.
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Theorem 11

We have shown that
▶ No well-ordered set is isomorphic to an initial segment of

itself.
▶ If W1 and W2 are isomorphic well-orderings, then the

isomorphism between them is unique.
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Theorem 11

These lead to

Theorem 11
Let (U,<U) and (V,<V ) be two well-orderings. Then exactly
one of the following holds:

1. (U,<U) ∼= (V,<V );
2. (U,<U) ∼= (Vy, (<V )y), for some y ∈ V ;
3. (Ux, (<U)x) ∼= (V,<V ), for some x ∈ U .
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Proof.
Let f = {(x, y) | x ∈ U ∧ y ∈ V

∧ (Ux, (<U )x) ∼= (Vy, (<V )y)}

Note that
Claim. f is an isomorphism from some initial segment of U onto
some initial segment of V .

Claim. These initial segments cannot both be proper.
Otherwise, let

xf = min(U − dom(f)), yf = min(V − ran(f)).

Then (xf , yf ) ∈ f . Contradiction!
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Homework

1. Show that the function f given in the proof of
Theorem 11 is an isomorphism.

2. The relation “(P,<) ∼= (Q,<)” is an equivalence relation
(on the class of all partially ordered sets).

3. Let A denote the class of all well orderings. For any
a, b ∈ A,

[a]∼= ≺ [b]∼= iff a ∼= bx for some x ∈ b.

Show that ≺ is (well defined and) a well ordering on
A/∼=, where ∼= is the equivalence relation given as above.

4. Prove Proposition 6.
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Coming up next

Ordinal Numbers

Well-Ordering

Ordinal Numbers

Induction and Recursion

Ordinal Arithmetic
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Ordinal
Motivation

▶ The class of well-ordered sets is partitioned into
equivalence classes.

▶ A typical well-ordered set, an ordinal, is selected from
each equivalence class to represent the corresponding
order-type.

▶ Some criteria for defining ordinals:

1. α < β iff (β,<β) is longer than (α,<α).
2. The class of all ordinals, Ord, is well-ordered by <.
3. The definition of < and <α should be as simple as

possible.
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Ordinal
Motivation

Von Neumman’s Solution.
α < β iff α ∈ β.

First, 0 = ∅. By criteria-2.,
1 = {∅},

2 = {∅, {∅}} = 1 ∪ {1},

3 = {∅, {∅}, {∅, {∅}}} = 2 ∪ {2},

· · · · · · · · · · · ·
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Ordinal
Definition

Definition 12
A set T is transitive if ∀x(x ∈ T → x ⊆ T ).

Examples. ∅, {∅}, {∅, {∅}} and {{{∅}}, {∅},∅} are
transitive.

{{∅}} is not.

Homework
Show that the following are equivalent:
a. T is transitive;
b.

∪
T ⊆ T ;

c. T ⊆P(T ).
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Ordinal

Definition 13
A set is an ordinal (number) if it is transitive and
well-ordered by ∈.

More formally, the assertion that x is well-ordered by ∈ means
that (x,∈x) is a well-ordering, where ∈x≡∈ ∩ (x× x). We
often drop the subscript in ∈x.
Example. ∅, {∅}, {∅, {∅}} are ordinals, whereas
{{{∅}}, {∅},∅} (not ∈-well-ordered) and {{∅}} (not
transitive) are not. If x = {x}, then x is transitive, but
x /∈ Ord.
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Ordinals

Notation. Ordinals are denoted by lower case Greek letters
α, β, γ, . . .. The class of all ordinals is denoted as Ord.

Compare ordinals.

α < β iff α ∈ β.
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Properties

When α < β, let βα = {γ ∈ β | γ < α}.

First, we show that Ord and “∈” reflect order-types of
well-orderings faithfully.

Theorem 14
1. If β ∈ Ord and α < β, then α ∈ Ord and α = βα.
2. If α, β ∈ Ord and α ∼= β, then α = β.

Proof.
Key for (2): show that f : α

∼=−→ β equals to id. Let α0 = least γ
s.t. f(γ) ̸= γ. Show that α0 = f ′′α0 = βf(α0) = f(α0).
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Properties

Theorem 14-1 says that every ordinal forms an initial segment
of Ord. Conversely, any proper initial segment of Ord is an
ordinal.

Lemma 15
Suppose that X is a subset of Ord such that

∀x ∈ X∀y < x (y ∈ X),

then X ∈ Ord.
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Properties

As corollary, we have

Theorem 16
If (W,≺) is a well-ordering, then there is a unique α ∈ Ord
such that (W,≺) ∼= (α,∈).

Given a well-ordering (W,≺), let ordertype((W,≺)) denote
the unique α ∈ Ord such that (W,≺) ∼= (α,∈).
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Proof.
Uniqueness follows from Theorem 14 -2.

For the existence, let
U = {x ∈W | ∃α ∈ Ord (Wx

∼= α)}
and let f be the function with dom(f) = U such that for every
x ∈ U ,

f(x) = the (unique) α ∈ Ord s.t. Wx
∼= α.

Check that

▶ ran(f) is an ordinal.

— need Replacement.

▶ f is an isomorphism between U and ran(f).

▶ either U = W

— in this case we are done.

or U = Wx for some x ∈W

— if so, x ∈ U , contradiction!
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Properties (about <)
Theorem 17

1. If α ∈ Ord, then α ≮ α.
2. If x, y, z ∈ Ord, x < y and y < z, then x < z.
3. If α, β ∈ Ord, then exactly one of the following is true:

α < β, α = β, β < α.
4. If C is a nonempty subclass of Ord, then∩

C = inf(C) ∈ Ord.

This theorem implies that the set of all ordinals, if it existed,
would be an ordinal, and thus Ord is not a set. More precisely,

¬∃z∀x ∈ Ord (x ∈ z).

This is so-called Burali-Forti paradox.
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Properties (about ⊆)

Proposition 18
1. ∅ ∈ Ord.
2. If α, β ∈ Ord, α ̸= β and α ⊂ β, then α ∈ β.
3. For any α, β ∈ Ord, α ≤ β ↔ α ⊆ β.
4. If α, β ∈ Ord, then α ⊊ β ∨ α = β ∨ β ⊊ α.
5. If D is a nonempty subset of Ord, then∪

D = sup(D) ∈ Ord.
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Successor Ordinal and Limit Ordinal

Definition 19
S(α) = α ∪ {α}.

Lemma 20
For any α ∈ Ord,

1. α < S(α),
2. S(α) = inf{β | β > α} ∈ Ord, and
3. for every β ∈ Ord, β < S(α)↔ β ≤ α.

35 / 85



Successor Ordinal and Limit Ordinal

Definition 19
S(α) = α ∪ {α}.

Lemma 20
For any α ∈ Ord,

1. α < S(α),
2. S(α) = inf{β | β > α} ∈ Ord, and
3. for every β ∈ Ord, β < S(α)↔ β ≤ α.

35 / 85



Successor Ordinal and Limit Ordinal

Definition 21
α is a successor ordinal iff ∃β (α = S(β)).
α is a limit ordinal iff α ̸= ∅ and α is not a successor ordinal.

Lemma 22
If α is not a successor ordinal, then α = sup(α) =

∪
α.

This includes ∅ and all limit ordinals. The existence of limit
ordinals follows from the Axiom of Infinity.
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Natural Numbers

Definition 23
0 = ∅, 1 = S(0), 2 = S(1), 3 = S(2), …, etc.

So 1 = 0, 2 = {0, 1}, 3 = {0, 1, 2}, …, etc.

Definition 24
Suppose α ∈ Ord. α is a natural number iff

∀β ≤ α (β = 0 ∨ β is a successor ordinal).

Letters n,m, l, k, j, i are often used to denote natural numbers.

37 / 85



Natural Numbers

Definition 23
0 = ∅, 1 = S(0), 2 = S(1), 3 = S(2), …, etc.

So 1 = 0, 2 = {0, 1}, 3 = {0, 1, 2}, …, etc.

Definition 24
Suppose α ∈ Ord. α is a natural number iff

∀β ≤ α (β = 0 ∨ β is a successor ordinal).

Letters n,m, l, k, j, i are often used to denote natural numbers.

37 / 85



Natural Numbers

Definition 23
0 = ∅, 1 = S(0), 2 = S(1), 3 = S(2), …, etc.

So 1 = 0, 2 = {0, 1}, 3 = {0, 1, 2}, …, etc.

Definition 24
Suppose α ∈ Ord. α is a natural number iff

∀β ≤ α (β = 0 ∨ β is a successor ordinal).

Letters n,m, l, k, j, i are often used to denote natural numbers.

37 / 85



Natural Numbers
It is immediate from the definition that the natural numbers
form an initial segment of the ordinals.

Proof: By definition N ⊆ Ord. Suppose β ∈ N and γ < β.
Then γ is either 0 or a successor ordinal. Any η < γ is also
< β, thus is either 0 or a successor ordinal. Hence γ ∈ N.
With the concept of “natural number”, one can define the
notion of “finite/infinite”. However, it uses the idea of
bijection from Chapter 3.

Definition 25
A set X is finite if there is a bijection from X to some natural
number. X is infinite if X is not finite.
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Infinity

Intuitively, natural numbers are obtained by applying S to 0 a
finite number of times. Let β be the least ordinal not so
obtained, β could not be a successor ordinal, and hence all
large α would not satisfy Definition 24.

This is where the
Axiom of Infinity comes in.

Axiom 6 (Infinity)

∃x (0 ∈ x ∧ ∀y (y ∈ x→ S(y) ∈ x).
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Infinity

If x satisfies the Axiom of Infinity, then x contains all
natural numbers.

Idea: Suppose NOT. Let n be least such that n ∈ N− x.
∅ ∈ x, so n ̸= 0, and it must be that n = S(m), some m.
Then m ∈ N ∩ x. But it follows that S(m) ∈ x.
Contradiction!
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ω

By Comprehension, there is a set of natural numbers.

Definition 26
ω is the set of natural numbers.

▶ ω ∈ Ord, by Lemma 15.
▶ ω is a limit ordinal (otherwise, it would be a natural

number).
▶ ω is the least limit ordinal.
▶ ω satisfies the Peano Postulates.
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Peano Postulates

Theorem 27 (Peano Posulates)
1. 0 ∈ ω.
2. ∀n ∈ ω (S(n) ∈ ω).
3. ∀n,m ∈ ω (n ̸= m→ S(n) ̸= S(m)).
4. (Induction)

∀X ⊆ ω [(0 ∈ X ∧ ∀n ∈ X (S(n) ∈ X))→ X = ω].

Proof.
For 4., if X ̸= ω, let γ = min(ω −X), and show that γ is a limit
ordinal < ω.
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Developing Mathematics (early attempt)

Given the natural numbers with the Peano Postulates, one
may temporarily forget about ordinals and proceed to develop
elementary mathematics directly: constructing the integers
and the rationals, and then introducing the Power Set Axiom
and constructing the set of real numbers.

The first step would be to define + and · on ω. However, we
take an alternative approach via which we can discuss + and ·
on all ordinals. Our approach doesn’t need the Axiom of
Infinity.
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Addition and Multiplication

Definition 28
▶ α + β = ordertype((α× {0})⊕ (β × {1})).

▶ α · β = ordertype(α⊗ β).

More general version will be discussed later.
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Addition and Multiplication

Proposition 29
For any α, β, γ,

1. α + (β + γ) = (α + β) + γ.

2. α + 0 = α.
3. α + 1 = S(α).
4. α + S(β) = S(α + β).
5. If β is a limit ordinal, α + β = sup{α + ξ | ξ < β}.
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Addition and Multiplication

Proposition 30
For any α, β, γ,

1. α · (β · γ) = (α · β) · γ

2. α · 0 = 0

3. α · 1 = α

4. α · S(β) = α · β + α

5. If β is a limit ordinal, α · β = sup{α · ξ | ξ < β}.
6. α · (β + γ) = α · β + α · γ.
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Addition and Multiplication

Unlike the case with natural numbers,
▶ + is not commutative.

(e.g. 1 + ω ̸= ω + 1.)

▶ · is not commutative.

(e.g. 2 · ω ̸= ω · 2.)
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Finite Sequences

Natural numbers give us a way of handling finite sequences.

Definition 31
1. nX is the set of functions from n into X.
2. <ωX =

∪
{nX | n ∈ ω}. ConCat
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Finite Sequences

In the literature, Xn and X<ω are often used. The intention
here is to emphasize the difference between 2X and X ×X,
although there is an obvious bijection between them. We shall
not make distinction when it causes no confusion.

Remark: It is not completely trivial to see that this
definition makes sense without using the Power Set Axiom.
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Finite Sequences

We often think that of the elements of nX as the sequences
from X of length n.

Definition 32
For each n, ⟨x0, . . . , xn−1⟩ is the function s with domain n
such that s(0) = x0, s(1) = x1, …, s(n− 1) = xn−1.
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Finite Sequences

The case n = 2 gives us another way to define ordered pairs.
In the literature, the ordered pair (a, b) is often written as
⟨a, b⟩. Here different notations are used to differentiate two
ways of defining ordered pairs.

(a, b) is convenient for developing basic notions of functions
and relations, while ⟨a, b⟩ is more useful in handling sequences
of various lengths. We shall make no distinction from now on.
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General Sequences

In general, we think of I = dom(s) as an index set and s as a
sequence indexed by I. So s(i) is often written as si. More
generally, ⟨si : i ∈ I⟩ is used to denote general sequences.

When dom(s) = α, we may view s as a sequence of length α.
Thus we can generalize Definition 31 to αX and <αX.

Definition 33
If s, t are two functions with dom(s) = α and dom(t) = β,
s⌢t is the function with dom(s⌢t) = α + β such that

(s⌢t)↾α = s, and
(s⌢t)(α + ξ) = t(ξ), for all ξ < β.
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Coming up next

Ordinal Numbers

Well-Ordering

Ordinal Numbers

Induction and Recursion

Ordinal Arithmetic
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Transfinite Induction

The Induction Principle and the Recursion Theorem are the
main tools for proving theorems about natural numbers. In
this section, we show how these results generalize to ordinal
numbers.

Theorem 34 (The Induction Principle)
Let φ(x) be a property (possibly with parameters). Assume
that,

1. φ(0) holds.
2. For all n ∈ ω, φ(n) implies φ(n+ 1).

Then φ(n) holds for all n ∈ ω.
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this section, we show how these results generalize to ordinal
numbers.
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Transfinite Induction

Theorem 35 (Transfinite Induction, Version I)
Let φ(x) be a property (possibly with parameters). Assume
that, for all α ∈ Ord,

If φ(β) holds for all β < α, then φ(α). (∗)

Then φ(α) holds for all α ∈ Ord.

55 / 85



Transfinite Induction

Proof.
Suppose NOT.

Consider the class
E = {γ ∈ Ord | ¬φ(γ)}

By the assumption E ̸= ∅. As a subclass of Ord, E has a least
element α. Since φ(β) holds for every β < α, it follows from (∗)
that φ(α) holds. Contradiction!
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Transfinite Induction

Theorem 36 (Transfinite Induction, Version II)
Let φ(x) be a property. Assume that

1. φ(0) holds.
2. φ(α)→ φ(α + 1), for all α ∈ Ord.
3. For all limit ordinals α, if φ(β) holds for all β < α, then

φ(α) holds.
Then φ(α) holds for all α ∈ Ord.

It suffices to show that 1-3 implies (∗).
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The Recursion Theorem

Theorem 37 (The Recursion Theorem)
For any set X and any function g : <ωX → X, there exists a
unique infinite sequence f : ω → X such that

fn = g(f ↾n) = g(⟨f0, . . . , fn−1⟩), for all n ∈ ω.

Theorem 38 (The Transfinite Recursion Theorem)
Let Ω ∈ Ord, X a set, and S = <ΩX. Let g : S → X be a
function. Then there exists a unique function f : Ω→ X such
that

f(α) = g(f ↾α), for all α < Ω.
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Coming up next

Ordinal Numbers

Well-Ordering

Ordinal Numbers

Induction and Recursion

Ordinal Arithmetic
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Recursive Definitions

Definition 39
Let α > 0 be a limit ordinal and let ⟨γξ : ξ < α⟩ be a
nondecreasing sequence of ordinals (i.e. ξ < η =⇒ γξ ≤ γη).
The limit of the sequence is limξ→α γξ = sup{γξ | ξ < α}.
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Recursive Definitions

Addition and Multiplication of ordinal numbers can be defined
recursively.

Definition 40 (Addition)
For all ordinal numbers α,

1. α + 0 = α.
2. α + (β + 1) = (α + β) + 1, for all β.
3. α + β = limξ→β(α + ξ), for limit β > 0.
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Recursive Definitions

Definition 41 (Multiplication)
For all ordinal numbers α,

1. α · 0 = 0.
2. α · (β + 1) = (α · β) + α, for all β.
3. α · β = limξ→β(α · ξ), for limit β > 0.
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Recursive Definitions

We’ve shown that the geometrical definitions given in the early
section satisfy these properties. By induction, one can show
that

Lemma 42
For all ordinals α and β, α + β and α · β are, respectively,
isomorphic to α⊕ β and α⊗ β.

Next is the recursive definition of the exponentiation of
ordinals, which is much easier to grasp than it’s geometrical
version.
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Exponentiation

Definition 43 (Exponentiation)
For all ordinal numbers α,

1. α0 = 1.
2. αβ+1 = αβ · α, for all β.
3. αβ = limξ→β α

ξ, for all limit β > 0.

Proposition 44
For all α, β, γ ∈ Ord,

1. αβ+γ = αβ · αγ.
2. (αβ)γ = αβ·γ.
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Exponentiation
Geometrical Definition

Here, for those who are curious, is the geometrical definition
of exponentiation of ordinal numbers.

Definition 45 (Exponentiation)
Let

F (α, β) = {f ∈ βα | {ξ | f(ξ) ̸= 0} is finite.}
If f, g ∈ F (α, β) and f ̸= g, then

f ≺ g ↔ f(ξ) < g(ξ),

where ξ is the largest ordinal such that f(ξ) ̸= g(ξ). Then
αβ = ordertype((F (α, β),≺)).
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Properties
Here are some additional properties of the three ordinal
operations.

Lemma 46
1. If β < γ then α + β < α + γ.
2. If α ≤ β then there exists a unique δ such that α+ δ = β.
3. Suppose α > 0. If β < γ then α · β < α · γ.
4. If α > 0 and γ is arbitrary, then there exist a unique β

and a unique ρ < α such that γ = α · β + ρ.
5. Suppose α > 1. If β < γ then αβ < αγ.

(1), (3), (5) are in fact “if and only if”.
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Cantor’s Normal Form

Theorem 47 (Cantor’s Normal Form Theorem)
Every nonzero ordinal α can be represented uniquely in the
form

α = ωβ1 · k1 + · · ·+ ωβn · kn,
where n ≥ 1, α ≥ β1 > · · · > βn, and k1, . . . , kn are nonzero
natural numbers.

Proof.
By induction on α. Use Lemma 46 -4.
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Factorization of ordinals
An application of CNF

Definition 48
A ordinal α > 1 is prime if there are no ordinals β, γ < α such
that α = β · γ.

There are three sorts of prime ordinals:
▶ 2, 3, 5, ... (finite primes)
▶ ωωα , for any α ∈ Ord. (limit primes)
▶ ωα + 1, for any α ∈ Ord \ {0}. (infinite successor primes)
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Factorization of ordinals
An application of CNF

Theorem 49 (Siepínski, 19582)
The Cantor normal form ordinal

ωα1n1 + · · ·+ ωαknk (with α1 > · · · > αk)

is uniquely factored into a minimal product of infinite primes
and integers of the following form

ωωβ1 · · ·ωωβm
nk(ω

αk−1−αk + 1)nk−1 · · ·n2(ω
α1−α2 + 1)n1

where
▶ each ni should be replaced by its unique factorization of

finite primes, and
▶ αk = ωβ1 + · · ·+ ωβm with β1 > · · · > βm.

2This was rediscovered by a BNU undergrad, YOU Hangyu.
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About ε0
Note that it is possible that α = β1, i.e.α = ωα. The least
such ordinal is called ε0.
▶ (Gentzen) Transfinite induction on ε0 proves Con(PA),

the consistency of the first-order Peano axioms (PA).
▶ By Gödel’s 2nd Incompleteness, PA can not prove

transfinite induction for (or beyond) ε0
▶ PA are not strong enough to show that ε0 is an ordinal
▶ while ε0 can easily be arithmetically described

Define φ0(β) = ωβ, φγ+1(β) = β-th fixed point of φγ, and
φδ(β) = the β-th common fixed point of φγ, γ < δ. Then
φ1(0) = ε0. φγ is called the γ-th Veblen function.3

3See https://en.wikipedia.org/wiki/Veblen_function.
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Goodstein Sequence
Another application of CNF

▶ Recall that for every natural number a ≥ 2, every natrual
number m can be written in base a, i.e., as a sum of
powers of a:

m = ab1 · k1 + · · ·+ abn · kn,
with b1 > · · · > bn and 0 < ki < a, i = 1, . . . , n.

▶ A number m is written in pure base a ≥ 2 if it is first
written in base a, then so are the exponents and the
exponents of exponents, etc. For instance, 324 in pure
base 3:

(324)3 = 33+2 + 33+1.
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Goodstein Sequence

Definition 50
The Goodstein sequence starting at m > 0 is a sequence
m0,m1,m2, . . . obtained as follows: Let m0 = m and write
m0 in pure base 2. By induction, to get mk+1, write mk in
pure base k + 2, replace each k + 2 by k + 3, and subtract 1.
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Goodstein Sequence

The Goodstein sequence starting at m = 21:
m0 = (21)2 = 22

2

+ 22 + 1

m1 = 33
3

+ 33 ∼ 7.6× 1012

m2 = 44
4

+ 44 − 1

= 44
4

+ 43 · 3 + 42 · 3 + 4 · 3 + 3 ∼ 1.3× 10154

m3 = 55
5

+ 53 · 3 + 52 · 3 + 5 · 3 + 2 ∼ 1.9× 102184

m4 = 66
6

+ 63 · 3 + 62 · 3 + 6 · 3 + 1 ∼ 2.6× 1036305

· · · · · · · · · · · · · · · · · ·
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Goodstein Sequence

Theorem 51 (Goodstein, 1944)
For each m > 0, the Goodstein sequence starting at m
eventually terminates with mn = 0 for some n.

Proof.
We define a (finite) sequence of ordinals β0 > · · · > βn > · · · as
follows. When mn is written in pure base n+ 2, we get βn by
replacing each n+ 2 by ω. The ordinals βn are in normal form,
and they form a (finite) decreasing sequence. Therefore βn = 0 for
some n, and since mn < βn for all n, we have mn = 0.
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Goodstein Sequence

Take the Goodstein sequence starting at m = 21 as an
example:

m0 < β0 = ωωω

+ ωω + 1

m1 < β1 = ωωω

+ ωω

m2 < β2 = ωωω

+ ω3 · 3 + ω2 · 3 + ω · 3 + 3

m3 < β3 = ωωω

+ ω3 · 3 + ω2 · 3 + ω · 3 + 2

m4 < β4 = ωωω

+ ω3 · 3 + ω2 · 3 + ω · 3 + 1

· · · · · · · · · · · · · · · · · ·

βn → 0 =⇒ mn → 0.
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Hydra Problem

Figure: Hercules slaying the Hydra

76 / 85



Hydra Problem

77 / 85



Arithmetic statements not provable in PA

Goodstein’s Theorem was the third example of a true
statement that is unprovable in Peano arithmetic.

1. (1931) Gödel’s incompleteness theorem
2. (1943) Gerhard Gentzen’s direct proof of the

unprovability of ε0-induction in Peano arithmetic
3. (1944) Goodstein’s Theorem

[Its unprovability was proved by Kirby and Paris, 1982]
4. (1977) Paris–Harrington theorem
5. (1987) Kanamori–McAloon theorem
6. ...
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Kirby-Paris Theorem

Theorem 52 (Kirby-Paris, 19824)
Let IΣk denote Peano’s axioms with induction restricted to Σk

formulae. Then for k ∈ N and k ≥ 1, for each fixed p ∈ N,

1. IΣk ⊢ ∀m,n > 1 (if m < nn. .
.p

, where n occurs k times,
then the Goodstein sequence for m starting at n
eventually hits zero).

2. IΣk ⊬ ∀m,n > 1 (if m < nn. .
.p

, where n occurs k + l
times, then the Goodstein sequence for m starting at n
eventually hits zero).

4Kirby, L.; Paris, J. Accessible Independence Results for Peano
Arithmetic. Bulletin of the London Mathematical Society. 1982
14(4):285.
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Homework

1. Let α, β, γ ∈ Ord and let α < β. Then
a. α+ γ ≤ β + γ.
b. α · γ ≤ β · γ.
c. αγ ≤ βγ .

Given examples to show that ≤ cannot be replaced by <
in either inequality.

2. Show that the following rules do not hold for all
α, β, γ ∈ Ord:
a. If α+ γ = β + γ then α = β.
b. If γ > 0 and α · γ = β · γ then α = β.
c. (β + γ) · α = β · α+ γ · α.
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Homework

3. Find a set A ⊂ Q such that (A,<Q) ∼= (α,∈), where
a. α = ω + 1,
b. α = ω · 2,
c. α = ω · ω,
d. α = ωω,
e.* α = ε0.
f .* α is any ordinal < ω1.

Problems with stars are not assigned as homework, however,
good students are encouraged to try.
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Homework

4. An ordinal α is a limit ordinal iff α = ω · β for some
β ∈ Ord.

5. Find the first three α > 0 s.t. ξ + α = α for all ξ < α.

6. Find the least ξ such that
a. ω + ξ = ξ.
b. ω · ξ = ξ, ξ ̸= 0.
c. ωξ = ξ.

(Hint for (1): Consider a sequence ⟨ξn⟩ s.t. ξn+1 = ω + ξn.)
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About V

By transfinite recursion, define
V0 = ∅,

Vn+1 = P(Vn).

Exercise
1. Every x ∈ Vω is finite.
2. Vω is transitive.
3. Vω is an inductive set.

The elements of Vω are called hereditarily finite sets.
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About V

Exercise
1. If x, y ∈ Vω then {x, y} ∈ Vω.
2. If x ∈ Vω then

∪
x ∈ Vω and P(x) ∈ Vω.

3. If A ∈ Vω and f is a function on A such that f(x) ∈ Vω

for each x ∈ A, then f [A] ∈ Vω.
4. If x is a finite subset of Vω, then x ∈ Vω.
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About V

In fact, one can check that Vω satisfies ZFC− Infinity. This
hierarchical structure can be extended all the way up along
Ord.

V0 = ∅,

Vα+1 = P(Vα),

Vα =
∪

β<α Vβ, β is a limit ordinal.
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