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Language of Set Theory

▶ Symbols:
L = L{∈̂} with the equality predicate =̂.

▶ Variables: Lower case English letters 1

x, y, z, u, v, w, xi, yj, zk etc.
are variable symbols.

▶ Connectives:
¬, ∧, ∨, →, ↔

▶ Quantifiers:
∀, ∃

1In informal cases, we may use capital letters, script fonts to denote
sets of different types.
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Formulas of Set Theory
Definition
▶ A atomic formulas of Set Theory is a sequence of the

form (x ∈̂ y), (x =̂ y) ∈ L{∈̂}, where x, y are variable
symbols.

▶ A formulas of Set Theory is a finite sequence of symbols
in L{∈̂} built up on a finite set of atomic formulas by
finite applications of operators below:
▶ φ 7→ (¬φ)
▶ φ,ψ 7→ (φ ∧ ψ)
▶ φ,ψ 7→ (φ ∨ ψ)
▶ φ,ψ 7→ (φ→ ψ)
▶ φ,ψ 7→ (φ↔ ψ)
▶ φ 7→ ∀xφ
▶ ψ 7→ ∃xψ

where φ, ψ are formulas.
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Conventions

▶ All the free variables of a formula φ(u1, . . . , un) are
among the list u1, . . . , un.

▶ Formulas with no free variables are called sentences.

▶ φ(x, p) denotes a formula in the language L{∈̂, p}, where p
is a manually added constant symbol, called a parameter.

▶ Often use a bar notation such as x̄ to denote a finite
sequence 〈x1, . . . , xn〉 (or (x1, . . . , xn)) when the precise
subscription is not important.
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Sets & Classes

Definition 1
If φ(x̄, p̄) is a formula, we call

C = {x̄ : φ(x̄, p̄)}
a class.

In this case, we say that C is definable from p̄ (or
p̄-definable). If φ has no parameter, then C is definable.

Sets are classes.
A class that is not a set is called a proper class.

Many of the set operators that we shall define later are
applicable to classes as well.
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ZFC (I-III)

▶ Extensionality. If x and y have the same elements, then
x = y.

x =̂ y ↔ ∀z (z ∈̂ x↔ z ∈̂ y)

▶ Schema of Seperation/Comprehension. If φ is a
property (with parameter p), then for any x,
{u ∈ x | φ(u, p)} exists (as a set).

∃y∀u [u ∈̂ y ↔ u ∈̂ x ∧ φ(u, p)]

▶ Pairing. For any x and y, {x, y} exists (as a set).

∃z∀u [u ∈̂ z ↔ u =̂ x ∨ u =̂ y]
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ZFC (IV-VI)

▶ Union. For any x,
∪
x exists (as a set).

∃y∀z [z ∈̂ y ↔ ∃u ∈̂ x (z ∈̂ u)]

▶ Power Set. For any x, P(x) exists (as a set).

∃z∀u [u ∈̂ z ↔ u ⊆ x]

▶ Infinity. There exists an infinite set.
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ZFC (VII-IX)

▶ Schema of Replacement. If a class f is a function,
then for any x, f [x] ≡ {f(y) | y ∈ x} exists (as a set).

▶ Regularity/Wellfoundedness. Every nonempty element
has an ∈̂-minimal element.

▶ Choice. Every family of nonempty sets has a choice
function.

Regularity and Choice will be discussed later in Chapter 5
and 6, respectively.
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Sets exist.

Implicitly, we assume that

Axiom 0 (Set Existence)

∃x (x =̂ x).

This says that our universe of sets is non-void.
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Extensionality

Axiom 1 (Extensionality)

x =̂ y ↔ ∀z (z ∈̂ x↔ z ∈̂ y)

This says that a set is determined by its elements.
“→” is an axiom of first-order logic.
“←” is what accounts for this axiom.
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Comprehension

Axiom 2 (Comprehension Schema)
For each formula φ(u, p) (without y free) and each x,

∃y∀u [u ∈̂ y ↔ u ∈̂ x ∧ φ(u, p)].

▶ This y is unique by Extensionality. And we denote this
by

{u | u ∈ x ∧ φ(u)} or {u ∈ x | φ(u)}.
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Comprehension, II

▶ The restriction on y not being free in φ eliminates
self-referential definitions of sets, for example,

∃y∀x [x ∈̂ y ↔ x ∈̂ z ∧ ¬(x ∈̂ y)]
would be inconsistent with the existence of a z 6= ∅.

▶ Note that this schema yields an infinite collection of
axioms — one for each φ.

▶ By Axiom 0-2, we can define the notion of empty set, ∅.
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Comprehension, III

Definition 2
∅ is the unique set y such that ∀x¬(x ∈̂ y).

Exercise
Justify the above definition, i.e. show that ∅ exists and is
unique.
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Comprehension, IV

▶ ∅ is the only set which can be proved to exist from
Axiom 0-2.

Proof.
Consider the structure ({∅},∈), where ∈ is an empty binary
relation. Axiom 0-2 hold in this structure, but so does
ψ ≡ ∀y (y =̂ ∅). So Axiom 0-2 cannot refute ψ.
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Comprehension, V

▶ We can also prove that there is no universal set. In other
word, the universal class V = {x | x =̂ x} is a proper
class.

Theorem 3
¬∃z∀x (x ∈̂ z).

Suppose NOT. By Comprehension, form
{x ∈ z | x /∈ x} = {x | x /∈ x}.

This would lead to the Russell’s paradox.
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Comprehension, VI

▶ Let A ⊆ B abbreviate
∀x (x ∈̂ A→ x ∈̂ B),

and say A is a subclass of B. So A ⊆ A and ∅ ⊆ A. If
A ⊆ B and A 6= B, then A is a proper subclass of B.

▶ Informally, Comprehension says that

A subclass of a set is a set.

▶ Let (∀x ∈̂ y)φ abbreviate ∀x (x ∈̂ y → φ),
and (∃x ∈̂ y)φ abbreviate ∃x (x ∈̂ y ∧ φ).
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Comprehension, VII

▶ Another consequence of Comprehension is that the
following two classes are sets,

thus we can define the
operations:

X ∩ Y ≡

{u ∈ X | u ∈ Y }

X − Y ≡

{u ∈ X | u /∈ Y }

More generally, if C is a nonempty class of sets, let∩
C =

∩
{X | X ∈ C} = {u | (∀X ∈ C) (u ∈ X)}.

Then
∩
C is a set, and X ∩ Y =

∩
{X,Y }. If

X ∩ Y = ∅, we say X and Y are disjoint. Axiom
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Pairing

Axiom 0-2 are too weak to develop set theory with its usual
operations and constructions (eg. X ∪ Y , reals).

Axiom 3 (Pairing)

∀x∀y∃z (x ∈̂ z ∧ y ∈̂ z).
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Pairing, II

▶ This version appears different, however, by
Comprehension, is equivalent to the previous version.

▶ By Extensionality, the set whose only elements are
precisely x and y is unique. We call this set {x, y}. Then
{x} = {x, x} is the set whose unique element is x.

▶ {x, y} is the unordered pair of x and y. We use
(x, y) = {{x}, {x, y}} to denote the ordered pair of x
and y.
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Pairing, III

Exercise
Verify that

∀x∀y∀x′∀y′((x, y) = (x′, y′)→ x = x′ ∧ y = y′).

By induction, ordered n-tuples can be defined as follows:
(x1, . . . , xn+1) = ((x1, . . . , xn), xn+1).

Show that two ordered n-tuples (x1, . . . , xn) and (y1, . . . , yn)
are equal iff xi = yi for all i = 1, . . . , n.
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Pairing, IV

▶ Using n-tuples, Comprehension can be put in a more
general form: Let ψ(u, p1, . . . , pn) be a formula. Then
∀X∀p1 . . . ∀pn∃Y ∀u [u ∈̂ Y ↔ u ∈̂ X ∧ψ(u, p1, . . . , pn)].

Idea: Let φ(u, p) be the following formula
∃p1 . . . ∃pn [p =̂ (p1, . . . , pn) ∧ ψ(u, p1, . . . , pn)].
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Union

Axiom 4
∀x∃y∀z [∃u ∈̂ x (z ∈̂ u)→ z ∈̂ y].

▶ This is equivalent to the ↔ version, by Comprehension.
▶ By Axiom 4, we can define the union of X as follows:∪

X = {u | (∃x ∈ X)(u ∈ x)}.
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Union, II

▶ Consequently, we can define
X∪Y ≡

∪
{X,Y } and X∪Y ∪Z ≡ (X∪Y )∪Z, etc.

{a, b, c} ≡ {a, b}∪{c} and {a1, . . . , an} ≡ {a1}∪· · ·∪{an}.

▶ The symmetric difference of X and Y is
X ∆ Y ≡ (X − Y ) ∪ (Y −X).
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Power Set

Axiom 5
∀x∃Y ∀u [u ∈̂ Y ↔ ∀v (v ∈̂ u→ v ∈̂ x)]

▶ Again, with Comprehension, ↔ can be replaced by ←.
▶ By Axiom 5, we can define the power set of X as

follows:
P(X) = {u | u ⊆ X}.

Using the Power Set Axiom, we can define: product,
relation, function, etc.
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Product

▶ The product of X and Y is the set
X × Y = {u | ∃x∃y [u = (x, y) ∧ x ∈ X ∧ y ∈ Y ]}

= {(x, y) | x ∈ X ∧ y ∈ Y }
The existence of X × Y is due to the fact that

X × Y ⊆PP(X ∪ Y ).
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Product, II

▶ In general,
X1 × · · · ×Xn+1 ≡ (X1 × · · · ×Xn)×Xn+1

Thus
X1 × · · · ×Xn = {((x1, . . . , xn−1), xn) | xn ∈ Xn∧

(x1, . . . , xn−1) ∈ X1 × · · · ×Xn−1}
= {(x1, . . . , xn) | x1 ∈ X1 ∧ · · · ∧ xn ∈ Xn}

Also write Xn ≡ X × · · · ×X. (n times)
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Relations

▶ R is an n-ary (or n-placed) relation on X if R ⊆ Xn.
So an n-ary relation is a set of n-tuples. The following
notations are often used:

R(x1, . . . , xn) and x R y (when R is binary).

▶ If R is a binary relation, the domain, range and field of R
are

dom(R) = {u | ∃v (u, v) ∈ R}
ran(R) = {v | ∃u (u, v) ∈ R}

field(R) = dom(R) ∪ ran(R)
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Exercise
Show that if R is a set, then dom(R) and ran(R) are sets.

(In fact, field(R) =
∪∪

R.)
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Relation, II

Let R be a binary relation,
▶ The image of A under R is the set

R[A] ≡ {y ∈ ran(R) | ∃x ∈ A (x R y)}

▶ The inverse image of B under R is the set
R−1[B] ≡ {x ∈ dom(R) | ∃y ∈ B (x R y)}.

▶ The inverse of R is the set
R−1 ≡ {(y, x) | (x, y) ∈ R}.

▶ Let S be a binary relation, the composition of R and S
is

S ◦R ≡ {(x, z) | ∃y ((x, y) ∈ R ∧ (y, z) ∈ S}
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Function

▶ A binary relation f is a function if
(x, y) ∈ f ∧ (x, z) ∈ f → y = z

And we write f(x) = the unique y such that (x, y) ∈ f .

▶ f is a function on X if dom(f) = X.
If dom(f) = Xn then f is an n-ary function on X.

▶ f is a function from X to Y , f : X → Y , if dom(f) = X
and ran(f) ⊆ Y .

▶ The class of all functions from X to Y are denoted as
XY .
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Exercise
Show that if X,Y are sets then XY is also a set.
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Function, II

▶ If ran(f) = Y , then f is a function onto Y . f is also
called a surjection.

▶ A function f is one-to-one/injective if
f(x1) = f(x2)→ x1 = x2.

▶ A bijection is a function that is both injective and
surjective.

▶ An n-ary operation on X is a function f : Xn → X.
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Function, III

▶ The restriction of a function f to a set X (⊆ dom(f)) is
the function

f ↾X = {(x, y) ∈ f | x ∈ X}

▶ A function g is an extension of a function f if g ⊇ f ,
i.e. dom(f) ⊆ dom(g) and g(x) = f(x) for every
x ∈ dom(f).

▶ If f, g are functions such that ran(g) ⊆ dom(f), then the
composition of f and g is the function f ◦ g such that
dom(f ◦ g) = dom(g) and for every x ∈ dom(g),

f ◦ g(x) = f(g(x)).
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Function, IV

▶ The image of X under f is denoted by
f ′′X ≡ f [X] = {f(x) | x ∈ X}.

▶ The inverse image is
f−1[X] ≡ {x | f(x) ∈ X}.

▶ If f is injective, then f−1 denotes the inverse of f .

A function is often called a mapping, correspondence, and
similarly a set is called a family or a collection.
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Function, V
▶ Functions f and g are called compatible if f(x) = g(x)

for all x ∈ dom(f) ∩ dom(g).

▶ A set of functions F is called a compatible system of
functions if any two functions from F are compatible.

▶ Functions f and g are compatible iff f ∪ g is a function
iff f ↾(dom(f) ∩ dom(g)) = g↾(dom(f) ∩ dom(g)).

▶ If F is a compatible system of functions, then
∪
F is a

function with dom(
∪
F ) =

∪
{dom(f) | f ∈ F}. The

function
∪
F extends all f ∈ F .

▶ In Chapter 2, we will define a more useful notion of
product of sets in terms of functions.
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Equivalence Relation & Partition

▶ A binary relation E on X is an equivalence relation if it
satisfies

x E x, reflexive
x E y → y E x, symmetric

x E y ∧ y E z → x E z. transitive

▶ For each x ∈ X, [x]E ≡ {y ∈ X | y E x} denote the
equivalence class of x modulo E.

▶ The quotient of X modulo E is X/E ≡ {[x]E | x ∈ X}.
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Equivalence Relation & Partition, II
▶ Let x, y ∈ X, E be an equivalence relation on X. Then

1. x E y iff [x]E = [y]E .
2. ¬x E y iff [x]E ∩ [y]E = ∅.

▶ A disjoint family of set is a set such that any two of its
members are disjoint.

▶ A partition of a set X is a disjoint family P of nonempty
sets such that

∪
P = X.

▶ A set A ⊆ X is called a set of representatives for the
equivalence relation E (or for the partition P of X) if for
every equivalence class C (or for every C ∈ P ),

A ∩ C = {ac}, for some ac ∈ C.
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equivalence relation E (or for the partition P of X) if for
every equivalence class C (or for every C ∈ P ),

A ∩ C = {ac}, for some ac ∈ C.

41 / 56



Equivalence Relation & Partition, III
Theorem 4
▶ If E is an equivalence relation on X, then

X/E = {[x]E | x ∈ X}
is a partition PE on X. Conversely,

▶ If P is a partition on X, then
x EP y ⇔ ∃p ∈ P (x ∈ p ∧ y ∈ p)

defines an equivalence relation on X. Moreover,
▶ If E is an equivalence relation on X and P = X/E, then

EP = E; and If P is a partition on X and EP is the
corresponding equivalence, then X/EP

= P .

Remark. All the above notions on relations and functions
are also applicable to classes. Axiom
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Models of set theory axioms
We’ve seen a model of Axiom 0-2: ({∅},∈).

V0 = ∅;

Vn+1 = P(Vn), for n ∈ N.

▶ Note that n < m =⇒ Vn ⊂ Vm.
▶ (V1,∈) |= Axiom 0-2. |= is read as “is a model of”.
▶ (Vn,∈) |= ZFC− Pairing− Power− Infinite,

i.e. Axiom 0-2 +Union+Replacement+Regularity+Choice,
for all n ∈ N+.

▶ (
∪

n∈N Vn,∈) |= ZFC− Infinite.
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Coming up next

Language of Set Theory

Axioms of Set Theory (ZFC)

Axiom 0-2

Axiom 3-5

Axiom 6, 7
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Infinity
To give a precise formulation of the Axiom of Infinity, we
need the notion of finiteness, which normally uses the notion
of a natural number (see Chapter 2). Here we give an
alternative approach which mentions no numbers.

Axiom 6 (Infinity)
There exists an inductive set, i.e.

∃x [∅ ∈̂ x ∧ ∀u (u ∈̂ x→ u ∪ {u} ∈̂ x)]

We call a set with the above property inductive. In Chapter 2,
we will define infinite and show that
▶ An inductive set is infinite.
▶ An inductive set exists if there exists an infinite set.
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Replacement

Axiom 7 (Replacement Schema)
For each formula φ(x, y, p), where p is a parameter,

∀x∀y∀z [φ(x, y, p) ∧ φ(x, z, p)→ y =̂ z]

→ ∀u∃v∀z [z ∈̂ v ↔ (∃w ∈̂ u)φ(w, z, p)]

The first part of the formula is often abbreviated as
∀x∃!y φ(x, y, p)
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Replacement, II
Informally, we can say
▶ If a class F is a function, then for every set X, F ′′X is a

set.

▶ If a class F is a function and dom(F ) is a set, then
ran(F ) is a set.

▶ If a class F is a function, then ∀X∃f (F ↾X = f).

Remark
Note that the Replacement Schema can take you “out of”
the set u when forming the set v. The elements of v need not
be elements of u. By contrast, the Separation Schema
yields new sets consisting only of those elements of a given set
u which satisfy a certain condition φ.
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Questions

1. Let A be a set. Show that the “complement” of A, i.e.
the set of all x /∈ A, does not exist.

2. If a is a set, then by Pairing {a} is a set. Now suppose
{a} is a set, must a be a set?

3. Show that
∩
S exists for all S 6= ∅. Where is the

assumption S 6= ∅ used in the proof? What is
∩

∅?

4. Is it always true that ((a, b), c) = (a, (b, c))? Can we use
the second set to define ordered triples?

5. Give an alternative definition of ordered pairs. Compare
the advantages and disadvantages of these definitions.
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Questions, II

6. Is it true that X × Y = Y ×X?
What about (X × Y )× Z = X × (Y × Z)?

7. Let S 6= ∅ and A be sets.
a. (Generalized Distributive Law)

Set T1 = {X ∩A | X ∈ S}, and prove
A ∩

∪
S =

∪
T1.

b. (Generalized De Morgan Laws)
Set T2 = {A−X | X ∈ S}, and prove

A−
∪
S =

∩
T2, A−

∩
S =

∪
T2
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Homework

Exercise 1
1. Using only ∈̂ and =̂ to express the following formulas:

▶ z =̂ ((x, y), (u, v))
▶ ∀x [¬(x =̂ ∅)→ (∃y ∈̂ x) (x ∩ y =̂ ∅)]
▶ ∀u [∀x∃y (x, y) ∈̂ u→ ∃f∀x (x, f(x)) ∈̂ u].

2. Suppose that R,S are two binary relations (as sets).
Show that R−1 and S ◦R exist, where

S ◦R = {(x, z) | ∃y ((x, y) ∈ R ∧ (y, z) ∈ S}

Exercises in Textbook
1.2. There is no set X such that P(X) ⊆ X.
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Homework

Let N =
∩
{X | X is inductive}. N is the smallest inductive

set. Let us use the following notation:
0 = ∅, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2}

If n ∈ N , let n+ 1 = n ∪ {n}. And for n,m ∈ N ,
n < m↔ n ∈ m

A set T is transitive if x ∈ T implies x ⊆ T .

1.3. If X is inductive, then the set
{x ∈ X | x ⊆ X}

is inductive. Hence N is transitive, and for each n ∈ N ,
n = {m ∈ N | m < n}.
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Homework

1.4. If X is inductive, then the set
{x ∈ X | x is transitive}

is inductive. Hence every n ∈ N is transitive.

1.5. If X is inductive, then the set
{x ∈ X | x is transitive and x /∈ x}

is inductive. Hence n /∈ n and n 6= n+ 1 for each n ∈ N .
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Homework

1.6. If X is inductive, then the set
{x ∈ X | x is transitive and every nonempty

z ⊆ x has an ∈-minimal element}
is inductive.
(t is ∈-minimal in z if there is no s ∈ z such that s ∈ t.)

1.7. Every nonempty X ⊆ N has an ∈-minimal element.
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Homework

1.8. If X is inductive then so is
{x ∈ X | x = ∅ ∨ x = y ∪ {y} for some y}.

Hence each n 6= ∅ is m+ 1 for some m.

1.9. (Induction). Let A be a subset of N such that 0 ∈ A,
and if n ∈ A then n+ 1 ∈ A. Then A = N .
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Hints for homework 1.2

Prove by contradiction.
Assume P(X) ⊆ X for some X.
▶ Hint 1: X ∈ X. This leads an infinite ∈-descanding

chain · · · ∈ X ∈ X ∈ X. Thus the nonempty set {X}
contains no ∈-minimal element, contradicting to
Wellfoundedness Axiom.

▶ Hint 2: Consider Z = {x ∈ X | x /∈ x}.
Z ⊂ X → Z ∈ X. But then

Z ∈ Z ⇐⇒ Z /∈ Z.
Contradiction!
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Hints for homework 1.3
Let E = {x ∈ X | x ⊆ X}. Begin with that E is inductive.
▶ X is inductive, so ∅ ∈ X. ∅ contains no element, so
∀t(t ∈ ∅→ t ∈ X), i.e. ∅ ⊆ X. Therefore, ∅ ∈ E.

▶ For x ∈ E, x ∈ X ∧ x ⊆ X, thus x ∪ {x} ⊆ X. Besides,
x ∈ X → x ∪ {x} ∈ X. Hence x ∪ {x} ∈ E.

Next is to show that N is transitive.
▶ Let E0 = {x ∈ N | x ⊆ N}. Then E0 ⊆ N .
▶ N is inductive, so is E0, thus N ⊆ E0. That means

E0 = N , thus N is transitive.
Last, we show that n = {m ∈ N | m < n}
▶ {m ∈ N | m < n} =def {m ∈ N | m ∈ n} ⊆ n.
▶ As n ∈ N and N is transitive, we have n ⊆ N . Then

m ∈ n→ m ∈ N . Therefore, n ⊆ {m ∈ N | m ∈ n}.
Hence n = {m ∈ N | m < n}.
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