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Coming up next

Language of Set Theory

2/56



Language of Set Theory

» Symbols:
L = Ly with the equality predicate =.
» Variables: Lower case English letters *
T,Y, %, U, V, W, T4, Y, 2 €tC.
are variable symbols.
» Connectives:

» Quantifiers:

Yn informal cases, we may use capital letters, script fonts to denote

sets of different types.
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Formulas of Set Theory

» A atomic formulas of Set Theory is a sequence of the
form (x € y), (z = y) € Le}, where z,y are variable
symbols.

» A formulas of Set Theory is a finite sequence of symbols
in Lyey built up on a finite set of atomic formulas by
finite applications of operators below:

> o (0p)

P, = (P AY)

@, = (p V)

@, ¥ = (p = )

@, = (0 < P)

o=V

> Y~ dzy
where , 1) are formulas.

VVVYVYY
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Conventions

» All the free variables of a formula ¢(uy,...,u,) are
among the list uy, ..., u,.
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Conventions

» All the free variables of a formula p(uy,...,u,) are
among the list uy, ..., u,.

» Formulas with no free variables are called sentences.

» o(z,p) denotes a formula in the language L 1, where p
is a manually added constant symbol, called a parameter.

» Often use a bar notation such as = to denote a finite
sequence (1,...,%,) (or (z1,...,x,)) when the precise
subscription is not important.
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Coming up next

Axioms of Set Theory (ZFC)
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Sets & Classes

If o(z,p) is a formula, we call
C={z:¢(@p)}

a class.
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Sets & Classes

Definition 1
If o(z,p) is a formula, we call
C={z:9(z,p)}
a class. In this case, we say that C' is definable from p (or
p-definable). If ¢ has no parameter, then C'is definable.
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Sets & Classes

If o(z,p) is a formula, we call

C={7:9(7,p)}
a class. In this case, we say that C' is definable from p (or
p-definable). If ¢ has no parameter, then C'is definable.

Sets are classes.
A class that is not a set is called a proper class.

Many of the set operators that we shall define later are
applicable to classes as well.
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ZFC (I-111)

» Extensionality. If = and y have the same elements, then
x=uy.
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ZFC (I-111)

» Extensionality. If = and y have the same elements, then
T =Y.
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» Schema of Seperation/Comprehension. If ¢ is a

property (with parameter p), then for any z,
{u € x| p(u,p)} exists (as a set).
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ZFC (I-111)

» Extensionality. If = and y have the same elements, then
T =Y.
r=yeVz(zE€x oz Ey)
» Schema of Seperation/Comprehension. If ¢ is a

property (with parameter p), then for any z,
{u € x| p(u,p)} exists (as a set).

yVulu € y <> u € x A p(u,p)]

» Pairing. For any x and y, {z,y} exists (as a set).
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ZFC (I-111)

» Extensionality. If = and y have the same elements, then
T =Y.
r=yeVz(zE€x oz Ey)
» Schema of Seperation/Comprehension. If ¢ is a

property (with parameter p), then for any z,
{u € x| p(u,p)} exists (as a set).

yVulu € y <> u € x A p(u,p)]

» Pairing. For any x and y, {z,y} exists (as a set).

2Vulu €z u=xVu=y]
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ZFC (IV-VI)

» Union. For any z, | Jz exists (as a set).
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Yz [z €y« Ju € x(z € u)
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ZFC (IV-VI)

» Union. For any z, | Jz exists (as a set).

JYyVz[z €y« Ju €z (z € u)

» Power Set. For any z, #(x) exists (as a set).

F2Vuu € z ¢ u C 1]

» Infinity. There exists an infinite set.
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ZFC (VII-IX)

» Schema of Replacement. If a class f is a function,
then for any z, flz] = {f(y) | y € x} exists (as a set).
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» Regularity/Wellfoundedness. Every nonempty element
has an €-minimal element.
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ZFC (VII-IX)

» Schema of Replacement. If a class f is a function,
then for any z, flz] = {f(y) | y € x} exists (as a set).

» Regularity/Wellfoundedness. Every nonempty element
has an €-minimal element.

» Choice. Every family of nonempty sets has a choice
function.

Regularity and Choice will be discussed later in Chapter 5
and 6, respectively.
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Coming up next

Axiom 0-2
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Sets exist.

Implicitly, we assume that

AX10M 0 (Set Existence)

This says that our universe of sets is non-void.
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Extensionality

AxioMm 1 (Extensionality)

rEyeoVz(zE€x o zEY)

This says that a set is determined by its elements.
“—" is an axiom of first-order logic.
<" is what accounts for this axiom.
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Comprehension

AX10M 2 (Comprehension Schema)

For each formula ¢(u, p) (without y free) and each z,

YyVuu € y <> u € x A p(u, p)].
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Comprehension

AX10M 2 (Comprehension Schema)

For each formula ¢(u, p) (without y free) and each z,

YyVuu € y <> u € x A p(u, p)].

» This y is unique by Extensionality. And we denote this
by

{uluexNpu)} o {uecz|pl)}.
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Comprehension, |l

» The restriction on y not being free in ¢ eliminates
self-referential definitions of sets, for example,

JWr [z Ey <+ x €2 A—(x €y

would be inconsistent with the existence of a z # &.
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axioms — one for each .
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Comprehension, |l

» The restriction on y not being free in ¢ eliminates
self-referential definitions of sets, for example,

JWr [z Ey <+ x €2 A—(x €y
would be inconsistent with the existence of a z # &.

» Note that this schema yields an infinite collection of
axioms — one for each .

» By AxXiom 0-2, we can define the notion of empty set, &.
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Comprehension, Il

& is the unique set y such that Vz —(z € y).
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Comprehension, Il

& is the unique set y such that Vz —(z € y).

Exercise

Justify the above definition, i.e. show that & exists and is
unique.
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Comprehension, |V

» & is the only set which can be proved to exist from
Ax1oMm 0-2.
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Comprehension, 1V

» & is the only set which can be proved to exist from
Ax1oMm 0-2.

PROOF.

Consider the structure ({@}, €), where € is an empty binary
relation. AX10M 0-2 hold in this structure, but so does
Y =Vy (y = ). So AXIoM 0-2 cannot refute 9. O
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Comprehension, V

» We can also prove that there is no universal set. In other
word, the universal class V' = {z | x = x} is a proper
class.

—32Vz (z € 2).
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Comprehension, V

» We can also prove that there is no universal set. In other
word, the universal class V' = {z | x = x} is a proper
class.

—32Vz (z € 2).
Suppose NOT. By Comprehension, form

{rez|le¢gay={x]|x¢x}

This would lead to the Russell’s paradox.
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Comprehension, VI

» Let A C B abbreviate
Vo (x € A— z € B),

and say A is a subclassof B. So AC Aand @ C A. If
A C B and A # B, then A is a proper subclass of B.
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Comprehension, VI

» Let A C B abbreviate
Vo (x € A— z € B),

and say A is a subclassof B. So AC Aand @ C A. If
A C B and A # B, then A is a proper subclass of B.

» Informally, Comprehension says that

A subclass of a set is a set.

> Let (Vx € y) p abbreviate Vz (z € y — ),
and (3z € y) ¢ abbreviate Iz (x € y A ).
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Comprehension, VII

» Another consequence of Comprehension is that the
following two classes are sets,

{ue X|ueY}
{ue X|ug¢gY}
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Comprehension, VII

» Another consequence of Comprehension is that the
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operations:
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More generally, if C' is a nonempty class of sets, let

NC=N{X|XeC}={u| (VX €C)(uc X))
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Comprehension, VII

» Another consequence of Comprehension is that the
following two classes are sets, thus we can define the
operations:

XNY={ueX|ueY}
X-Y={ueX|ug¢Y}
More generally, if C' is a nonempty class of sets, let
ANC={X|XelC}={u| (VX eC)(ue X)}.

Then (Cisaset,and X NY =({X,Y}. If
XNY =g, wesay X and Y are disjoint.
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Coming up next

Axiom 3-5
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Pairing

AX10M 0-2 are too weak to develop set theory with its usual
operations and constructions (eg. X UY, reals).
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Pairing

AX10M 0-2 are too weak to develop set theory with its usual
operations and constructions (eg. X UY, reals).

Axiom 3 (Pairing)

VaVy3dz (x € 2 ANy € 2).
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Pairing, I

» This version appears different, however, by
Comprehension, is equivalent to the previous version.
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Pairing, I

» This version appears different, however, by
Comprehension, is equivalent to the previous version.

> By Extensionality, the set whose only elements are
precisely = and y is unique. We call this set {z,y}. Then
{z} = {x,x} is the set whose unique element is .
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Pairing, I

» This version appears different, however, by
Comprehension, is equivalent to the previous version.

> By Extensionality, the set whose only elements are
precisely = and y is unique. We call this set {z,y}. Then
{z} = {x,x} is the set whose unique element is .

» {x,y} is the unordered pair of x and y. We use

(x,y) = {{z},{x,y}} to denote the ordered pair of x
and y.
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Pairing, Il

Exercise
Verify that

VavVyVa'Vy' ((z,y) = (2", y) = x =" Ay =1).

By induction, ordered n-tuples can be defined as follows:

(1, ..oy Tpy1) = (1, .-, ZTn), Tps1)-
Show that two ordered n-tuples (z1,...,z,) and (yi1,...,yn)
are equal iff z; = y; foralli =1,... n.
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Pairing, IV

» Using n-tuples, Comprehension can be put in a more
general form: Let ¢(u,p1,...,p,) be a formula. Then

VXV .. . Vp, W Vulu €Y < u € X A(u,py,...,pn)l-
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Pairing, IV

» Using n-tuples, Comprehension can be put in a more
general form: Let ¢(u,p1,...,p,) be a formula. Then

VXV .. . Vp, W Vulu €Y < u € X A(u,py,...,pn)l-
Idea: Let ¢(u,p) be the following formula
Elpl e 3pn [p = (pla s 7pn) A w(uaph s 7pn)]
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Union

A

VoIyVz [Fu € x (2 € u) — 2z € y).
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Union

A

VoIyVz [Fu € x (2 € u) — 2z € y).

» This is equivalent to the <+ version, by Comprehension.
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Union

A

VoIyVz [Fu € x (2 € u) — 2z € y).

» This is equivalent to the <+ version, by Comprehension.

» By AXIOM 4, we can define the union of X as follows:
UX={u|(FzeX)(uecuz)}.
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Union, Il

» Consequently, we can define
XUY ={X,Y} and XUYUZ = (XUY)UZ, ete.

{a,b,c} ={a,b}U{c} and {ai,...,a,} = {a1}U---U{a,}.
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Union, Il

» Consequently, we can define
XUY ={X,Y} and XUYUZ = (XUY)UZ, ete.

{a,b,c} ={a,b}U{c} and {ai,...,a,} = {a1}U---U{a,}.

» The symmetric difference of X and Y is
XAY=X-Y)U(Y —X).
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Power Set

VeIdYVulu €Y < Yo (v € u — v € )]
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» Again, with Comprehension, <> can be replaced by <.
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Power Set

VeIdYVulu €Y < Yo (v € u — v € )]

» Again, with Comprehension, <> can be replaced by <.

» By AXIoM 5, we can define the power set of X as
follows:

P(X) = {u|uc X}
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Power Set

VeIdYVulu €Y < Yo (v € u — v € )]

» Again, with Comprehension, <> can be replaced by <.

» By AXIoM 5, we can define the power set of X as
follows:

P(X) = {u|uc X}

Using the Power Set Axiom, we can define: product,
relation, function, etc.
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Product

» The product of X and Y is the set
XxY={u|FIyu=(r,yy he e XANyeY]}
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Product

» The product of X and Y is the set
XxY={u|FIyu=(r,yy he e XANyeY]}
={(@y)|lreXnyeY}
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Product

» The product of X and Y is the set
XxY =A{u|Fzylu=(zr,y) Ne € X Ny € Y]}
={(z,y) |re X ANyeY}
The existence of X X Y is due to the fact that
X XY CPP(XUY).
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Product, Il

» In general,
Xy x oo x X=Xy x o x X)) x X



Product, Il

» In general,
Xy x oo x X=Xy x o x X)) x X
Thus
Xy x oo x Xy ={(z1, ..., no1), @) | 2 € XpA
(x1,...,Tpq) € X3 X+ X X, 1}
={(z1,...,2,) |m1 € X5 A ANz, € X, }



Product, Il

» In general,
Xy x oo x X=Xy x o x X)) x X
Thus
Xy x oo x Xy ={(z1, ..., no1), @) | 2 € XpA
(x1,...,Tpq) € X3 X+ X X, 1}
={(z1,...,2,) |m1 € X5 A ANz, € X, }
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Product, Il

» In general,
Xy x oo x X=Xy x o x X)) x X
Thus
Xy x oo x Xy ={(z1, ..., no1), @) | 2 € XpA
(x1,...,Tpq) € X3 X+ X X, 1}
={(z1,...,2,) |m1 € X5 A ANz, € X, }
Also write X" = X X --- x X. (n times)
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Relations

» R is an n-ary (or n-placed) relation on X if R C X",
So an n-ary relation is a set of n-tuples. The following
notations are often used:

R(z1,...,z,) and x Ry (when R is binary).
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Relations

» R is an n-ary (or n-placed) relation on X if R C X",
So an n-ary relation is a set of n-tuples. The following
notations are often used:

R(z1,...,z,) and x Ry (when R is binary).

» If R is a binary relation, the domain, range and field of R
are

dom(R) = {u | v (u,v) € R}
ran(R) = {v | Ju (u,v) € R}
field(R) = dom(R) Uran(R)
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Exercise

Show that if R is a set, then dom(R) and ran(R) are sets.
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Exercise

Show that if R is a set, then dom(R) and ran(R) are sets.
(In fact, field(R) = UUR.)
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Relation, Il

Let R be a binary relation,
» The image of A under R is the set
R[Al={y €ran(R) | dJx € A(z Ry)}
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Relation, Il

Let R be a binary relation,
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Relation, Il

Let R be a binary relation,
» The image of A under R is the set
R[Al={y €ran(R) | dJx € A(z Ry)}
» The inverse image of B under R is the set

R_[B]={x €dom(R) |y € B(z Ry)}.

» The inverse of R is the set
R_, = {<yal‘) | (ZE,y) < R}
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Relation, Il

Let R be a binary relation,
» The image of A under R is the set
R[Al={y €ran(R) | dJx € A(z Ry)}
» The inverse image of B under R is the set
R_[B]={x €dom(R) |y € B(z Ry)}.
» The inverse of R is the set
R ={(y,) | (z,y) € R}.

» Let S be a binary relation, the composition of R and S
is

SoR={(z,2) | y((z,y) € RA(y,z) € S}
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Function

» A binary relation f is a function if

() € fA(r,2)Efsy=2
And we write f(x) = the unique y such that (z,y) € f.
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Function

» A binary relation f is a function if

() € fA(r,2)Efsy=2
And we write f(x) = the unique y such that (z,y) € f.

» fis a function on X if dom(f) = X.
If dom(f) = X" then f is an n-ary function on X.

» fisa function from X toY, f: X — Y, ifdom(f) =X
and ran(f) C Y.

» The class of all functions from X to Y are denoted as
Xy
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Exercise

Show that if X,Y are sets then XY is also a set.
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Function, Il

» If ran(f) =Y, then f is a function onto Y. f is also
called a surjection.
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Function, Il

» If ran(f) =Y, then f is a function onto Y. f is also
called a surjection.

» A function f is one-to-one/injective if

f(x1) = f(22) = 21 = x2.
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Function, Il

» If ran(f) =Y, then f is a function onto Y. f is also
called a surjection.

» A function f is one-to-one/injective if
f(x1) = f(x2) = 71 = 20

» A bijection is a function that is both injective and
surjective.
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Function, Il

» If ran(f) =Y, then f is a function onto Y. f is also
called a surjection.

» A function f is one-to-one/injective if
f(x1) = f(x2) = 71 = 20

» A bijection is a function that is both injective and
surjective.

» An n-ary operation on X is a function f: X" — X.
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Function, IlI

» The restriction of a function f to a set X (C dom(f)) is
the function

f1X=A(x,y) e flzeX}
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Function, IlI

» The restriction of a function f to a set X (C dom(f)) is
the function
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» A function g is an extension of a function f if g O f,
i.e. dom(f) C dom(g) and g(z) = f(z) for every
x € dom(f).
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Function, IlI

» The restriction of a function f to a set X (C dom(f)) is
the function

f1X=A(x,y) e flzeX}

» A function g is an extension of a function f if g O f,
i.e. dom(f) C dom(g) and g(z) = f(z) for every
x € dom(f).

» If f, g are functions such that ran(g) C dom(f), then the
composition of f and g is the function f o g such that
dom(f o g) = dom(g) and for every x € dom(g),

fog(x) = f(g(z)).
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Function, IV

» The image of X under f is denoted by
f'X = fIX]={f(z) |z € X}.
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Function, IV

» The image of X under f is denoted by

"X = fIX]={f(x) |z e X}

» The inverse image is

falX]={z] f(z) € X}.
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Function, IV

» The image of X under f is denoted by
f'X = fIX]={f(z) |z X}
» The inverse image is

falX]={z] f(z) € X}.

» If f is injective, then f~! denotes the inverse of f.
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Function, IV

» The image of X under f is denoted by
f'X = fIX]={f(z) |z X}
» The inverse image is

falX]={z] f(z) € X}.

» If f is injective, then f~! denotes the inverse of f.

A function is often called a mapping, correspondence, and
similarly a set is called a family or a collection.
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Function, V

» Functions f and g are called compatible if f(x) = g(z)
for all x € dom(f) N dom(g).
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Function, V

» Functions f and g are called compatible if f(x) = g(z)
for all x € dom(f) N dom(g).

» A set of functions F’ is called a compatible system of
functions if any two functions from F' are compatible.
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Function, V

» Functions f and g are called compatible if f(x) = g(z)
for all x € dom(f) Ndom(g).

» A set of functions F’ is called a compatible system of
functions if any two functions from F' are compatible.

» Functions f and g are compatible iff f U g is a function
iff f 1 (dom(f) N dom(g)) = g[(dom(f) N dom(g)).
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Function, V

» Functions f and g are called compatible if f(x) = g(z)
for all x € dom(f) Ndom(g).

» A set of functions F’ is called a compatible system of
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Function, V

» Functions f and g are called compatible if f(x) = g(z)
for all x € dom(f) Ndom(g).

» A set of functions F’ is called a compatible system of
functions if any two functions from F' are compatible.

» Functions f and g are compatible iff f U g is a function
iff f 1 (dom(f) N dom(g)) = g[(dom(f) N dom(g)).

» If F'is a compatible system of functions, then | J F'is a
function with dom(|J F) = J{dom(f) | f € F'}. The
function |J F extends all f € F.

» In Chapter 2, we will define a more useful notion of
product of sets in terms of functions.
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Equivalence Relation & Partition

» A binary relation E on X is an equivalence relation if it

satisfies
xz Fx, reflexive
xrEy—yFEx, symmetric
rEynyEz—xFE 2. transitive

40 /56



Equivalence Relation & Partition

» A binary relation E on X is an equivalence relation if it

satisfies
xz Fx, reflexive
xrEy—yFEx, symmetric
rEynyEz—xFE 2. transitive

» Foreach x € X, [z]p ={y € X | y E x} denote the
equivalence class of x modulo E.

40 /56



Equivalence Relation & Partition

» A binary relation E on X is an equivalence relation if it

satisfies
xz Fx, reflexive
xrEy—yFEx, symmetric
rEynyEz—xFE 2. transitive

» Foreach x € X, [z]p ={y € X | y E x} denote the
equivalence class of x modulo E.

» The quotient of X modulo F is X /g = {[z]p | x € X}.
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Equivalence Relation & Partition, Il

» Let x,y € X, E be an equivalence relation on X. Then

1. z Eyiff [z]g = [y]E.
2. ~z Eyiff [z]gNylp = 2.

» A disjoint family of set is a set such that any two of its
members are disjoint.

» A partition of a set X is a disjoint family P of nonempty
sets such that | J P = X.

> Aset A C X is called a set of representatives for the
equivalence relation £ (or for the partition P of X) if for
every equivalence class C' (or for every C' € P),

ANnC ={a.}, forsomea,cC.
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Equivalence Relation & Partition, |ll

» If E is an equivalence relation on X, then
X/p={lz]lp |z € X}
is a partition Pg on X. Conversely,
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Equivalence Relation & Partition, |ll

» If E is an equivalence relation on X, then
X/g={lz]lp | v € X}
is a partition Pg on X. Conversely,
» If P is a partition on X, then
rEpy & dpeP(xepAhyé€Ep)
defines an equivalence relation on X . Moreover,

» If E is an equivalence relation on X and P = X /g, then
Ep =FE; and If P is a partition on X and Ep is the
corresponding equivalence, then X /g, = P.

REMARK. All the above notions on relations and functions
are also applicable to classes.
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Models of set theory axioms

We've seen a model of Axiom 0-2: ({@}, €).
|

Vo = 2;
Vg1 = P(V,), forn € N,
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Models of set theory axioms

We've seen a model of Axiom 0-2: ({@}, €).
|

Vo = 2;
Vg1 = P(V,), forn € N,

» Notethatn<m — V,, C V,,.
» (Vi, €) = Axiom 0-2. = is read as “is a model of".
» (V,,€) = ZFC — Pairing — Power — Infinite,
i.e. Axiom 0-2 + Union + Replacement + Regularity 4+ Choice,
for all n € NT.

» (Unen Vo, €) = ZFC — Infinite.
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Coming up next

Axiom 6, 7
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Infinity

To give a precise formulation of the Axiom of Infinity, we
need the notion of finiteness, which normally uses the notion
of a natural number (see Chapter 2). Here we give an
alternative approach which mentions no numbers.
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Infinity

To give a precise formulation of the Axiom of Infinity, we
need the notion of finiteness, which normally uses the notion
of a natural number (see Chapter 2). Here we give an
alternative approach which mentions no numbers.

AXI0M 6 (Infinity)

There exists an inductive set, i.e.
Jz [T €z AVu(u €z — uU{u} € x)]

We call a set with the above property inductive. In Chapter 2,
we will define infinite and show that

» An inductive set is infinite.

» An inductive set exists if there exists an infinite set.
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Replacement

AX10M 7 (Replacement Schema)

For each formula ¢(z,y, p), where p is a parameter,

VavyVz [p(z,y,p) A (e, 2,p) =y = 2|
— YuFvVz [z € v+ (Fw € u) p(w, 2,p)]
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Replacement

AX10M 7 (Replacement Schema)

For each formula ¢(z,y, p), where p is a parameter,

VavyVz [p(z,y,p) A (e, 2,p) =y = 2|
— YuFvVz [z € v+ (Fw € u) p(w, 2,p)]

The first part of the formula is often abbreviated as

Va3ly o(z,y, p)
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Replacement, |l

Informally, we can say

» If a class F'is a function, then for every set X, F"X is a
set.
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Replacement, Il

Informally, we can say
» If a class F'is a function, then for every set X, F"X is a
set.
» If a class F'is a function and dom(F) is a set, then
ran(F) is a set.
» If a class F'is a function, then VX3f (F[X = f).

REMARK

Note that the Replacement Schema can take you “out of "
the set u when forming the set v. The elements of v need not
be elements of u. By contrast, the Separation Schema
yields new sets consisting only of those elements of a given set
u which satisfy a certain condition .
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Questions

1. Let A be a set. Show that the “complement” of A, i.e.
the set of all z ¢ A, does not exist.
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Questions

1. Let A be a set. Show that the “complement” of A, i.e.
the set of all z ¢ A, does not exist.

2. If a is a set, then by Pairing {a} is a set. Now suppose
{a} is a set, must a be a set?

3. Show that (S exists for all S # &. Where is the
assumption S # & used in the proof? What is [ 27

4. Is it always true that ((a,b),c) = (a, (b,c))? Can we use
the second set to define ordered triples?

5. Give an alternative definition of ordered pairs. Compare
the advantages and disadvantages of these definitions.
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Questions, Il

6. Isittruethat X xY =Y x X7
What about (X X Y) x Z =X x (Y x Z)?

7. Let S # @ and A be sets.
a. (Generalized Distributive Law)
Set T' ={XNA| X €S}, and prove
AnUS=Un.
b. (Generalized De Morgan Laws)
Set Th ={A— X | X € S}, and prove
A-UUS=NT, A-NS=UT
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Homework

Exercise 1

1. Using only € and = to express the following formulas:

> 2= ((z,y), (u,v))
> Vr[-(z=92) = (Jyex)(zny =)
> Vu [VzIy (z,y) € u— IfVz (z, f(z)) € ul.
2. Suppose that R, S are two binary relations (as sets).
Show that R_; and S o R exist, where

SoR={(z,2) |y ((z,y) € RA(y,2) € S}

EXERCISES IN TEXTBOOK
1.2. There is no set X such that Z(X) C X.
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Homework

Let N = ({X | X is inductive}. N is the smallest inductive
set. Let us use the following notation:

0=, 1={0}, 2=1{0,1}, 3=1{0,1,2}
lfne N, letn+1=nU{n}. And for n,m € N,
n<m<+<neEm

A set T is transitive if x € T implies x C T.

1.3. If X is inductive, then the set
{reX|zCX}

is inductive. Hence N is transitive, and for each n € N,
n={me&N|m<n}.
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Homework

1.4. If X is inductive, then the set
{z € X | x is transitive}

is inductive. Hence every n € N s transitive.

1.5. If X is inductive, then the set
{z € X | x is transitive and = ¢ z'}

is inductive. Hence n ¢ n and n # n + 1 for each n € N.
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Homework

1.6. If X is inductive, then the set

{x € X | x is transitive and every nonempty

z C z has an €-minimal element}

is inductive.
(t is €-minimal in z if there is no s € z such that s € t.)

1.7. Every nonempty X C N has an €-minimal element.
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Homework

1.8. If X is inductive then so is
{reX|z=0Vr=yU{y} for some y}.

Hence each n # & is m + 1 for some m.

1.9. (Induction). Let A be a subset of N such that 0 € A,

andifn€ Athenn+1€ A. Then A= N.
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Hints for homework 1.2

Prove by contradiction.
Assume Z(X) C X for some X.

» HINT 1: X € X. This leads an infinite €-descanding
chain --- € X € X € X. Thus the nonempty set { X}
contains no €-minimal element, contradicting to
Wellfoundedness Axiom.

» HINT 2: Consider Z = {x € X |z ¢ z}.
Z CX — Z € X. But then

ZeZ <<= Z¢LZ.

Contradiction!
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Hints for homework 1.3
Let £ = {x € X | 2 C X}. Begin with that £ is inductive.

» X is inductive, so @ € X. & contains no element, so
Vi(t e @ —t € X), ie. @ C X. Therefore, & € E.

» Foree B,z € X ANx C X, thus x U{z} C X. Besides,
reX —aU{z} € X. Hence zU{z} € E.

Next is to show that IV is transitive.
» Let By ={z € N|xz C N}. Then £, C N.

» N is inductive, so is Ey, thus N C E,. That means
Eo = N, thus N is transitive.

Last, we show that n = {m € N | m < n}
> {meN|m<n}=gs{meN|men}Cn.
» Asn &€ N and N is transitive, we have n C N. Then

m €n — m € N. Therefore, n C{m € N | m € n}.
Hence n ={m € N | m < n}.
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