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PROJECTIVE PREWELLORDERINGS VS PROJECTIVE
WELLFOUNDED RELATIONS

XIANGHUI SHI

Abstract. We show that it is relatively consistent withZFC that there is a projective wellfounded relation
with rank higher than all projective prewellorderings.

§1. Introduction. Let � = {0, 1, 2, . . . } be the set of natural numbers and R be
the set of functions from� to� or simply the set of reals. Product spaces are spaces
of the form

X = X1 × · · · × Xk,
where each Xi is � or R. Subsets of product spaces are called pointsets, and a
pointclass is a class of pointsets, usually in all the product spaces.
Let X be a product space. A binary relation ≺ ⊆ X × X is wellfounded if every
nonempty subsetY ⊆ X has a≺-minimal element. Otherwise, we call≺ ill-founded.
For every wellfounded relation ≺, let

field(≺) = {x | ∃y (x ≺ y) or ∃y (y ≺ x)}.
In general, it is not necessary that field(≺) = X . But in this paper, it makes no
difference to assume that the equality holds for every wellfounded relation. For
every wellfounded relation ≺, one can associate a rank function

�≺ : field(≺)→ Ord
as follows, for every x ∈ field(≺), �≺(x) = sup{�≺(y) + 1 | y ≺ x}, in particular
�(x) = 0 if x is ≺-minimal. The rank of ≺ is given by

rank(≺) = sup{�≺(x) + 1 | x ∈ field(≺)}.
A binary relation � ⊆ X × X is a prewellordering if it is
• reflexive, i.e., (∀x ∈ X )(x � x),
• connected, i.e., (∀x, y ∈ X )(x � y ∨ y � x)),
• transitive, i.e., (∀x, y, z ∈ X )(x � y ∧ y � z → x � z), and
• every nonempty subset of X has a �-least element, or equivalently, the strict
part x ≺ y ⇔ x � y ∧ ¬(y � x) is wellfounded.
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The rank of � is define to be the rank of its strict part. Let � be a prewellordering.
Then it induces a wellordering ≺∗ on X/∼, the quotient of X by the equivalence
relation x ∼ y ⇔ x � y ∧ y � x. The ordertype of X/ ∼ gives rise to a rank
function f : X → ordertype(≺∗). Conversely, to each rank function � : X → Ord,
one can associate a prewellordering, ��, such that x �� y ⇔ �(x) ≤ �(y), for
every x, y ∈ X .
Let Γ be a pointclass. We are interested in comparing two ordinals associated
to Γ:

�Γ = sup{� | � is the rank of a prewellordering in ΔΓ},
�Γ = sup{� | � is the rank of a wellfounded relation in Γ}.

These two types of ordinals were first introduced by Moschovakis [7] (�-ordinal)
and Kechris [4] (�-ordinal) to study the “definable length” of the continuum. The
following notations are widely used in the literature:

˜
�1n = �

e

Σ1
n
,
˜
�1n = �

e

Π1
n
, and

˜
�1n = �

e

Σ1
n
= �

e

Π1
n
.

By definition for any pointclass Γ, �Γ ≤ �Γ. Note that given a wellfounded
relation, one can get a prewellordering of the same rank via its rank function. So
�P(R) = �P(R). P(R) can be reduced to smaller pointclasses, for instance, the
pointclass of all hyperprojective sets. In general, the equality holds for pointclasses
Γ with the following closure property (see [9]):

If Q ∈ Γ and R is hyperprojective in (R, Q), then R ∈ Γ.
Here R is the structure of the second order arithmetic. The pointclass of hyperpro-
jective sets is the smallest pointclass with this property. The reader is referred to
Moschovakis [8] for basic facts about hyperprojective pointclass.
Under determinacy assumptions, these two projective ordinals behave nicely.
Kechris [4] showed that assuming all the projective sets are determined, we have the
following picture below for projective hierarchy:

˜
�10 = ˜

�11 = ˜
�11 < ˜

�11 = ˜
�12 = ˜

�12 < ˜
�12 = ˜

�13 = ˜
�13 < ˜

�13 = · · · .
Consequently, we have �P = �P, where P denotes the pointclass of all projective
sets. This in fact follows from a more general result. A (boldface) pointclass Γ is
strongly closed if it is closed under finite unions and intersections, complements and
projection along � (∃�) and existential quantification over R (∃R). The projective
pointclass P is strongly closed. Kechris-Solovay-Steel [5] showed that if Γ is a
strongly closed pointclass and every set in Γ is determined, then �Γ = �Γ.
Note that for a sufficiently closed Γ, if every pointset in Γ is determined, no
sets in Γ wellorders the reals. But if Γ contains a wellordering of the reals, the
equality still holds for Γ. More precisely, if Γ is a Δ-like pointclass (i.e., closed
under complement) and contains a wellordering of the reals, then �Γ = �Γ. This
is because for every wellfounded relation in Γ, the tree ordering of its associated
wellfounded tree has the same rank, and the Kleene-Brower ordering extending
the tree ordering can be extended to a prewellordering in Γ, given that Γ is Δ-like.
As corollaries, �P = �P holds in many well-known inner models of set theory, for
instance, Gödel’s L, Silver’s L[�], Steel’s core model Ki for i Woodin cardinals, etc.
These seem to be strong evidences for �P = �P. In this paper, we show that it is
relatively consistent with ZFC that the equality fails.
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Main Theorem. If ZFC is consistent, then it is consistent with ZFC that �P < �P.
Our proof consists of two steps: (1) Starting with the constructible universe L,
we first add a “tall” wellfounded relation by adding κ many Cohen reals for some
sufficiently large cardinal κ, and then code this wellfounded relation projectively
with almost disjoint forcings. These are discussed in Section 2. (2) Let P and Q̇

denote the two forcing partial ordered sets used to add a projective tall wellfounded
relation, and �P∗Q̇ the largest element of P ∗ Q̇ (i.e., the empty condition). Then in
Section 3, we prove the following theorem of ZFC+ V = L.
Theorem (ZFC+ V = L). Let κ be any cardinal ≥ ��1 . Then

�P∗Q̇ � �P ≤ ��1 .
So starting with a κ ≥ ��1 in L, in the final forcing extension we have �P ≤
��1 ≤ κ < �P. The last section discusses some limitations of our technique.
Our notations are more or less standard. The reader is referred to Kunen [6] or
Jech [3] for background knowledge and explanation of notations.

§2. Step I: Add a tall projective wellfounded relation. Now we begin to prove
the main theorem. This section shows how to add a “tall” projective wellfounded
relation.

Definition 2.1. Suppose A,B are two sets of reals. We say B is projective in A if
there is a formula ϕ and a real r such that

B = {x ∈ R | (R, A) |= ϕ[A, r, x]}
where R is the structure of second order arithmetic. PA is the pointclass of all the
sets that are projective in A.

Notation. For a pointset A ⊆ Rk , for convenience, we always write �A for �PA

and �A for �PA . When A = ∅, we omit the subscript.

2.1. Add a tall projective wellfounded relation. Let I be an arbitrary set, ≤I be a
binary relation on I . Consider Fn(I × �, 2).
Suppose that G ⊆ Fn(I × �, 2) is a generic filter, then Fn(I × �, 2) adds a
collection of Cohen reals indexed by I , {(ẋi)G | i ∈ I }, where each ẋi is the
canonical Fn(I × �, 2)-name for the generic real with index i , and (ẋi)G denotes
the interpretation of ẋi in V [G ]. Let

RGI = {〈(ẋi)G , (ẋj)G〉 | i, j ∈ I ∧ i ≤I j},
and XGI be the set of a ∈ RV [G ] such that a codes a pair (c, d ) ∈ RGI . We may omit
the subscripts or subscripts when they are clear from the context.
Let κ be an ordinal. Let 〈Iκ,≤Iκ 〉 denote the following partial ordering:
• Iκ = [κ]<�↓, the set of finite descending sequences of ordinals < κ, and
• for every s, t ∈ Iκ, t ≤I s if and only if t| dom(s) = s .

Let P = Fn(Iκ ×�, 2), andG ⊆ P anM -generic filter. RGIκ is not a prewellordering
as it is not total. RGIκ is a wellfounded relation and has rank κ.
Proposition 2.2. Iκ is a wellfounded relation and rank(Iκ) = κ.
Proof. 〈Iκ,≤I 〉 is in fact the relation obtained by reversing the wellfounded tree
associated to the wellfounded relation 〈κ,∈〉. �
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Next we need a projective definition for RIκ . This can be done by applying
Harrington’s coding forcing.

Theorem 2.3 (Harrington [2]) (ZFC). Suppose�V1 = �
L
1 andX (in V ) is a set of

reals. Then there is a generic extension that preserves all cardinals and in which X is
projective (in fact, ˜Π

1
2).

However, in order to prove a property needed in the second part of our proof, we
made a slight change to Harrington’s coding forcing.
Assume �1 = (�1)L. Fix an enumeration of �<� , say 〈sn | n < �〉. For each
x ∈ �� , let 	x = {2n | sn ⊂ x}. Then {	x |x ∈ ��} forms an almost disjoint
family of subsets of �. Fix a sequence 〈	α,i : (α, i) ∈ �1 ×�〉 ∈ L such that for all
(α, i), (�, j) ∈ �1 × �,
1. 	α,i ⊂ {2k | k < �} and 	α,i is infinite,
2. (α, i) �= (�, j) implies 	α,i ∩ 	�,j is finite,
3. 〈	α,i : (α, i) ∈ �1 × �〉 is Δ1-definable (no parameters) in H (�1).
Define QX as follows. Conditions are triples (A, t, b) such that

• A ⊂ X , A is finite;
• t is a finite partial function, t : �1 → [�]<� ; and
• b ∈ [�]<� , where [�]<� is the set of finite subsets of �.

The order is defined as follows: (A1, t1, b1) ≤ (A2, t2, b2) if
1. dom(t2) ⊆ dom(t1), A2 ⊆ A1, b2 ⊆ b1, and for all α ∈ dom(t2), t2(α) ⊆ t1(α)
and b2 = b1 ∩ (m + 1), where m = max(b2).

2. if α ∈ dom(t2), then for all x ∈ A2, t1(α) ∩ 	x = t2(α) ∩ 	x .
3. if α ∈ dom(t2) and i ∈ t2(α) then b2 ∩ 	α,i = b1 ∩ 	α,i .
By a standard Δ-system argument, we have

Proposition 2.4. QX is c.c.c.
Let h ⊂ QX be a V -generic filter. Define bh =

⋃ {b | (A, t, b) ∈ h}. bh uniquely
determines h. For each α < �1, let th(α) =

⋃ {t(α) | α ∈ dom(t) ∧ (A, t, b) ∈ h}.
Next are two lemmas from Harrington [2].

Lemma. For every x ∈ RV [h], x ∈ X iff ∀α < �1, |	x ∩ th(α)| < �.
The left-to-right direction is clear from the forcing. The right-to-left direction is
also clear, for x in the ground model V . It is in establishing this direction for x
which are not in the ground model that one uses the fact that the right-hand-side of
the equivalence holds for uncountably many ordinals α.

Lemma. For every (α, i) ∈ �1 × �, i ∈ th(α) iff |	α,i ∩ bh | < �.
From these, we get X is Π1 overH (�1). Hence in V [h], X is Π12(bh). Now force
over L[G ] with QX , where X = XG and G is a L-generic filter over P. Let h ⊆ QX

be a L[G ]-generic filter. �L[G ]1 = �L1 . So by Harrington’s Theorem, RG is Π12(bh)
in L[G ][h].
2.2. Property (H ). To ensure the second part of the proof for the main theorem
runs smoothly, we need the two forcing partial orders satisfy an additional property.
Let (H ) denote the following property:

For every formula ϕ, every condition p and any x1, . . . , xn ∈ V ,
if p � ϕ(x̌1, · · · , x̌n), then � � ϕ(x̌1, · · · , x̌n).
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It is easy to see that Fn(I, J ) has the property (H). We show that QX also has the
property (H ).

Proposition 2.5. QX has the property (H ).

Proof. Suppose q0 = (A0, t0, b0) is a condition. Choose an odd integer k such
that

1. for all α ∈ dom(t0), t0(α) ⊂ k, and
2. b0 ⊂ k.
Let p = (A, t, {k}) where A0 ⊂ A, dom(t0) ⊂ dom(t), and where t(α) = {k} for
all α ∈ dom(t).
Claim. Suppose G is V -generic with p ∈ G . Then there exists a V -generic filter
G0 such that V [G ] = V [G0] and such that q0 ∈ G0.
Proof of Claim. Let

Z =
⋃ {	α,i\k | α ∈ dom(t0), i ∈ t0(α)} ⊂ {2n | n < �}.

Let bG =
⋃ {b | (A, t, b) ∈ G}. This set uniquely determines G : G is the set of all

(A, t, b) ∈ QX such that

• b = bG ∩ n, for some n (i.e., n = max(b) + 1),
• if α ∈ dom(t) and i ∈ t(α) then b ∩ 	α,i = bG ∩ 	α,i .

The set (bG\Z) ∪ b0 defines a V -generic filter G∗ such that q0 ∈ G∗, i.e., such that
bG∗ = (bG\Z) ∪ b0. This is straightforward to verify.
The problem is that V [G ] �= V [G∗], in fact V [G ] = V [G∗][bG ∩ Z] (trivially).
Define G0 by defining bG0 . Fix a bijection (in V )

� : {2n + 1 | n < �}\k → Z ∪ {2n + 1 | n < �}\k.
Define a set B ⊂ � by:

• B ∩ k = b0.
• For every even n such that n > k, n ∈ B iff n ∈ bG\Z.
• For every odd n such that n > k, n ∈ B iff �(n) ∈ bG .
It is straightforward to verify that there is a V -generic filter G0 ⊂ QX such that
bG0 = B (and of course G0 is uniquely specified by B). Further q0 ∈ G0.
Finally V [G0] = V [B] = V [bG∗ ][bG ∩ Z] = V [bG ] = V [G ]. This proves the
claim. �Claim
Now we prove thatQX has the property (H ) using the claim. Suppose toward a
contradiction that q0 � ϕ[a1, . . . , an] and � �� ϕ[a1, . . . , an], where a1, . . . , an are in
V . Choose q1 such that q1 � (¬ϕ)[a1, . . . , an]. Choose a large enough odd number
k such that conditions 1. and 2. at the beginning of the proof hold for k relative to
q0 and q1.
Let p = (A, t, {k}), whereA = A0∪A1, dom(t) = dom(t0)∪dom(t1), andwhere
t(α) = {k} for all α ∈ dom(t). Let G ⊂ QX be V -generic with p ∈ G . Then we
have V -generic filters G0 and G1 such that

1. q0 ∈ G0, q1 ∈ G1.
2. V [G ] = V [G0] = V [G1].

But then V [G ] |= ϕ[a1...an ] and V [G ] |= (¬ϕ)[a1...an]. Contradiction! �
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§3. Step II: � is small. In the previous section, we have shown that given any
cardinal κ, there is a two-step forcing that adds a projective wellfounded relation
of rank κ, thus � > κ in the final forcing extension. Our goal in this section is to
prove that for a sufficiently large cardinal κ, these two steps of forcings do not add
projective prewellorderings of rank ≥ κ, hence, � < � in the final extension.
Theorem 3.1 (ZFC+ V = L). Let κ be any cardinal ≥ ��1 . Then

�P∗Q̇ � � ≤ ��1 ,
where P = Fn(Iκ × �, 2) and Q = QXGIκ

.

3.1. Basic framework. The basic framework of our approach is the following.
Towards a contradiction, we assume the statement fails at some κ in a model
(M,E). Let P, Q be the two forcings associated to κ. Let (p, q̇), s, 
 ∈ M be such
that for some Σ1n formula ϕ(t0, t1, t2):

1. (M,E) |= “(p, q̇) � 
 ∈ R”.
2. (M,E) |= “(p, q̇) � ‘{(x, y) ∈ R | ϕ[x, y, 
]} is the strict part of a total pre-
order’”.

3. (M,E) |= “ s is a function with domain ��1”.
4. (M,E) |= “ for all b < ��1 , s(b) is a term in V P∗Q”.
5. (M,E) |= “ for all b1 < b2 < ��1 , (p, q̇) � ϕ[s(b1), s(b2), 
]”.
6. s and 
 are each definable in (M,E) (no parameters).

Suppose G ⊂ P is an (M,E)-generic filter, h ⊂ Q = QXG is a (M,E)[G ]-generic
filter such that (p, q̇) ∈ H , where H ⊂ P ∗ Q̇ is the (M,E)-generic filter given by
(G, h). We wish to construct a G∗ from G such that:
1. G∗ is (M,E)-generic over P and p ∈ G∗. H ∗ is (M,E)-generic over P ∗ Q̇ and
(p, q̇) ∈ H ∗, whereH ∗ is the filter given by (G∗, h).

2. RG∗
= RG , hence QXG∗ = QXG .

3. R(M,E)[G
∗] = R(M,E)[G ], hence R(M,E)[H

∗] = R(M,E)[H ].
4. 
H

∗
= 
H .

5. (s(b0))H
∗
= (s(b1))H and (s(b1))H

∗
= (s(b0))H , for some b0, b1 < ��1 .

If this can be done, then in (M,E)[H ] we have

R(M,E)[H ] |= ϕ[(s(b0))H , (s(b1))H , 
H ].
Meanwhile in (M,E)[H ∗],

R(M,E)[H
∗] |= ϕ[(s(b0))H∗

, (s(b1))H
∗
, 
H

∗
].

But by the above properties, we have

R(M,E)[H ] |= ϕ[(s(b1))H , (s(b0))H , 
H ].
Contradiction!
Our first attempt was to work in (M,E) = (L,∈) directly. Unfortunately this
approach doesn’t work: H is uniquely determined by the pair (G, h). If (M,E) is
wellfounded, then

(M,E)[H ] = (M,E)[G ][h] = (M,E)[RG ][h].
The key point is thatRG uniquely determinesG if and only if κ(M,E) is wellfounded.
If we work in a wellfounded (M,E) and require that RG∗

= RG , then H = H ∗
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and the Requirement (5) above can never happen. So we must work with non-
wellfounded models.
3.2. Theory of indiscernibles. In order to work with and have control of non-
wellfoundedmodels, we “wrapup” the previous approachwith an additional lemma
on a certain type of theories of indiscernibles.
Let L denote the language of set theory. Let L∗ = L∪{ci | i < �}, where ci ’s are
constant symbols. For every formula ϕ in L, we use tϕ to denote its skolem term.
Since we only work with models elementarily equivalent to L� for some �, all the
skolem functions are considered to be definable.
Lemma 3.2 (ZFC+ V = L). Let � be a limit ordinal> ��1 such that

L� |= ZFC\Replacement + Σ1-Replacement .
Let T0 = Th(L�). Then there exists a theory T such that
1. T is an extension of T0 in the language L∗.
2. T is a complete theory for which ci , i < �, are indiscernibles.
3. T satisfies the following properties:

• “c0 < ��1” is in T .
• (�-completeness) For every formula ϕ(x0, . . . , xn) in L, if

“tϕ(c0, . . . , cn) ∈ �” is in T
then for some k < �,

“tϕ(c0, . . . , cn) = k” is in T.

By indiscernibility, “c0 < ��1” is in T is equivalent to

for every i < �, “ci < ��1” is in T.

We say a theory T as in the above lemma, satisfying the conditions (1)–(3), is an
�-complete extension of T0. A big advantage of using �-complete theories is that
we can work with�-models, in which natural numbers are all standard. This makes
the presentation of our proof much easier. However, the �-completeness condition
makes �� a lower bound for all the indiscernibles, which makes it difficult to see
that there is in fact an upper bound for � in our model (see Section 4).
Later we want to consider forcing over models of T0, so we require that

L� |= ZFC\Replacement + Σ1-Replacement.
Generic extensions of models satisfying “ZFC\Replacement + Σ1-Replacement”
also satisfy this theory so this is a reasonable theory for forcing. A sufficient
condition for such � is that L |= � is a limit cardinal > �.
Let {x0 < · · · < xn} abbreviate {x0, · · · , xn} with x0 < · · · < xn .
Fact. Suppose T is an �-complete theory extending T0. Then for every total
order (Z,<Z ) there is a model (M,E) |= T such that Ord(M,E) contains a subset X
such that
1. (X,E) is isomorphic to (Z,<Z).
2. for all formulas ϕ(x0, . . . , xn), for all {a0 E · · ·E an} in X ,

(M,E) |= ϕ[a0, . . . , an] iff ϕ(c0, . . . , cn) ∈ T.
3. Every element ofM is definable in (M,E) with parameters from X .
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Further (M,E) andX are unique up to isomorphism in the sense that if (M∗, E∗)
and X ∗ satisfy (1)–(3) and � : (X,E)→ (X ∗, E∗) is an order isomorphism then �
extends uniquely to an isomorphism of (M,E) and (M∗, E∗).

Such anM is called a (Z,<Z )-model for T . We often write Z-model, when <Z is
clear from the context. Let (Z, <Z) denote the linear ordering of all integers.
Lemma 3.3. Let T0 be as in Lemma 3.2, and T an �-complete extension of T0.
Let M be the Z-model of T . Then inM , for any κ ≥ ��1 , �P∗Q̇ � � ≤ ��1 , where
P = Fn(Iκ × �, 2) and Q = QXGIκ

.

Lemmas 3.2 and 3.3 will be proved in subsequent subsections. Granting these
two lemmas, we prove Theorem 3.1 as follows.
Assume the statement in Theorem 3.1 is false. Select a sufficiently large � such
that L |= “� is a limit cardinal > ��1” and

L� |= “ for some κ ≥ ��1 , �P∗Q̇ � � > ��1”,
where P, Q are the two forcings associated to κ.
Let T0 = Th(L�). Let T be a �-complete extension of T0 given by Lemma 3.2.
Let (M,E) be the Z-model for T . By Lemma 3.3, inM , �P∗Q̇ � � ≤ ��1 , for every
κ ≥ ��1 . But this contradicts that (M,E) |= Th(L�).
3.3. Proof of Lemma 3.2. In this subsection, we give the proof of
Lemma 3.2. Let � be a limit ordinal > ��1 such that

L� |= ZFC\Replacement + Σ1-Replacement.
Let T0 = Th(L�). Then there exists �-complete extension of T0.
Work in L. Let � and T0 be as in the hypothesis. We shall get this �-complete
extension T from a nonstandard model.
Force with (P(�1)\I0,≤0), where I0 = {X ⊂ �1 | |X | < �1}, and p ≤0 q iff
p \ q ∈ I0. Let G ⊆ P(�1)\I0 be an L-generic filter. Since I0 is �1-complete
and contains all the singletons, G is a nonprincipal �1-complete ultrafilter over
κ. Let j : (L,∈) → (M,E) = Ult(L,G) be the induced generic elementary
embedding. crit(j) = �L1 . This implies that (M,E) is an �-model. However, the
wellfoundedness breaks down at some countable ordinals in (M,E). In particular,
[id]G is in the nonstandard part of (M,E).
Work in L[G ]. We shall construct a sequence 〈(Xi , αi) : i < �〉 such that for
every i < �,
1. Xi ∈M .
2. Xi ⊆ j(��1 ).
3. αi ∈M , (M,E) |= “αi < (�1)M”.
4. for all α < (�1)L, (M,E) |= “α < αi”.
5. Xi ⊇ Xi+1 and αi > αi+1.
6. (M,E) |= |Xi | ≥ �αi .
7. For i > 0, all the i-element subsets of Xi are indiscernible for j(V�) (from the
view of (M,E)), i.e., for every formula ϕ in L, for every {x1 < · · · < xi} and
{y1 < · · · < yi} in Xi ,

(M,E) |= “Vj(�) |= ϕ[x1, . . . , xi ]↔ ϕ[y1, . . . , yi ]”.
Our construction uses the following well-known Erdős-Rado Theorem.
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Theorem (Erdős-Rado [1]). For every α > 1 and n < �, �α+n → (�α)n+1�1 .
Let α0 be any nonstandard countable ordinal in (M,E) (for instance, [id]G) and
X0 = j(��1 ). Suppose αi , Xi are given, we describe how to get αi+1, Xi+1.
Choose αi+1, a nonstandard countable ordinal such that αi+1 + i ≤ αi . Such
an ordinal exists, since αi is nonstandard. Color (i + 1)-tuples from Xi by their
theories in j(V�), i.e., for {x0 < · · · < xi} ⊆ Xi , let

F (x0, . . . , xi) = {�ϕ� | (M,E) |= “Vj(�) |= ϕ[x0, . . . , xi ]”},
where �ϕ� is the Gödel number of ϕ. F ∈ M and for every {x0 < · · · < xi} ⊆ Xi ,
F (x0, . . . , xi ) ⊆ �. By CH, we can view F as an �1-coloring of [Xi ]i+1. Since
αi ≥ αi+1 + i , applying Erdős-Rado in (M,E), we get a homogeneous Xi+1 ∈M
such that (M,E) |= |Xi+1| ≥ �αi+1 .
This defines in L[G ], using V (M,E)

j(�) , the sequence 〈(Xi , αi ) : i < �〉. For each
i < �, let Ti be the theory satisfied (in (M,E)) by some (or all) i-tuples from Xi ,
i.e.,

Ti = {ϕ(c0, . . . , ci−1) |V (M,E)j(�) |= ϕ(x0, . . . , xi−1),
for some {x0 < · · · < xi−1} ∈ [Xi ]i}.

Let T =
⋃
iTi . By compactness, T is consistent. Clearly, T extends T0. The

construction runs through all formulas in L, thus T is complete in L∗. Again by
the construction, T contains “ci < ��1” for all i < �; and since (M,E) is an
�-model, the �-completeness condition is satisfied automatically. T is obtained in
V [G ] = L[G ]. By absoluteness, such a theory T must exist in L: the existence of
T is a Σ11 statement about T0 and so the existence is absolute.
3.4. Proof of Lemma 3.3. Before proving Lemma 3.3, we give some preliminaries
on forcing over �-models.
3.4.1. Forcing over �-models. Suppose (M,E) is an �-model, and

(M,E) |= ZFC\Replacement + Σ1-Replacement.
We identify (V�+1)(M,E) with its transitive collapse. We also identify (M,E)-generic
filters with the corresponding subsets ofM . Thus if (P,<P) ∈M and

(M,E) |= “(P,<P) is a partial order”
then a set G ⊂ {a ∈ M | a E P} is (M,E)-generic for P if and only if for each
D ∈M such that (M,E) |= “D ⊆ P and D is dense in (P,<P)”,

{b ∈M | b E D} ∩G �= ∅.

The corresponding extension (M,E)[G ] is an �-model and (M,E) is a submodel
of (M,E)[G ].
Suppose (M0, E0) ≺ (M,E). Suppose P is a partial order in (M,E) such that

P is c.c.c. in (M,E). Suppose G ⊂ P is (M,E)-generic and that P ∈ M0. Then
G ∩M0 is (M0, E0)-generic for P (in the sense defined above). Let G0 = G ∩M0.
This gives a canonical interpretation of (M0, E0)[G0] as a submodel of (M,E)[G ]:
If a ∈ (M0, E0)[G0] then a = 
G0 for 
 ∈M0 such that

(M0, E0) |= “
 is a term in V P ”.
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Define I (a) = 
G . This is well-defined and moreover,

I : (M0, E0)[G0]→ (M,E)[G ]
is an elementary embedding, I |M0 is the identity, and I (G0) = G .
Thus we can naturally denote the range of I by (M0, E0)[G ] and identify it with
(M0, E0)[G0]. Our use for this is the following:

Suppose 	 ∈ M0, (M,E) |= “� � 	 ∈ V�+1”. Then 	G is uniquely
determined by G0 and 	G = 	G0 .

3.4.2. Proof of Lemma 3.3, a warm-up. As a warm-up, we prove a version of
Lemma 3.3 for Fn(Iκ × �, 2) to illustrate the idea.
Lemma 3.3*. Let T0 be as in Lemma 3.2, and T an �-complete extension of T0.
Let (M,E) be the Z-model of T . Then in (M,E), for any cardinal κ > ��1 ,

�Fn(Iκ×�,2) � �XG ≤ ��1 .
Let T be a theory as in the hypothesis. Let (M,E) be the Z-model for T . By the
�-completeness condition, (M,E) is an�-model. So we do not distinguish between
n and n(M,E) and we do not distinguish between � and �(M,E). Let 〈�k : k ∈ Z〉
be the generating indiscernibles in ascending order. Notice that �k < ��1 , for all
k ∈ Z.
Let M0 be the skolem hull of �0, M1 the skolem hull of �1, inside (M,E).
Then (Mi,E) ≺ (M,E) and (M0 ∩ M1, E) ≺ (Mi,E), for i = 0, 1. Clearly
M0∩M1 contains all the elements in (M,E) that are definable (without parameters)
in (M,E).
We are trying to show if κ is a cardinal of (M,E) with (M,E) |=“��1 < κ”,
and if G is (M,E)-generic for adding I -Cohen reals then in (M,E)[G ], there is no
prewellordering of rank ��1 that is projective in RG .
Assume that the statement is false in (M,E). Let κ, s, 
 ∈ M be such that for
some Σ1n formula ϕ(t0, t1, t2):

1. (M,E) |= “�P � 
 ∈ R” .
2. (M,E) |= “�P � ‘{(x, y) ∈ R | ϕ[x, y, 
,R]} is the strict part of a total pre-
order’”.

3. (M,E) |= “s is a function with domain ��1”.
4. (M,E) |= “for all b < ��1 , s(b) is a term in V P ”.
5. (M,E) |= “for all b1 < b2 < ��1 , �P � ϕ[s(b1), s(b2), 
,R]”.
6. κ, s and 
 are each definable in (M,E) (no parameters).

Here P = Fn(I × �, 2) and I = Iκ .
The partial order P is definable and has the property (H ) on page 582, so we can
choose κ, s, 
 ∈M as required. Thus s, 
 ∈M0 ∩M1.
Let 〈
b : b < (��1 )(M,E)〉 be the sequence of elements of M given by s , so for
each b ∈ M , if (M,E) |= “b < ��1”, then (M,E) |= “
b = s(b)”. Therefore

�0 ∈M0 and 
�1 ∈M1.
Let G ⊆ P be an (M,E)-generic filter. We want to define a function f : I → I
which transforms G to G∗ such that the following are satisfied:
1. G∗ is an (M,E)-generic filter.
2. RM [G

∗] = RM [G ].
3. RG∗

= RG .
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4. (
�0 )
G∗
= (
�1 )

G .
5. (
�1 )

G∗
= (
�0 )

G .
6. 
G

∗
= 
G .

Let � : M → M be the automorphism given by sending �k to �k+1, k ∈ Z. As
(M,E) is an �-model, �(n) = n, for every n < �(= �(M,E)). Moreover, � has the
following local property.

Claim. � is locally countable in (M,E), i.e., for any X ∈ M such that X is
countable in (M,E), �|X ∈M .
The key is that � is an automorphism and �|� = id ∈M . Suppose X ∈M and
	 : X → � is a 1-1 function in (M,E). �(	) is in (M,E) as well. Note that for any
a ∈ X , �(	)(�(a)) = �(	(a)), �(	) ◦ � = (�|�) ◦ 	. Hence

�|X = (�(	))−1 ◦ (�|�) ◦ 	 ∈M.
This proves the claim.

Now we define the function f : I → I as follows:
Suppose s ∈M0∩M1. Then f(s) = s . For s /∈M0∩M1, define f(s) as follows,
there are three cases. Let i be least such that s(i) /∈M0 ∩M1,

• if s(i) ∈M0, let f(s) = �(s);
• if s(i) ∈M1, let f(s) = �−1(s);
• if s(i) /∈M0 ∪M1, let f(s) = s .

f has the following properties:

Proposition 3.4. 1. f : I → I is an automorphism on 〈I,≤I 〉.
2. For s ∈ I ,

• if s ∈M0 ∩M1, then f(s) = s .
• if s ∈M0, then f(s) = �(s).
• if s ∈M1, then f(s) = �−1(s).

3. f is locally countable in (M,E).

Proof of Proposition 3.4. (2) is because � and �−1 are the identity on I ∩M0 ∩
M1. (3) follows from the local countability of � and �−1. We verify (1).
It is not difficult to see that f(s) ∈ I for every s ∈ I and f = f−1, thus f is a
bijection on I . Now we show that f is order preserving.
Suppose s ≤I t, we show that f(s) ≤I f(t). Note that t is an initial segment
of s . If s ∈ M0 ∩M1, then t ∈ M0 ∩M1, thus f(s) = s ≤I t = f(t). Suppose
s /∈M0 ∩M1, and i least such that s(i) /∈M0 ∩M1.
If i < lh(t), then s(i) = t(i). No matter which set s(i) belongs to, f(s) ≤I f(t).
If i ≥ lh(t), then t ∈M0 ∩M1 and f(t) = t, while

f(s) = �(s |i) ∪ �(s \ (s |i))
= s |i ∪ �(s \ (s |i)) ⊇ s |i ⊇ t.

Hence f(s) ≤I f(t). � Proposition
f induces a transformation from G to G∗ as follows: We view conditions in P

as finite sets of triples of the form p = (	, n, i), where 	 ∈ I is a finite descending
sequence of ordinals < κ, n < � and i ∈ {0, 1}. For every p = (	, n, i) ∈ P, define
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F (p) = {(f(	), n, i) | (	, n, i) ∈ p}. Let G∗ be the image ofG under F , F ′′G . For
later use, we recursively define

F∗(	) = {(F∗(
), F (p)) | (
, p) ∈ 	},
for 	 ∈ (M,E)P.
The following is a property of locally countable isomorphisms on c.c.c. partial
orders. Let ZFC∗ denote a sufficient fragment of ZFC.

Proposition 3.5. Suppose (M,E) |= ZFC∗. Suppose P andQ are two c.c.c. posets
in (M,E). Suppose F : P → Q has the following properties:

• F is an isomorphism;
• F is locally countable in (M,E);
• For every p0, p1 ∈ P, if F (p0), F (p1) ∈ M and (M,E) |= “p0, p1 are ≤P-
incompatible”, then (M,E) |= “F (p0), F (p1) are ≤Q-incompatible”.

Let G ⊆ P. Then

1. G is P-generic over (M,E) iff F ′′G is Q-generic over (M,E).
2. If G is P-generic over (M,E), then R(M,E)[G ] = R(M,E)[F

′′G ].

Proof. 1. Notice that if F has the above three properties then so does F−1 (with
P, Q switched in the third property). We only need to show one direction. Let G
be a P-generic filter.
Suppose A ∈ M and (M,E) |= “A is a maximal antichain in Q”. Since Q is
c.c.c. in (M,E), A ∈ M is countable in (M,E); by the local countability of F−1,
(F−1)|A and (F−1)′′A are in M as well. The third property of F−1 ensures that
(M,E) |= “(F−1)′′A is a maximal antichain in P”. Since G is P-generic, there is
some r ∈ G ∩ (F−1)′′A ∩M . Then F (r) ∈ (F ′′G) ∩ A ∩M . Hence, F ′′G is
Q-generic.
2. We show one direction R(M,E)[F

′′G ] ⊇ R(M,E)[G ], a similar argument works for
the other direction. We use nice names. Viewing names for reals as subsets of�×P,
a nice (M,P)-name for a real � is of the form

⋃
n<�{n} × An , where each An ∈M

and (M,E) |= “An is a maximal antichain in P”. For reals in the generic extension,
we may consider nice P-names directly.
If 
 is a nice (M,P)-name for a real, then so is F∗(
). Moreover,

p � n ∈ 
 iff F (p) � n ∈ F∗(
).
Since p ∈ G iff F (p) ∈ F ′′G , it follows that (F∗(
))F

′′G = 
G . �
Since f : I → I is a bijection, the map F defined on page 589 is an automor-
phism on Fn(I × �, 2). It is easy to check that M,F satisfy the conditions in
Proposition 3.5, so we have

Claim. If G ⊆ P is an (M,E)-generic filter, then G∗ is an (M,E)-generic filter.

Claim. R(M,E)[G ] = R(M,E)[G
∗].

For each s ∈ I , let ẋs be the set {(ň, p) | n < �, p ∈ P and (s, n, 1) ∈ p}. ẋs is
the canonical P-name for the generic Cohen real indexed by s . By the definition of
F∗, for each s ∈ I , F∗(ẋs ) = ẋf(s). Thus F∗(ẋs ) is the generic Cohen real indexed
by f(s). Note that (F∗(ẋs ))G

∗
= (ẋs )G, it follows that field(RG∗

) = field(RG ). By
Proposition 3.4, f is an automorphism on 〈I,≤I 〉, so we have
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Claim. RG∗
= RG .

(M,E) is an �-model, so automorphisms on (M,E) fix natural numbers in
(M,E). The following properties follows from Proposition 3.4,

Proposition 3.6. For every condition p ∈ P,

p ∈ G ∩M0 ⇔ �(p) ∈ G∗ ∩M1,
p ∈ G ∩M1 ⇔ �−1(p) ∈ G∗ ∩M0,
G ∩M0 ∩M1 = G∗ ∩M0 ∩M1.

Recall in the preliminary remarks on forcing over �-models: Suppose P is a
c.c.c. partial order in (M,E). Suppose (M0, E0) ≺ (M,E) and P ∈ M0. Suppose
G ⊂ P is (M,E)-generic. If 	 ∈ M0 and (M,E) |= “�P � 	 ∈ V�+1”, then the
interpretation of 	 by G , 	G , is uniquely determined by G ∩M0 and 	G = 	G∩M0 .
Now let (x, y, z) be the interpretation of (
�0 , 
�1 , 
) by G and let (x

∗, y∗, z∗) be
the interpretation of (
�0 , 
�1 , 
) by G

∗. Then
• x is the interpretation of 
�0 by G ∩M0,
• y is the interpretation of 
�1 by G ∩M1,
• z is the interpretation of 
 by G ∩M0 ∩M1,
• x∗ is the interpretation of 
�0 by G∗ ∩M0,
• y∗ is the interpretation of 
�1 by G∗ ∩M1,
• z∗ is the interpretation of 
 by G∗ ∩M0 ∩M1.

By Proposition 3.6, we have

Claim. x = y∗, y = x∗ and z = z∗.

Now in (M,E)[G ], we have

(R(M,E)[G ],RG ) |= ϕ[x, y, z,RG ].
Since G is (M,E)-generic, G∗ is (M,E)-generic. Hence in (M,E)[G∗],

(R(M,E)[G
∗],RG∗

) |= ϕ[x∗, y∗, z∗,RG∗
].

By the properties (2)–(6) on page 588, established in the last three claims, we have

(R(M,E)[G ],RG ) |= ϕ[y, x, z,RG ].
This contradicts the assumption that (ϕ, z,R) defines a total order.
3.4.3. Proof of Lemma 3.3, the full proof. Now we prove the full version of
Lemma 3.3.
As we did in the warm-up, let T be a theory as in the hypothesis, (M,E) be the

Z-model forT . Let 〈�k : k ∈ Z〉 be the generating indiscernibles in ascending order.
�k < ��1 , for all k ∈ Z.
Assume that the statement is false in (M,E). Let p0, κ, s, 
 ∈M be such that for
some Σ1n formula ϕ(t0, t1, t2):

1. (M,E) |= “(p0, �̇Q) � 
 ∈ R”,
2. (M,E) |= “(p0, �̇Q) � ‘{(x, y) ∈ R | ϕ[x, y, 
]} is the strict part of a total
preorder’”,

3. (M,E) |= “ s is a function with domain ��1”,
4. (M,E) |= “ for all b < ��1 , s(b) is a term in V P∗Q̇”,
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5. (M,E) |= “ for all b1 < b2 < ��1 , (p0, �̇Q) � ϕ[s(b1), s(b2), 
]”
6. p0, κ, s and 
 are each definable in (M,E) (no parameters).

Here P = Fn(Iκ × �, 2), Q = QXG , and �̇Q is the term for the maximal element of
Q, i.e., the condition (∅,∅,∅).
Clearly P ∗ Q̇ is definable in (M,E). We showed early that in V [G ], QXG has the
property (H ). So p0, κ, s, 
 ∈M can be chosen as required.
Let �0, �1, �, f, (M0, E) and (M1, E) be the same as in the warm-up. Suppose
G ⊂ P is a (M,E)-generic filter, and let G∗ denote the (M,E)-filter given by
transforming G via the function f. In the warm-up, we have shown the following,
with respect to P:

1. RM [G
∗] = RM [G ].

2. RG∗
= RG .

3. For every condition p ∈ P,

p ∈ G ∩M0 ⇔ �(p) ∈ G∗ ∩M1,
p ∈ G ∩M1 ⇔ �−1(p) ∈ G∗ ∩M0,
G ∩M0 ∩M1 = G∗ ∩M0 ∩M1.

As for P∗ Q̇, supposeH ⊂ P∗ Q̇ is a (M,E)-generic filter with (p0, �̇Q) ∈ H . Let
G = {p ∈ P | (∃q̇ ∈ Q̇)(p, q̇) ∈ H},
h = {q̇G | (∃p ∈ G)(p, q̇) ∈ H}.

Then G ⊂ P is a V -generic filter, h ⊂ (Q̇)G is a V [G ] generic filter, p0 ∈ G andH
is determined by (G, h). Let

H ∗ = {(p, q̇) ∈ P ∗ Q̇ | p ∈ G∗ and q̇G
∗ ∈ h}.

We show that:

1. H ∗ is an (M,E)-generic filter over P ∗ Q̇ and (p0, �̇Q) ∈ H ∗.
2. R(M,E)[H

∗] = R(M,E)[H ].
3. (
�0 )

H∗
= (
�1 )

H .
4. (
�1 )

H∗
= (
�0 )

H .
5. 
H

∗
= 
H .

Since RG∗
= RG , we have (Q̇)(M,E)[G ] = (Q̇)(M,E)[G∗]. �P � “Q̇ is c.c.c.”, so
�P � “antichains of Q̇ can be coded by reals in V [G ]”.

Since R(M,E)[G ] = R(M,E)[G
∗], (M,E)[G∗] and (M,E)[G ] have the same collection

of antichains forQ. This implies that h is (M,E)[G∗]-generic forQ. Note that p0 is
inM0 ∩M1, so p0 ∈ G∗ ∩M0 ∩M1 and (p0, �̇Q) ∈ H ∗. Therefore, we have shown
that

Claim. H ∗ is (M,E)-generic for P ∗ Q̇ and (p0, �̇Q) ∈ H ∗.

Let bh be the subset of � given by h. Recall that h can be recovered from bh . So
every r ∈ R(M,E)[G ][h] is definable from some x ∈ R(M,E)[G ] and bh , i.e.,

R(M,E)[G ][h] =
⋃ {L�(x, bh) | x ∈ R(M,E)[G ]}.

Since R(M,E)[G ] = R(M,E)[G
∗], it follows immediately that
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Claim. R(M,E)[H
∗] = R(M,E)[H ].

P ∗ Q̇ is in M0 ∩M1. 
�0 , 
�1 , 
 are in M0, M1, M0 ∩M1 respectively, so their
interpretation by H are uniquely determined by H ∩M0, H ∩M1, H ∩M0 ∩M1,
similarly forH ∗. Therefore, to see (3)–(5), it suffices to show that

Proposition 3.7. For every condition (p, q̇) ∈ P ∗ Q̇,

(p, q̇) ∈ H ∩M0 ⇔ �((p, q̇)) ∈ H ∗ ∩M1,
(p, q̇) ∈ H ∩M1 ⇔ �−1((p, q̇)) ∈ H ∗ ∩M0,
H ∩M0 ∩M1 = H ∗ ∩M0 ∩M1.

Proof of Proposition 3.7. We only show the first equivalence. The argument
for the second one is similar, and the third identity follows from the first two
equivalences. Since � and f are bijections, it suffices to show one direction.
Assume (p, q̇) ∈ H ∩M0. �((p, q̇)) is inM1. Since P ∗ Q̇ is inM0 ∩M1,

�((p, q̇)) = (�(p), �(q̇))

is also a condition in P ∗ Q̇. By the definition of QX , the transitive closure of q̇ is
countable inM , and therefore contained inM0. Note that p ∈ G ∩M0 ⇔ �(p) ∈
G∗∩M1. Applying this inductively on ranks of elements in the transitive closure of q̇,
we have q̇G = �(q̇)G

∗
. Thus if q̇G ∈ h∩(M0, E)[G ] then �(q̇)G∗ ∈ h∩(M1, E)[G∗].

This shows that (�(p), �(q̇)) ∈ H ∗ ∩M1. �
Now let (x, y, z) be the interpretation of (
�0 , 
�1 , 
) by H and let (x

∗, y∗, z∗) be
the interpretation of (
�0 , 
�1 , 
) byH

∗. Then

• x is the interpretation of 
�0 by H ∩M0,
• y is the interpretation of 
�1 byH ∩M1,
• z is the interpretation of 
 by H ∩M0 ∩M1,
• x∗ is the interpretation of 
�0 by H ∗ ∩M0,
• y∗ is the interpretation of 
�1 by H ∗ ∩M1,
• z∗ is the interpretation of 
 byH ∗ ∩M0 ∩M1.

We have

Claim. x = y∗, y = x∗ and z = z∗.

Finally, in (M,E)[H ], we have

R(M,E)[H ] |= ϕ[x, y, z].
Since H is (M,E)-generic, H ∗ is (M,E)-generic. So in (M,E)[H ∗],

R(M,E)[H
∗] |= ϕ[x∗, y∗, z∗].

By the properties (2)–(5) on page 592, we have

R(M,E)[H ] |= ϕ[y, x, z].
This contradicts the assumption that (ϕ, z) defines a total order.
This completes the proof of Lemma 3.3 and the proof of Theorem 3.1.
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§4. Upper bounds for �. The �-completeness condition is heavily used through-
out our argument. A big advantage of doing so is that models for a �-complete
theory are �-models, hence a large amount of agreement among models M0, M1
andM0 ∩M1 holds automatically. This makes our presentation much easier. How-
ever, one drawback of using �-completeness is that the �-completeness condition
makes �� a lower bound for all the indiscernibles. This makes it hard to see that
�� is in fact an upper bound for � in our model.
Fix a � such that L |= “� is a uncountable limit cardinal”. Let T be an �-
complete extension of T0 = Th(L�).
Lemma 4.1. “c0 > �n” is in T , for every n < �. Moreover, “c0 > ��” is also in T .
Proof. The key is the following claim:

Claim. “c0 → (m)n�” is in T , for every m, n < �.
Suppose not. Let (M,E) be theZ-model ofT . Let 〈�k : k ∈ Z〉 be the generating
indiscernibles. Fix an (m, n) such that

“ c0 � (m)n� ” is in T.

By indiscernibility, for every k ∈ Z, (M,E) |= �k � (m)n� . Pick any i ∈ Z.
Note that the set {k ∈ Z | k <Z i} is infinite. Let F : [�i ]n → � be the <(M,E)-
least coloring function that witnesses �i � (m)n� . By the �-completeness and
the indiscernibility of �k ’s, {�k | k <Z i} is a F -homogeneous set of size > m.
Contradiction!
According to Erdős-Hajnal-Rado [1]: For any cardinal κ ≥ � and n < �,
κ+n � (n + 2)n+1κ . It must be that T |= “ c0 > �n”, for all n < �, and by
the indiscernibility, the same holds for every ck (k < �). And moreover, by the
�-completeness, T |= “ c0 > ��”. �
A condition weaker than �-completeness enables us to obtain indiscernibles
below �� and hence to argue that � ≤ �� . Here is a version of Lemma 3.2 with
�-completeness replaced by what we call the remarkability condition:
Lemma 3.2

′
. Assume ZFC+ V = L. Let � be a limit ordinal> �� such that

L� |= ZFC\Replacement + Σ1-Replacement .
Let T0 = Th(L�). Then there exists a theory T such that
1. T is an extension of T0 in the language L∗.
2. T is a complete theory for which ci , i < �, are indiscernibles.
3. T satisfies the following properties:

• “c0 < ��” is in T .
• (remarkability). For every formulaϕ(x0, . . . , xi) in the language of set theory,
for any {cn0 < · · · < cni} and {cm0 < · · · < cmi}, if

“tϕ(cn0 , . . . , cni ) ∈ �” is in T
then

“tϕ(cn0 , . . . , cni ) = tϕ(cm0 , . . . , cmi )” is in T.

Such a theory can be obtained in an ultrapower of L by a nonprincipal ultrafilter
� on �. Let j denote the elementary embedding from L to (M,E), the transitive
collapse of Ult(L,�). Applying the Erdős-Rado Theorem inductively as in the
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proof of Lemma 3.2, but below j(��), we get {Ti | i < �}, where each Ti is
the theory of (c0, . . . , ci) in j(L�). Then the union T =

⋃
iTi satisfies the above

requirements. Since �Ult(L,�) is not standard, T is not �-complete.
With a complete, remarkable theory of indiscernibles T , it is still true that

“c0 > �n” is in T,

for every standard natural number n. But we can no longer conclude that

“c0 > ��” is in T,

as in the case of �-complete theories. The point is that, letting (M,E) be a model
for T , the identity ��(M,E) = sup{�n | n ∈ �L} is not always true.
Now let (M,E) be the Z-model forT . Following the argument in Subsection 3.4,
carefully working with non-standard natural numbers in (M,E) while keeping the
agreement among modelsM0,M1 andM0 ∩M1, one can prove
Lemma 3.3

′
. Suppose T is a theory as in Lemma 3.2′. Let (M,E) be the Z-model

of T . Then in (M,E), for any cardinal κ > �� ,

�P∗Q̇ � � ≤ ��,
where P = Fn(Iκ × �, 2) and Q = QXG .
Exactly as Theorem 3.1 follows from Lemma 3.2 and 3.3, from Lemma 3.2′

and 3.3′ we can get: There is a c.c.c. forcing P ∈ L such that for any L-generic filter
G ⊂ P, L[G ] |= � < �.
Although the modified argument manages to “press” the upper bound of � in the
final extension down to �� , this bound is probably the best one can get with the
method of indiscernibles.
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