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constructive universe. Some recent works (see Refs. 1,2) in set theory indicate

that there is a profound connection between the complexity of degree structures
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Keywords: Turing degree, hyperarithmetic degree, inner model operator, jump,
incomparable degrees, minimal degree, Posner-Robinson Theorem, Degree De-
terminacy, higher degree theory, Covering Lemma, large cardinal, core model,

Axiom I0

1. Organization of the paper

In this article, we survey some recent developments in degree theory, in

particular, the study of degree structures of generalized degrees at singular

cardinals. The paper consists of three parts. In §2, we give a brief account

of various generalizations of classical recursion theory, in particular the

two directions – one up in degree notion hierarchy and the other lifting

to larger ordinals. In this part, we investigate these structures focusing

on a particular set of structural questions. In §3, we present the latest

discovery of the connection between the complexity of degree structures at

countable cofinality singular cardinals and the large cardinal strength of

relevant cardinals. The structure of Zermelo degrees at countable cofinality

singular cardinals in various core models of large cardinals, or under strong
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large cardinal principles, are compared, according to that particular list

of structural questions. In the last part (§4) we put down some remarks,

proposing directions for further investigation.

Notations in this paper are very set theoretic, if not given explicitly,

mostly follow Jech3 and Kanamori4.

2. Generalizing the classical recursion theory

Early in 1960s, efforts had already been made to generalize classical recur-

sion theory to higher level or in broader context. In this section, we briefly

recall various generalizations of classical recursion theory, in particular the

two directions – one up in degree notion hierarchy and the other lifting to

larger ordinals.

2.1. Inner model operators

In classical recursion theory, two subsets A,B ⊆ ω, A is Turing reducible

to B, denoted as A ≤T B, if both A and the complement of A can be

recursively computed given B as an oracle, or equivalently, A is ∆0
1 definable

in B (both A and ω − A are Σ0
1 definable in B, using B as a predicate

symbol). This partial ordering induces an equivalence relation – the notion

of Turing degrees – on subsets of ω. Turing degrees may as well be called

∆0
1-degrees. For A ⊆ ω, let [A]T

a denote the degree represented by A,

and [A]
′
T denote the Turing jump of [A]T , the degree of the Σ0

1-theory of

(N,+,×, 0, 1, A).

By replacing ∆0
1 with larger collection of sets, one can define degree

notions for higher levels of definability. For instance, a natural landmark in

this hierarchy of definability degree notions is the hyperarithmetic degree.

The hyperarithmetic degrees are the ∆1
1-degrees, obtained by considering

the class of ∆1
1 subsets of ω; the hyperarithmetic jump of [∅] is the degree

of Kleene’s O, a complete Π1
1-set.

In Ref. 5, Hodes applied Jensen’s fine structure theory to iterate the

jump through transfinite up to ℵL
1 .

Theorem 2.1 (Hodes5). Use Jensen’s Jα hierarchy for L.

(1) Whenever (∆n+1(Jα)−∆n(Jα))∩P(ω) ̸= ∅, within this set there

is a largest Turing degree, which contains ∆n+1(Jα)-master code.

aIn recursion theory, people normally use a or aT . Due to our excessive use of subscripts,

we use the bracket form [a]T , treating it as equivalence class.
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(2) The master code degrees are wellordered by the order of construc-

tion of their members in the J-hierarchy, and this order coincides

with Turing reducibility on these degrees: for α < ℵL
1 , the Turing

jump of the α-th master code is an (α+ 1)-th master code.

Master code is a terminology from fine structure theory. We omit its defi-

nition. The degree of α-th master codes is now widely accepted as the α-th

iterate of the Turing jump, denoted as ∅(α). The hyperarithmetic degree of

∅ consists of exactly those x ⊆ ω such that x ≤T ∅(α) for some α < ωCK
1 ,

and Kleene’s O ≡T ωCK
1 -th master code. But master code is only helpful

for degrees below the constructible degrees (see the proposition on p.4).

In Ref. 6, Steel made the notion of degree operator precise.

Definition 2.1 (Steel6). Let M : 2ω → P(2ω) and

(1) ∀x, y (x ≡T y ⇒ M(x) = M(y)),

(2) ∀x (M(x) is closed under join, Turing jump and Turing

reducibility),

(3) ∀x, y (y ∈ M(x) ⇒ M(y) ⊆ M(x)),

(4) there is a relation W (x, y, z) so that ∀x (Wx = {(y, z) | W (x, y, z)}
is a wellorder of M(x)),

(5) for α < otp(Wx) and e ∈ ω, let ze = z if there is a y such that

y ≡T x via e and z is the α-th element of Wy; and ze = ∅ otherwise.

Then there is a real in M(x) coding the sequence ⟨ze : e < ω⟩.b

Then we say that M is an inner model operator (IMO).

The intuition behind IMO is to consider M(x) as Mx ∩ P(ω), where

Mx is a transitive (set) model of ZFC, or natural fragment of ZFC. For the

hyperarithmetic degree, the associated inner model operator is the map

x 7→ LωCK
1

[x], the smallest Kripke-Platek model containing x. The con-

structible degree is given by x 7→ L[x]. The readers can find more examples

of “natural” inner model operators in7.

For the next result, we assume AD. As we only work with (Turing)

degree invariant sets and functions, we shall not distinguish d ⊆ ω and its

degree [d]. Let µ be the cone measure on Turing degrees. Given two IMOs

M,N , we say M ≤ N if M(d) ⊆ N(d) for µ-a.e. d. A jump operator is

a function f : P(ω) → P(ω) such that f(d) ≥T d for µ-a.e. d and f is

bThis item is a uniformity requirement. otp(Wx) stands for the ordertype of Wx.
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uniformly (Turing) degree invariant, i.e. there is a π : ω → ω such that for

all e < ω, x ≡T y via e ⇒ f(x) ≡T f(y) via π(e).

Theorem 2.2 (Steel6). c

(1) ≤ prewellorders inner model operators.

(2) If f(d) ∈ L[d] for µ-a.e. d, then f is a jump operator iff f(d) is a

d-master code for µ-a.e. d.

In some sense, this says that degree notions defined via inner models of the

form Lγd
[d] ∩ P(ω) (for some γd < ℵL

1 ), where d is a master code, forms

the initial segment of the hierarchies of degree notions. For IMOs of this

form, the jump of the associated degree notions is the least d-master code

not in M(d) (for d ⊂ ω), and this master code codes the relevant theory of

M(d):

Proposition 2.1 (Hodes5). If Lγd
[d] ⊭ ∆n+1-CA, then (ωα+n)-th mas-

ter code for d codes the n-quantifier theory of (Lγd
[d],∈, d).

The theories (in the language of second-order arithmetic) related to these

IMOs include ∆1
n-CA (n < ω), full CA, Σ0

α-det (α < ωCK
1 ), ∆1

1-det. Π
1
1-det is

the least theory whose associated IMO is not of aforementioned form, as this

theory is equivalent to the existence of sharps. For IMOs whose associated

theories include full comprehension, the associated jump of d ⊂ ω naturally

has to be the sharp ofMd, namely, the set coding the full (first-order) theory

of (Md,∈, d).
Finding the “right” analogue of degree notions to higher levels, in partic-

ular generalizing ∆1
1-degree to the second-order pointclasses in the context

of projective determinacy, once had been in the focus of the interest of

descriptive set theorists for some time around 1980s. Though many of the

results are folklores among Cabal people, the reader can still find a good

account on the development at the time in7. Although this is a fascinating

topic, in this paper we would like to focus on the structure of these degree

structures, which did not get much attention of descriptive set theorists, at

least judging by the literature.

cSteel’s results on jump operators is part of his investigation on Martin’s conjecture, and

further developments on this topic can be found in8 and7.
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2.2. Degree structures I: The Partial Order

In this part, we compile some of known facts about various degree struc-

tures. Most results in the literature are statements in L(R), however, L(R)V
may vary if V is different, thus the degree structures differ drastically in

these models. Later in this part, we will also briefly discuss certain degree

structures in some inner models of set theory which do not have all the

reals.

Given a definable reducibility notion ≤, let ≡ denote the induced equiv-

alence relation: x ≡ y ⇔ x ≤ y∧y ≤ x, and [a] denote the equivalence class

of a, i.e. the degree of a. For different degree notions, we use subscripts to

distinguish them.

First, it’s easy to see that the partial ordering (D ,≤), together with the

join operator, is an upper semi-lattice. And secondly, as the set {y ⊂ ω |
y ≤ x} is countable for any x ⊂ ω, (D ,≤) must have height ω1. Then the

next question is naturally about its width.

Post Problem is the question whether there are incomparable degrees,

i.e. [a], [b] such that ¬([a] ≤ [b]∨ [b] ≤ [a]). If yes, then the further question

is how large the maximal antichains could be.

Another question regarding the order type of (D ,≤) is the density ques-

tion: Is it always true that given two degrees [a] < [b], there is always a

[c] such that [a] < [c] < [b]? The negation of this question is whether

there is a gap, namely, a pair of degrees [a] < [b] such that there is no

c such that [a] < [c] < [b]. Such [b] is called a minimal cover of [a]. If

[a] = [∅], [b] is called a minimal degree. One can also further ask the ques-

tion whether the relation ≤ is well-founded, namely, if there is an infinite

strictly ≤-decreasing sequence.

Let (DT ,≤T ) denote the structure of Turing degrees and (R,≤T ) the

structure of recursively enumerable (r.e.) Turing degrees. Here are some of

their properties:

(1) Friedberg-Muchnik9,10 showed that there are incomparable degrees

in (R,≤T ). The same is true in (DT ,≤T ) (Kleene-Post11).

(2) (R,≤T ) is dense (Sacks12), while (DT ,≤T ) has minimal degrees

(Spector13, Sacks14). In fact, there are 2ω many minimal degrees,

which are also pairwise incomparable degrees.

(3) (R,≤T ) is ill-founded as it is dense. Furthermore, Harrison15 (see

also Ref. 16, III.3.6) showed that in (DT ,≤T ) there is an infinite

sequence of degrees ⟨[ai]T : i < ω⟩ such that [ai+1]
′
T ≤ [ai]T , for all

i < ω.



November 1, 2014 20:22 WSPC Proceedings - 9in x 6in HDT˙v201410 page 6

6

There are abundant results on the structural properties of (R,≤T ) and

(DT ,≤T ), for instance, minimal upper bound, exact pairs, poset-embedding

problem, high/low hierarchies, decidability problems, etc. It’s beyond our

ability to discuss all of them here, we only mention some basic ones to make

our points.

By a result of Spector17 (see also Ref. 16, II.7.2), restricted to Π1
1 reals,

there are only two ≡h-degrees, thus the analogue of (R,≤T ) for hyperarith-

metic degrees is a trivial poset, only has the degrees of ∅ and Kleene’s O.

Let (Dh,≤h) denote the structure of hyperarithmetic degrees. Adding two

mutually generic reals Cohen generic over LωCK
1

produces two incomparable

≡h-degrees. And by adding ω Cohen reals that mutually generic over LωCK
1

,

one can arrange a set of <h-decreasing sequence of reals. Thus (Dh,≤h) is

not wellfounded. With perfect set forcing, Sacks18 showed that Sacks reals

have minimal degrees in (Dh,≤h). Again, there are also 2ω many minimal

degrees, and therefore pairwise incomparable degrees in (Dh,≤h).

These forcing arguments all work for constructibility degrees (Dc,≤c)

and lead to the same conclusion. Below are some other relevant results.

(1) (Friedman19) Assume 0♯ exists. There is a Π1
2 singleton a ⊆ ω such

that 0 <c [a]c <c 0♯.d So the constructibility degrees restricted to

Π1
2 singletons is non-trivial.

(2) (Friedman19) Let X be the set of Π1
2 singletons that is ≤c-

comparable with every Π1
2-singleton. Then ≤c restricted to X is

pre-wellordered, and for every x ∈ X, the immediate <c-successor

of [x]c is [x♯]c.

(3) (Harrington-Kechris20) If d ⊆ ω is a Π1
2-singleton, then either 0♯ ≤c

a or 0♯ ≡c d♯. As a result of relativizing their argument, one can

get that [0♯]c, [0
♯♯]c, [0

♯♯♯]c, . . . are the first ω degrees of sharps –

≤c-jumps – of Π1
2 singletons.

Next let us look at the structure of ∆1
n-degrees. For that Projective

Determinacy (PD) is always assumed for the sake of convenience, we leave

it to the reader to figure out the necessary amount of “local” determinacy

needed for each statement.

Theorem 2.3 (Kechris21). e Suppose n > 0 is odd.

d0♯ is a Π1
2 singleton.

eAccording to Ref. 21, the three results below in the case n = 1 were also proved

independently by D.Guaspari and G. Sacks18.
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(1) There exists a largest thin Π1
n set, denoted as Cn;

(2) Cn is closed under ∆1
n-jump, i.e. [d]n ⊂ Cn ⇒ [d]′n ⊂ Cn;

(3) The ∆1
n-degrees of members of Cn are wellordered by [a]n ≤n [b]n ⇔

a is ∆1
n in b, in particular, the immediate <n-successor of every

∆1
n-degree is its ∆1

n-jump.

Let (Rn,≤n), n > 0 odd, be the analogue of (R,≤T ) for ∆1
n-degrees,

namely the ∆1
n-degrees for Π

1
n subset of ω. Then we have

Corollary 2.1. (Rn,≤n), n > 0 odd, is a trivial poset, consisting of only

the smallest and the largest elements – the degree of complete Π1
n set of

integers.f

It is a well known fact in set theory that R ∩ L is the largest countable Σ1
2

set if ℵL
1 < ℵ1 (by Solovay22), and there exists a largest countable Σ1

n set of

reals for every even n (by Kechris-Moschovakis23). These largest countable

sets are denoted as Cn for n > 0 even. Each C2n (n > 0) is the set of

reals in an inner model of ZFC (for instance L(C2n)). However, C2n+1 is

not the set of reals of any transitive model of ZFC. In Ref. 24, the authors

invented the Q-set in order to develop the “right” theory generalizing that

of hyperarithmetic degrees to odd levels of second order arithmetics. We

omit the definition of Q2n+1, n > 0, but only the following relevant facts

about Q2n+1.

Theorem 2.4 (Kechris-Moschovakis-Solovay24). Assume PD.

(1) Q2n+1 is the maximal countable Π1
2n+1 set downward closed under

Turing as well as ∆1
2n+1-degrees;

(2) Q2n+1 is closed under the ∆1
2n+1-jump;

(3) The ∆1
2n+1-degrees restricted to Q2n+1 forms a proper initial seg-

ment of that restricted to C2n+1;

(4) Q2n+1 = R ∩ L(Q2n+1).

Let (Dn,≤n) denote the poset of ∆
1
n-degrees. Then we have a rather simple

structure of degree in an inner model of ZFC.

Corollary 2.2 (PD). In L(Q2n+1), n > 0, (D2n+1,≤2n+1) is a wellorder-

ing of ordertype ω
L(Q2n+1)
1 .

fFor the case n = 1, Spector17 (see also Ref. 16, II.7.2) showed that every Π1
1 set of

integers is either ≤1 ∅ or ≥1 O. The case n > 1 is Theorem (3B-1) of Ref. 21.
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Of course, one can still do the forcing argument as before to produce com-

plex degree structures, however, what interests us is the simplicity of these

degree structures in inner models – notice that in L(R) the poset (D ,≤T )

has all the properties discussed earlier using forcing arguments (see p.6).

So the question is what causes, or when does, the change happen.

Very little is known about the degrees at the even levels at this point.

2.3. Degree Structures II: Posner-Robinson Problem and

Degree Determinacy

Before moving on to the next topic, we would like to discuss two more

properties of degree structures. The first one, we called it Posner-Robinson

problem.

In classical recursion theory, a fundamental task is to understand the

jump operator. In the literature, there are quite a number of jump inversion

theorems for that purpose. The Posner-Robinson theorems to be discussed

here belongs to jump inversion problems, the basic theme is that every

nontrivial real can be viewed as a jump of some other real (modulo that

real itself).

For X,Y, Z ⊂ ω, X ≤T (Y, Z) if X is recursive in the pair (Y,Z), i.e.

there is a recursive bijection π : ω → ω × ω such that X ≤T π−1[Y × Z].

(Y, Z) here is essentially the join of Y and Z.

The classical Posner-Robinson theorem (see Refs. 25,26) asserts that for

any A ≰T ∅, there is a real G such that A appears to be the Turing jump

of G modulo G, more precisely, G′ ≡T (A,G). Shore-Slaman27 generalize

this to any α-REA operators, α < ωCK
1 . More precisely, for any A /∈ I<α,

there is a real G such that G(α) ≡T (A,G), where I<α = {X ⊂ ω | ∃β <

α (X ≤T ∅(β))}. Woodin later proved (unpublished) the Posner-Robinson

Theorem for hyperarithmetic jump as well as for the sharp.

(1) For any real A /∈ LωCK
1

, there is a G ⊂ ω such that OG ≡T (A,G),

where OG is the complete Π1
1-in-G set.

(2) Assume ∀x ⊂ ω (x♯ exists). Then for any real A /∈ L, there is a

G ⊂ ω such that G♯ ≡T (A,G), where G♯ is the real coding the

theory of L[G].

We are more interested in the following less specific statement:

(PR) There are co-countable many realsA such that the Posner Robinson

equation x♯ ≡T (A, x) has a solution.
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So (DT ,≤T ), (Dh,≤h) and (Dc,≤c) all satisfies (PR). Note that in inner

model L(Q2n+1), the structure (D2n+1,≤2n+1), n > 1, is a wellordering,

and the immediate <2n+1-successor of every ∆1
2n+1-degree is its ∆1

2n+1-

jump, so the Posner-Robinson equations fail to have solutions at limit de-

grees (i.e. the limit iterates of ∆1
2n+1-jump of ∅), thus we have

Corollary 2.3. Assume V = L(Q2n+1). PR is false over (D2n+1,≤2n+1).

The second one is the Degree Determinacy Problem. Given a degree

structure (D ,≤). A set A ⊆ R is degree invariant if x ≡ y ⇒ (x ∈ A ↔
y ∈ A). A function f : R → R is degree invariant if x ≡ y ⇒ f(x) ≡ f(y).

A cone of reals is a set of the form Cx =def {u ∈ R | x ≤ u}. Let

C[x] =def {[u] | u ∈ Cx}. Degree Determinacy is the assertion that C[x],

x ∈ R, generate an ultrafilter on the poset of degrees, in other word, every

degree invariant set of reals either contains or is disjoint from a cone. Turing

Determinacy (TD) is the Turing degree version of Degree Determinacy. And

the Turing cone measure is often called Martin measure.

TD is a consequence of AD, many consequences of AD can also be derived

from TD (see Ref. 28 for some examples). In fact, all versions of Degree

Determinacy for reasonable definability degree notions all follow from AD.

Unlike structure properties discussed before, the statement of Degree De-

terminacy connects second order objects (subsets of reals) of second order

arithmetic to first order objects (bases of cones), it does not speaks about

the partial ordering directly, however, it has fundamental impact on the

global structure of degree functions. In response to Sacks’ question regard-

ing the existence of degree-invariant solution to Posts problem29, Martin

made a global conjecture that the only nontrivial definable Turing invari-

ant functions are the Turing jump and its iterates through the transfinite.

More precisely,

Conjecture 2.1 (Martin Conjecture, See Ref. 30, p.281). Assume

ZF+ DC+ AD.

(1) If f is a Turing degree invariant function and x ≰T f(x) for a cone

of x, then f(x) ≡T x for a cone of x.

(2) Degree invariant functions on R are pre-wellordered by the relation

≤M , where f ≤M g iff f(x) ≤T g(x) on a cone of x. Let f ′ be such

that f ′(x) ≡T f(x)′. Then rank≤M
(f) = α ⇒ rank≤M

(f ′) = α+1.

Although this conjecture remains open, it has already been proven to be

true when restricted to the class of uniformly Turing invariant functions.
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The conjecture were stated with AD, we believe that if it is true, TD should

suffice. We refer interested readers to Refs. 6,8 and more recent Ref. 31.

Aforementioned Posner-Robinson theorems for iterated jumps of Turing

degrees played an important role in Slaman-Steel’s proof of (1) for uniformly

Turing invariant functions.

Back to the posets discussed earlier, Degree Determinacy holds in

(DT ,≤T ), (D2n+1,≤2n+1) (n < ω) and (Dc,≤c), while it is false in

(D2n+1,≤2n+1)
L(Q2n+1), n > 0, as it is wellordered and any two disjoint

unbound subsets of this ordering witness the failure of Degree Determi-

nacy.

2.4. α-recursion theory

Another direction for generalization is to lift the notion of degrees to subset

of α where α is an arbitrary limit ordinal > ω. This is so called α-recursion

theory. In order to preserve a good collection of results in classical recursing

theory, it’s necessary to consider ordinals with sufficient closure properties,

in particular those are Σ1-admissible. Many of the classical results lift to

such α by means of recursive approximations and fine structure techniques.

A set is admissible if it is transitive and models KP set theory. This is

the same as Σ1-admissible, which is about to be defined later. An ordinal

α is admissible if Lα is admissible. ω and ωCK
1 are the first two admissible

ordinals. Let α be an admissible ordinal. Call a set α-finite if it belongs to

Lα, α-r.e. (or α-recursive) if it is Σ1-definable (∆1-definable, respectively)

over (Lα,∈) (allowing parameters). The α-jump of ∅ is accordingly given by

the complete Σ1(Lα)-set.
g For readers not familiar to theory of admissible

ordinals, Ref. 16 (Part C) and Ref. 32 are good places to look, Refs. 33,34

are good sources for advanced techniques in this area. The admissible initial

segments of L provide natural settings for generalizing classical recursion

theory, as such Lα admits an Lα-recursive bijection between Lα and α.

L provides an ideal structure for developing higher recursion theory. The

results in α-recursion theory cited in this paper all assume V = L.

Note that, although we follow the tradition and use the terminology

α-degree, it should be called something like α-∆1-degree, at least in this

paper, as it is the analogue of Turing degrees for subsets of α.

gIt should be pointed out that although [∅]′ is defined to the degree of some complete
Σ1(Lα)-set, but in general [∅](2), the double jump ([∅]′)′, does not have the same α-

degree as some complete Σ2(Lα)-set.
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Let α ∈ Ord be admissible. A set X ⊆ α is regularh if A∩β ∈ Lα for all

β < α. For A,B ⊆ α, write A ≤α B if A is ∆1-definable over (LαB
1
[B],∈, B)

(allowing parameters), where αB
1 is the least ordinal ≥ α such that Lα[B]

is admissible. A is regular iff Lα[A] = Lα. In recursion theory, amenability

is equivalent to an important dynamic property in priority argument. In a

1966 paper, Sacks established the following basics of α-recursion theory.

Theorem 2.5 (Sacks35). Let α ∈ Ord be admissible.

(1) Every α-r.e. degree can be represented by an regular subset of α.

(2) The poset of α-r.e. degrees, (Rα,≤α), is nontrivial, i.e. there exists

a non-α-recursive, regular, α-r.e. set.

By exploiting the combinatoric power of admissibility and the techniques

from fine structure theory, Sacks and his students manage to use Σ1-

admissibility to do the work of Σ2. They lifted the classical finite injury

argument to α-recursion theory and provided positive solutions to Post’s

problem in α-recursion theory

Theorem 2.6.

(1) (Sacks-Simpson36) There exist two ≤α-incomparable α-r.e. subsets

of α. Furthermore,

(2) (Shore37) There is a uniform solution to Post’s problem: There

exist m,n < ω such that for all admissible α, the m-th and n-th

lightface Σ1 subsets of α are ≤α-incomparable.

With his Σ2-blocking technique, Shore proved a splitting theorem at α,

from which a positive solution to Post’s problem also follows.

Theorem 2.7 (Shore38). Let A be α-r.e. and regular. Then there exists

α-r.e.B0 and B1 such that A = B0∪B1, B0∩B1 = ∅ and A ≰α Bi (i < 2).

Soon after the splitting theorem, Shore proved the density theorem at α,

which is also the first instance of α-infinite injury.

Theorem 2.8 (Shore39). Let A and C be α-r.e. sets such that A <α C.

Then there exists an α-r.e.B such that A <α B <α C.

This pretty much gives us the picture of (Rα,≤α). The picture in

(Dα,≤α), the global poset of α-degrees, is complicated – in general it is not

dense about [∅]′α.

hThis is Sacks’ terminology. Jensen call it amenable.
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For an ordinal α, its Σn-cofinality, n < ω, is the least ρ ≤ α such that

there is a Σn(Lα) function f mapping ρ into cofinally into α. An ordinal

is Σn-admissible if its Σ2-cofinality equals to itself. Regular cardinals are

Σn-admissible for all n < ω.

Theorem 2.9.

(1) (MacIntyre40) There exists a minimal α-degree for every countable

admissible ordinal.

(2) (Shore41) Minimal α-degrees exist for Σ2-admissible cardinal α.

These leave out the case for Σ1-admissible but not Σ2-admissible car-

dinals,i in particular α = ℵω, is still open. Although the cardinal ℵω1 is

also a such cardinal, inspired by Silver’s work43 on Singular Cardinal Prob-

lem, using the combinatorics of stationary set, Sy Friedman44 showed that

ℵω1-degree is wellordered above [0]′ℵω1
. Given a singular cardinal λ and a

degree notion at λ, we call a degree represented by a cofinal subset of λ of

ordertype cf(λ) a singularizing degree (at λ).

Theorem 2.10 (Sy Friedman44). For any singular cardinal λ with

cf(λ) > ω, the λ-degrees are wellordered above every singularizing degree,

and the immediate successor is given by the jump. In particular, ℵω1-degree

is wellordered above [0]′α.

Therefore, minimal ℵω1 -cover exists for every degree above [0]′ℵω1
. But the

rest of the picture is still not quite clear. Chong45 recently gives a partial

answer: Minimal ℵω1-degree if exists must be < [0]′ℵω1
.

Let ∆α
1 -degree Determinacy be the statement that any ∆α

1 -degree in-

variant subset of P(α) either contains or is disjoint from of a cone of subset

of α. From Sy Friedman’s theorem, immediately we have

Corollary 2.4. ∆λ
1 -degree Determinacy fails at singular cardinal λ with

uncountable cofinality.

Proof. By Sy Friedman’s theorem, the λ-degrees are wellordered above

[0]′λ. Let A be the set of all the odd iterates of λ-jumps of [∅] and B for

all the even iterates. Then A,B are disjoint and ≤λ-unbounded subsets of

Dλ, and none of them contains a cone of λ-degrees.

iMaass42 improved Shore’s result to a slight weaker assumption.
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Remark 2.1. Sy Friedman’s argument works for any degree notions with

large equivalence classes. If the degree notion under consideration is ∆n-

degree at ℵω1 , n > 1, for instance, then the ∆n-degree of ∅ already contains

a cofinal subset of ℵω1 , thus ∆n-degree at ℵω1 , n > 1, are completely

wellordered. But the α-degrees (take α = ℵω1) below [∅]′α is illfounded by

Shore’s Density Theorem for α-r.e. sets (see p.11).

The situation at ℵω is different. According to46, Harrington and Solovay

independently proved that there are incomparable ℵω-degrees above [0]′α.
j

Later, we will discuss recently developments in degree theories at count-

able cofinality singular cardinals, but focusing on what we called Zermelo

degrees, rather than ∆1-degrees, at ℵω.

There aren’t any research on the determinacy of α-degrees to date.

Although lack of anything like determinacy axioms for large ordinals in

general, our study of consequences of strong axioms like I0, whose impact

at the associated countable cofinality cardinal resembles a great deal to

that of AD at ω, in degree theory supports the view that there is a deep

connection with the complexity of degree structures and the strength of

large cardinals of the universe carries.

Next consider the Posner-Robinson Problem. There are no Posner-

Robinson results for α-degrees in the literature. Here is something close

to it. The Simpson jump theorem below is a lifting of the Friedberg jump

theorem of classical recursion theory.

Theorem 2.11 (Simpson48). The following are equivalent.

(1) ∅′ ≤α D and D has the same α-degree as some regular set.

(2) C ′ ≡α D for some regular, hyperregular C.

Informally speaking, this says that every degree [d]α ≥ [0]′α is an α-jump

of some generalized low degree. For our PR statement on p.8, it only make

sense to generalize it to cardinals. Let λ be a cardinal. PRλ is the following

assertion:

(PRα) There are co-λ many reals A such that the Posner Robinson equa-

tion x′ ≡λ (A, x) has a solution.

In other word, the Posner-Robinson equations fail at no more than λ many

places. As a consequence of Sy Friedman and Simpson’s theorems, we have

jSy Friedman promised to give the proof in Ref. 47, but Ref. 47 seems never appeared.
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Corollary 2.5. PRλ fails for ∆1-degrees at singular cardinals λ with un-

countable cofinality.

Proof. In L, singular cardinals are strong limit, so every subset of λ that

∆1 computes ∅′ is regular. By Simpson’s theorem, every degree [d]λ ≥ [∅]′λ
is a λ-jump of some [c]λ. Now suppose [d]λ is a limit iterate of λ-jump of

[∅]λ, i.e. d ≡λ c′ ≡λ ∅(α), for some limit ordinal α.

We claim that the Posner-Robinson equation for [c]λ does not have a

solution. Suppose NOT, (c, g) ≡λ g′ for some g ⊂ λ. Since g′ ≥λ ∅′, it
must be that g′ ≡λ ∅(β) for some β. Then

∅(β+1) ≡λ g′′ ≡λ (c, g)′ ≡λ (c′, g′) ≡λ (∅(α), ∅(β)).

Then we would have α = β + 1. Contradiction!

But there are at least λ+ many such [c]λ’s. This means that Posner-

Robinson equations fails at more than λ many places, so PRλ is false for

∆1-degrees.

It is also worth mentioning that, using Simpson’s jump theorem together

with another result of Shore49, Sy Friedman were able to give a quick proof

that the α-jump operator is definable in (Dα,≤α) (See Ref. 46, Theorem

6), in contrast to the sophisticated machinery used to prove the definability

of Turing jump in (DT ,≤T ) (see Ref. 27).

There are also works on α-degrees at inadmissible ordinals, which we

avoid in this paper, as it is hard to organize and fit them into the theme

we are laying out here.

Sacks and Slaman also did some ground work (see Ref. 50) for gener-

alized hyperarithmetic theory, namely generalizing the ∆1-degree at α to

the analogue of hyperarithmetic degree at α. This combines the aforemen-

tioned two directions for generalizing classical recursion theory. At this

point, as far as the questions we are interested here, not much can we say

about these generalized hyperarithmetic degree structures.

There are also so called E-recursion theory, which from a different per-

spective extends the notion of computation from hereditarily finite sets to

sets of arbitrary rank. We will not discuss these generalization due to its

little relevance to the later part of this paper (maybe we just don’t see yet).

The interests of recursion theorists and (descriptive) set theorists seem

shift away from generalizing recursion theory after mid 1990s. Until very

recent, some applications of large cardinals to degree structures emerged.

In the rest of this paper, we report the recent developments in, what we

prefer to call, higher degree theory.
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3. Higher Degree Theory

3.1. Preparation

This section surveys the results in Ref. 2. First are some definitions.

Definition 3.1 (ZFC). Suppose Γ is a fragment of ZFC such that ZFC

proves the consistency of Γ. Suppose λ is an uncountable cardinal satis-

fying 2<λ = λ. Let Hλ be the collection of sets whose transitive closure

has cardinality < λ. Fix a ∆ ⊂ λ which codes a well ordering of Hλ of

ordertype λ. For each a ⊆ λ, let αa be the least ordinal α > λ such that

Ma =def Lα[∆, a] models Γ. If there is a definable wellordering of Hλ (of

ordertype λ) in V , then there is no need to mention ∆ explicitly.

For any two subsets a, b ⊆ λ, set a ≤Γ b if and only if Ma ⊆ Mb. This

gives rise to a degree notion, which we call Γ-degree. To each a ⊆ λ, the

Γ-jump of a, a′Γ, is the theory of Ma, which is identified as a subset of γ.

For instance, hyperarithmetic degree is KP-degree, where KP is Kirpke-

platek set theory. For this section, we fix Γ = Z, Zermelo set theory,

i.e. ZF−Replacement. The point is that Z is sufficient for proving Covering

lemmas for fine structure models. In this case, the ordinal αa is called the

Zermelo ordinal for a. The above definitions are given under ZFC. In

general, suppose T0 is our working theory, and T1 is a consistently weaker

fragment of T0 (i.e. the existence of minimal models of T1 can be derived

from T0), then one can define a degree notion for T1 under T0 as above.

To illustrate our point, we shall only cross examine Z-degrees at countable

cofinality singular cardinals in various large cardinal inner models.

Recall that in §2.2 and §2.3, we propose to consider the following struc-

tural properties of degree posets.

(1) (Post Problem). Are there two incomparable degrees, i.e. two sets

a, b ⊆ λ such that a ≰ b and b ≰ a? One can also ask a relativized

question, i.e. incomparable degrees above a given degree. A set

of pairwise incomparable degrees form an antichain. A related

question is the size(s) of maximal antichains, if exist.

(2) (Minimal Cover). Given a degree [a], is there a minimal cover for

[a], i.e. a [c] > [a] such that there is no b ⊆ λ such that [a] < [b] <

[c]?

(3) (Posner-Robinson). Is it true that for almost all (co-λ many) x ⊆
λ, the Posner-Robinson equation for x has a solution, i.e. ∃g ⊆
λ [(x, g) ≡ g′]?
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(4) (Degree Determinacy). Is it true that every degree invariant subset

of P(λ) either contains or is disjoint from a cone?

Among the four questions, the first one is about antichains, therefore is

related to the width of the degree poset, the second is about the organization

of degrees, like whether the degrees are dense or discrete, the third is about

the internal understanding of the degrees, such as what information do the

degrees carry, and the last is more or less a question about the connection

between the members of P(λ) and the subsets of P(λ), a bridge between

these two types.

The first three problems are first order questions regarding P(λ) (more

frequently (Vλ+1,∈) in practice). However, for the degree determinacy

problem, it makes more sense to state it for degree invariant subsets of

P(λ) in L(P(λ)), just like the situation of Turing Determinacy for sets of

reals in L(R). So it is more appropriate to think the degree determinacy

problem as a question quantifying over second order sets in L(P(λ)) (or

L(Vλ+1) in practice). Since Vλ+1 varies in different universes, answers to

degree theoretical questions, such as these four questions, often vary in

different V ’s. We will give an example on this matter in §4.1.
These are certainly important degree theoretic questions. This list,

however, is by no means meant to be comprehensive, it is merely a list of

questions that at this point we are confident to answer.

At a strongly inaccessible cardinal λ (even regular cardinal satisfying

2<λ = λ), the degree notions in general are similar to their counterparts

at ω, since most usual constructions for degrees at ω, priority argument,

local forcing argument, et al, can be carried out at λ with very few changes.

So the degree structures for an analogue degree notion at λ is very much

like its counterpart at ω, not much new insight is obtained there. At these

cardinals, the answers to the first three questions are all “Yes”, as in the

case of ω. However, for the Degree Determinacy question, the answer on

the contrary is very likely to be “No”. This will be discussed in §3.7.
Also, as discussed in §2.4, Sy Friedman settled the situations at singular

cardinals of uncountable cofinality, our focus will be mainly on degrees at

singular cardinals of countable cofinality. We shall analyze Zermelo degree

structures in some fine structure extender models. The reason for working

with fine structure models will be discussed in §4.1.
Our main tool is Covering lemmas in various cases, Mitchell’s handbook

article (Ref. 51) is the main reference for that. Schimmering’s introductory

article (Ref. 52) is good enough for most fine structure contents in this
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paper, if the reader are not familiar with fine structures. We also assume

familiarity of Prikry-type forcings, for which Gitik’s handbook article (Ref.

53) is recommended.

3.2. Zermelo degrees in L

Let us start with Woodin’s observation in L about Zermelo degrees at ℵω.

The argument is a simple application of the Covering Lemma for L. First

recall Jensen’s Covering Lemma for L.

Lemma 3.1 (Covering Lemma for L, see Refs. 51,54). Assume 0♯

does not exist. Then for every set x of ordinals, there is an y ∈ L such that

x ⊆ y and |x| = |y|+ ω1.

Theorem 3.1 (Shi2). Assume V = L. Let λ be a singular cardinal with

cf(λ) > ω. Let x ⊂ λ be cofinal in λ and otp(x) = cf(λ). Then the Zermelo

degrees at λ above [x]Z are well ordered. In particular, Zermelo degrees at

ℵω are well ordered.

Proof. The argument is a simple application of the Covering Lemma for

L. Suppose a ⊆ λ and a ≥Z x. Consider M(a), the minimal Zermelo model

containing a. Notice that M(a) has the same reals as V and sharps are

absolute between transitive models containing ω1, therefore Ma contains no

sharps. In Ma, as x ∈ Ma, every z ⊂ λ can be identified with a countable

subset of λ. By Covering in Ma, a is covered by a b ∈ LMa = Lαa such

that |b| = |a| + ω1. As Ma and Lαa agree on P(ω1), |b|Lαa = ω1. Let

π : b → |b|Lαa be a bijection in Lαa . Then π[a] ∈ P(ω1) ⊆ Lαa . It

follows that a can be computed from b in Lαa
. (This is essentially the

proof of Theorem V.5.4 in Devlin55.) Thus Ma = Lαa . This means that

the mapping [a] 7→ αa is injective. Therefore Zermelo degrees at λ are well

ordered above [x]. Since the sequence {ℵn | n < ω} is Σ1-definable over

Lℵω , Zermelo degrees at ℵω are fully well ordered.

Immediately, we have the following answers to the four questions. Enumer-

ate {αx | x ⊂ λ} in increasing order, let αη be its η-th member. Say [x] is

a successor (resp. limit) degree if αx = αη for some successor (resp. limit)

ordinal η.

Corollary 3.1. Assume V = L. Let λ be a singular cardinal and cf(λ) =

ω. Then
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(1) There are no incomparable Zermelo degrees above any singularizing

degree. In particular, every two Zermelo degrees at ℵω are compa-

rable.

(2) Every Zermelo degree above any singularizing degree has a unique

minimal cover. Again this holds for every Zermelo degree at ℵω.

(3) PRλ is false for Zermelo degrees at λ.

(4) Degree Determinacy fails for Zermelo degrees at λ.

Proof. (1) and (2) are immediate from this wellordered structure, so the

answers are “No” for the first question and “Yes” for the second. However,

for the multi-minimal-cover question, the answer is “No”.

In this wellordered structure, Posner-Robinson equation is equivalent

to the jump inversion equation, namely, (∃G)(x ≡Z JZ(G)). Notice that

whenever there is a new subset of λ is constructed, say in Lα+1\Lα, we have

Lα+1 |= “|Lα| = λ”. Therefore, a successor degree knows that the minimal

Zermelo model associated to its (immediate) predecessor degree has size λ,

therefore can compute the jump of its predecessor. So the jump operator in

the degree structure coincides with the successor operator in the well-order.

Thus limit degrees can not be the jump of any degree. There are λ+ many

limit degrees, therefore the answer for (3), the Posner-Robinson question,

is “No”.

(4) follows from the fact that there are two disjoint sets of degrees

that are unbounded in this wellorder, which witness the failure of degree

determinacy.

Here L is viewed as the core model for the negation of the large cardinal

axiom that 0♯ exists. The core of the argument is the Covering lemma for L.

The same form of Covering Lemma holds for inner models between L and

L[µ] (the inner model for one measurable cardinal), which include models

like L(0♯), L(0♯♯) etc., and Dodd-Jensen’s core model KDJ, the core model

below a measurable cardinal. For instance,

Lemma 3.2 (Covering Lemma for KDJ, see Refs. 51,56). Assume

that there is no inner model for one measurable cardinal and the Dodd-

Jensen core model KDJ exists. Then for every set x of ordinals, there is a

y ∈ KDJ such that x ⊆ y and |x| = |y|+ ω1.

These models can be obtained by (proper) partial measures using Steel’s

construction. For these models, the same covering argument works. The

point is that in these inner models, the minimal model of the form Ma,

a ⊆ λ, λ a countable cofinality singular cardinal, is always an initial segment
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of the core model. Thus Zermelo degrees for countable cofinality singular

cardinal are always well ordered above the singularizing degree, the same

as in L.

3.3. Zermelo degrees in L[µ]

Next, consider L[µ], the canonical model for one measurable cardinal. The

Covering Lemma for L[µ] starts to be different.

Lemma 3.3 (Covering Lemma for L[µ], see Refs. 51,57).

Assume that 0† does not exist but there is an inner model with a mea-

surable cardinal, and that the model L[µ] is chosen so that κ = crit(jµ), the

least ordinal moved by the elementary embedding jµ given by µ, is as small

as possible. Here jµ denote the canonical embedding associated to µ. Then

one of the following two statements holds:

(1) For every set x of ordinals there is a set y ∈ L[µ] with x ⊆ y and

|y| = |x|+ ω1.

(2) There is a sequence C ⊆ κ, which is Prikry generic over L[µ], such

that for all sets x of ordinals there is a set y ∈ L[µ,C] such that

x ⊆ y and |y| = |x| + ω1. Furthermore, the sequence C is unique

up to finite initial segments.

But the difference does not affect the structure of Zermelo degrees at

cardinals other than κ.

Theorem 3.2 (Shi2). Assume V = L[µ]. Zermelo degrees at countable

cofinality singular cardinals are well ordered above any singularizing degree.

Moreover, the successor of a degree above any singularizing degree is its

jump.

Proof. Reorganize L[µ] as L[E] using Steel’s construction, where E is a

sequence of (possibly partial) measures. Here we omit the predicate for the

extender: When we say Lα[E] (α ∈ Ord or α = Ord), we often refer to the

structure ⟨Lα[E↾α],∈, E↾α⟩ or ⟨Lα[E↾α],∈, E↾α,E(α)⟩. A crucial point of

using Steel construction is the acceptability condition, which says for any

γ < α,

(Lα+1[E] \ Lα[E]) ∩ P(γ) ̸= ∅ =⇒ Lα+1[E] |= |α| = γ.

Here are some benefits of having the acceptability condition:

(1) P(γ) ∩ L[E] = P(γ) ∩ Lγ+ [E] for any cardinal γ,
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(2) Suppose λ is a cardinal, a, b are unbounded subsets of λ. If b ≤Z a

and αb < αa, then [b]′Z ∈ Ma, hence [b]′Z ≤Z a.

Fix an a ⊂ λ in L[E], consider Ma in L[E]. First suppose λ > κ. As

Ma and L[E] agree up to λ, arguing as in L, we get that Ma, a ⊆ λ, are

initial segments of L[E]. Now suppose λ < κ. As Ma has the same reals as

V , Ma does not have 0†, so Ma could have at most one full measure.

Case 1. Ma has no full measure. In this case, as the Covering Lemmas

for inner models below one measurable have the same form as the Covering

Lemma for L (for instance, see the Covering Lemma for KDJ on page 19),

applying the corresponding covering lemma, we get that the minimal models

Ma, a ⊂ λ, are the same as its own core model, namely KMa = Ma. Run

the comparison process forMa againstKV = L[E]. Ma is iterable and since

Ma agrees with L[E] up to λ, iteration maps used during the comparison

do not move Ma, thus Ma is an initial segment of KV = L[E].

Case 2. Ma has one full measure, say

Ma |= µ′ is a measure at some γ > λ.

Ma satisfies the hypothesis of Covering Lemma for one measurable. Apply

the Covering in Ma, then there are two cases, either

(1) a is covered by a set y ∈ (L[µ′])Ma with |y| = |a|+ ℵ1, or

(2) a is covered by a set y ∈ (L[µ′, C])Ma with |y| = |a| + ℵ1, where

C is a Prikry generic over (L[µ′])Ma . Such C is unique up to finite

differences.

Notice that λ < γ and Prikry generics do not add new bounded subsets. a

is a bounded subset of γ, so it must be case 1 – the covering set y for a is

in (L[µ′])Ma . Thus Ma = L[µ′]Ma = Lαa [µ
′]. Run the comparison for Ma

against KV . Arguing as before, Ma is an initial segment of KV = L[E].

So either case, we have that Ma, a ⊂ λ, are initial segments of L[E],

exactly the same picture as in L – Zermelo degrees at λ in L[E] are well

ordered above every singularizing degrees via their Zermelo ordinals. The

“moreover” clause follows from the acceptability condition. This completes

the proof.

It is not difficult to see that this argument can be adapted to show

the result for core models of finitely many measurable cardinals. So Corol-

lary 3.1 should also include large cardinal core models beyond L up to core

models for finitely many measurable cardinals.
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3.4. Zermelo degrees in Mitchell models for an ω-sequence

of measures.

New picture starts to emerge in the canonical model for ω many measurable

cardinals, L[µ̄], where µ̄ = ⟨µn : n < ω⟩ and each µn is a measure on κn

and κn < κn+1, n < ω.

Consider V = L[µ̄]. Again we view L[µ̄] as built with (partial) measures

using Steel’s construction. Let κω = supn κn. Let λ be a countable singular

cardinal. It is not difficult to see that, when λ > κω or λ < κω, arguing

as in L[µ], Zermelo degrees at λ is well ordered above the singularizing

degree. The new picture appears at λ = κω. The Covering Lemma for L[µ̄]

is similar to that of L[µ], except that C in the second case now is a system

of indiscernibles C = ⟨Cn : n < ω⟩ with the following property:

(1) Each Cn ⊂ κn is either finite or a Prikry sequence;

(2) C as a whole is a uniform system of indiscernibles, i.e.

(∀x̄ ∈ L[µ̄]) (∀n < ω)(xn ∈ µn) =⇒ |
∪
{Cn−xn | n < ω}| < ω.

In fact, for any function f : ω → ω ∪ {ω} with infinite support, i.e. the

set supp(f) =def {i ∈ ω | f(i) > 0} is infinite, one can use the following

variation of diagonal Prikry forcing Pf
µ̄ to produce an indiscernible system

such that |Cn| = f(n):

• The conditions of Pf
µ̄ are pairs (ā, Ā) such that each ai ⊂ κi, and

|ai| ≤ f(i), each Ai ∈ µi, for i < ω, moreover,
∪

iai is finite.

• The order is defined by (ā, Ā) ≤ (ā′, Ā′) iff a(i) ⊇ a′(i), A′(i) ⊂
A(i), and ai − a′i ∈ Ai for i < ω.

These discussion about system of indiscernibles can be found in §4 of

Mitchell’s handbook article (see Ref. 51). The proof of classical Mathias

condition for characterizing diagonal Prikry sequence for Pµ̄ can be easily

adapted to show the Pf
µ̄-version of Mathias condition.

Proposition 3.1 (Mathias Condition for Pf
µ̄). Suppose M is an inner

model of ZC, Zermelo set theory plus choice, µ̄ ∈ M , f and Pf
µ̄ are defined

in M as above. Suppose G ∈
∏

n∈ω(κn)
f(n). Then G is a generic sequence

for Pf
µ̄ over M if and only if for any sequence Ā ∈ M such that An ∈ µn

for n < ω, there is an m < ω such that G(n) ⊂ An, for n ≥ m.

To simplify the presentation of our next theorem, we use the standard

diagonal Prikry poset, namely Pµ̄ = Pf
µ̄ with the constant function f(n) =
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1, for n < ω. With this diagonal Prikry forcing, one can use a single

diagonal Prikry sequence C in case (2) of the Covering Lemma for L[µ̄].

Lemma 3.4 (Covering Lemma for L[µ̄], 51). Assume the sharp of

L[µ̄] does not exist and there is an inner model containing ω measur-

able cardinals. Let L[µ̄] be such that every κω = supn<ω κn, where each

κn = crit(jµn), is as small as possible. Then one of the following two

statements holds:

(1) For every set x of ordinals there is a set y ∈ L[µ̄] with x ⊆ y and

|y| = |x|+ ω1.

(2) There is a sequence C ⊆ κ, which is Pµ̄-generic over L[µ̄], such

that for all sets x of ordinals there is a set y ∈ L[µ̄, C] such that

x ⊆ y and |y| = |x| + ω1. Furthermore, the sequence C is unique

up to finite differences.

Using generics for the standard diagonal Prikry forcing as the sys-

tem of indiscernibles, we describe the structures of Zermelo degrees at

countable cofinality singular cardinals in L[µ̄] as follows. For this sub-

section, we say an ordinal α > λ is a Zermelo ordinal for a ⊆ λ if

Lα[µ̄, a] |= Zermelo set theory. For each ordinal η, let βη denote the η-

th Zermelo ordinal (for ∅).

Theorem 3.3 (Shi2). Assume V = L[µ̄], where µ̄ = ⟨µn : n < ω⟩, each
µn is a measure on κn. Let κω = supn κn. Suppose λ is a singular cardinal

of countable cofinality.

(1) If λ ̸= κω, then the Zermelo degrees at λ are wellordered above any

singularizing degree;

(2) If λ = κω, consider only Zermelo degrees at λ above the degree of

µ̄, identifying µ̄ as a subset of λ. Then

(a) {αa | a ⊂ λ} = {βη | η < λ+ ∧ βη > limξ<η βξ}.
Therefore Zermelo degrees at λ above the degree of µ̄ are

prewellordered via their Zermelo ordinals, i.e. for a, b ⊂ λ,

the ordering ≼ given by [a] ≼ [b] ⇔ αa ≤ αb prewellorders the

Zermelo degrees at λ above the degree of µ̄.

(b) For each η < λ+, let αη be the η-th member of {βη | βη >

limξ<η βξ}, let Aη be a subset of λ that codes the sequence

⟨αξ : ξ < η⟩, and Cη be the set of diagonal Prikry generic

sequences for Pµ̄ that are Lαη [µ̄]-generic.
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Then Zermelo degrees at λ (above the degree of µ̄) whose Zer-

melo ordinals equal to αη are exactly the degrees given by

Aη ⊕ Cη = {(Aη, C) | C ∈ Cη ∪ {∅}}.

Although we use the standard diagonal Prikry sequence to state this

theorem, the argument works for every Pf
µ̄. So for each f as on p.21, every

Zermelo degree can be represented by a diagonal Prikry sequence for Pf
µ̄.

Compared with previous pictures, though not eventually well ordered,

this is still a rather simple structure. We have definite answers to the four

questions.

Corollary 3.2. Assume V = L[µ̄], and µ̄, κ̄, λ be as in Theorem 3.3. Let

λ = supn κn. Consider the Zermelo degrees at λ above the degree of µ̄.

(1) There are incomparable Zermelo degrees.

(2) No Zermelo degree has a minimal cover.

(3) Posner-Robinson Theorem for Zermelo degrees at λ is false.

(4) Degree determinacy for Zermelo degrees at λ is false.

The proof is rather sophisticated, we refer the reader to Ref. 2 Corollary

3.1 for the details.

For (1), a further question is whether there is a size λω antichain of Zer-

melo degrees. As there are no minimal degrees, the usual way of getting 2ω

many incomparable degree at ω by constructing 2ω many minimal degrees

no longer works here.

Note that if Ci ∈ Cη, i = 0, 1, are such that C0(n) ⊂ C1(n) for all

n < ω, and C1(n) \ C0(n) ̸= ∅ infinitely often, then C0 <Z C1. As all

the models of the form MAη,C , C ∈ Cη have the same reals, it follows

that the poset (P(ω)/Fin,⊆∗), where [a] ⊆∗ [b] iff a \ n ⊆ b \ n for some

n < ω, can be embedded into Zermelo degrees. In particular, there are

infinite descending sequences of Zermelo degrees. However, as Zermelo-

jump increases associated Zermelo ordinals, there is no Harrison-type (see

Ref. 15, or Ref. 16 III.3.6) descending sequence, i.e.

Corollary 3.3 (Shi2). Assume V = L[µ̄], and µ̄, κ̄, λ be as in Theo-

rem 3.3. At λ, there are infinite descending sequences of Zermelo degrees,

but there is no infinite sequence ⟨[ai]Z : i < ω⟩ such that [ai+1]
′
Z ≤Z [ai]Z.

The theorem below says that over the structure (DZ,≤Z), the set of

degrees represented by the sets coding the Zermelo ordinals, and the relation

that two sets share the same Zermelo ordinal, are definable.
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Theorem 3.4 (Shi2). Assume V = L[µ̄], and µ̄, κ̄, λ be as in Theo-

rem 3.3. The following are definable over the structure (DZ, <Z):

(1) I = {[Aη]Z | Aη ⊂ λ codes ⟨αi : i < η⟩, η < λ+}.
(2) R = {([a]Z, [b]Z) | a, b ⊂ λ, αa = αb}.

3.5. Zermelo degrees in models beyond ω many measurable

cardinals.

Let us look at Mitchell models with more measurable cardinals. In Ref.

58 (Theorem 4.1) Mitchell showed that if there is no inner model with

an inaccessible limit of measurable cardinals then, as in the Dodd-Jensen

covering lemma, for each minimal Zermelo model Ma, there is a single

maximal system of indiscernibles C which can be used to cover any set

x ⊂ λ in Ma. A fair amount of analyses above can be carried out at ω-limits

of measurable cardinals below the least inaccessible limit of measurable

cardinals, if there exists one. Therefore, the pictures at those places are

rather similar to the one at κω in L[µ̄].

Once we past models with inaccessible limit of measurable cardinals, the

systems of indiscernibles are no longer unique – may depend on the set of

ordinals to be covered (see Ref. 51, p.1555) – and are extremely difficult to

analyze. However, Yang proved the existence of minimal covers at ω-limit

of certain measurable cardinals.

Theorem 3.5 (Yang1). Suppose ⟨κn : n < ω⟩ is an increasing sequence

of measurable cardinals such that each κn+1 carries κn different normal

measures, n ∈ ω, and λ = supn κn. Let U denote this matrix of normal

measures, and let W be any subset of λ that codes ⟨Vλ,∈,∆, {κi | i < ω},U⟩,
where ∆ ⊂ λ and codes a well ordering of Vλ of ordertype λ. Then there is

a minimal cover for the Zermelo degree of W .

Yang’s result holds for ∆1-degrees and any larger degree notions at λ, here

we only state it for Zermelo degrees. This result can be relativized to any

degrees above that of W . This implies that for instance, in the Mitchell

model for o(κ) = κ,k a new picture appears at the λ in the hypothesis –

there are minimal covers (over almost every degree). Yang’s forcing in fact

produces a large perfect set (has size λω) of subsets of λ that are minimal

above W . As every degree contains only at most λ many of them, thus the

kThis is not the minimal inner model for Yang’s hypothesis, however it has the “shortest”

o-expression.
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size of antichains of Zermelo degrees at this λ can be as large as possible.

So we have “Yes” to the first two questions. We don’t know the answers

to Posner-Robinson and Degree Determinacy at this λ, but speculate “No”

for both of them.

3.6. The picture from I0

The analyses above relies heavily on the fine structure theory, especially

covering and comparison. Once past Mitchell models, we are out of comfort

zone. Though there are still some variations of covering lemmas for inner

models past Mitchell models, very little have we derived from them for

the structures of Zermelo degrees in those models. But the emerging new

pictures suggest that larger cardinals give us more power to create rich

degree structures.

In the later part of this paper, we consider the degree structures at

countable cofinality singular cardinals from the other extreme – looking

at the strongest large cardinal, Axiom I0. I0 asserts the existence of an

elementary embedding j : L(Vλ+1) → L(Vλ+1) with critical point below λ.

This λ is an ω-limit of very large cardinals, it satisfies Yang’s hypothesis.

Therefore at this λ, there are a large perfect set of minimal covers for every

degree (above the degree of Yang’s W set). Let E(L(Vλ+1)) denote the set

of all elementary embeddings that witness I0 at λ.

Corollary 3.4. Assume ZFC and E(L(Vλ+1)) ̸= ∅. Let W be as in Theo-

rem 3.5. Consider the Zermelo degrees at λ above the degree of W .

(1) There are incomparable Zermelo degrees. In fact, there are an-

tichains (of Zermelo degrees) of size λω.

(2) No Zermelo degree has a minimal cover. In fact, every Zermelo

degree has λω many minimal covers.

Moreover, as applications of Generic Absoluteness Theorem in I0 theory

(see Refs. 59,60) we have the following following results regarding Posner

Robinson problem and Degree determinacy at λ for Zermelo degrees.

Theorem 3.6 (Shi2). Assume ZFC and E(L(Vλ+1)) ̸= ∅. Then for every

A ∈ Vλ+1, and for almost all (i.e. except at most λ many) B ≥Z A, the

Posner-Robinson equation for B has a solution, i.e. there exists a G ∈ Vλ+1

such that (B,G) ≡Z G′, where G′ denote the Zermelo jump of G.

The proof in fact shows something stronger, ≤Z here can be replaced by

∆1-reducibility for subsets of λ. The argument works if G′ is replaced by



November 1, 2014 20:22 WSPC Proceedings - 9in x 6in HDT˙v201410 page 26

26

any reasonable jump operator at λ. This theorem says that PRλ holds for

Zermelo degrees of subsets of λ above any A ⊂ λ.

For the degree determinacy problem, we have an almost negative answer.

Theorem 3.7 (Shi2). Assume ZFC and j ∈ E(L(Vλ+1)) ̸= ∅. Let κ =

crit(j) and suppose Vλ |= “the supercompactness of κ is indestructible by

κ-directed closed posets”. Then L(Vλ+1) |= Degree Determinacy fails for

Zermelo degrees at λ.

Although the theorem uses an additional indestructibility requirement (see

Ref. 61), the hypothesis of this theorem is equiconsistent with ZFC + I0
(see Ref. 2).

3.7. A conjecture

We continue the discussion on degree determinacy problem in this subsec-

tion. We have seen the structures of Zermelo degrees at countable cofinality

strong limit singular cardinals in the early subsections. Now consider the

situations for singular (strong limit) cardinals of uncountable cofinalities as

well as for regular cardinals. The case that λ is a strong limit singular car-

dinal of uncountable cofinality follows from the following result of Shelah

(see Ref. 62).

Theorem 3.8 (Shelah62). Assume ZFC. Then for every strong limit sin-

gular cardinal λ of uncountable cofinality, L(P(λ)) |= Axiom of Choice.

Using the choice, one can select in L(P(λ)) two disjoint unbounded set of

degrees, which witness the failure of degree determinacy for Zermelo degrees

at λ.

On page 16, we mentioned that at regular cardinals, answers to the

degree determinacy questions are alway “No”. Here we discuss this matter.

For regular cardinals, we first look at the case that λ is regular and satisfies

the weak power condition, i.e. 2<λ = λ. Jensen’s lemma (see Ref. 63) can

be generalized to such λ – Jensen’s proof in the context of ω can be literally

adapted for such λ. More precisely, we have the following lemma.

Lemma 3.5 (Jensen63). Assume ZF+λ+-DC. Suppose λ > ω is a regu-

lar cardinal and 2<λ = λ. Suppose a ⊂ λ and A ⊂ (λ, λ+) is a scattered set

(i.e. α > sup(A ∩ α) for every α ∈ A) such that every α ∈ A is a Zermelo

ordinal for a. Suppose otp(A) ≤ λ. Suppose B ⊆ A and otp(B) = otp(A).

Then there is a b ⊂ λ such that b ≥Z a and B is the set of the α-th Zermelo

ordinal for b, α < otp(A).



November 1, 2014 20:22 WSPC Proceedings - 9in x 6in HDT˙v201410 page 27

27

Let Detλ(DZ) denote the statement of degree determinacy for Zermelo

degrees. If Detλ(DZ) were true in L(P(λ)), then applying this lemma

to A ⊂ λ that is scattered and otp(A) = ω1, one would get a countably

additive coherent measure on [λ+]ω1 . This implies the determinacy for sets

of reals that are ω1-Suslin, hence there is no sequence of distinct reals of

length ω1, contradicting to the assumption that Vλ is wellordered. So in

ZFC models, Detλ(DZ) fails in L(P(λ)) for regular cardinal λ such that

2<λ = λ. Let ZFC−ϵ be a fragment of ZFC sufficient for proving this.

Now consider the case that λ is regular but 2<λ > λ. If degree deter-

minacy for Zermelo degrees at λ were true in L(P(λ)), then there would

be a (in fact a cone of) u ⊂ λ and an ηu < λ+ such that

Lηu [u] |= ZFC−ϵ + “L(P(λ)) |= Detλ(DZ)”.

However Lηu [u] “thinks” 2<λ = λ. This is because if x ⊂ δ < λ, then

there are α, β < λ such that x ∈ Lα[u ∩ β]; then it follows that |P(δ)| ≤
λ. Therefore Lηu [u] |= “2<λ = λ”. But according to the discussion in

the last paragraph, it must be that Lηu [u] |= “L(P(λ)) |= ¬Detλ(DZ)”.

Contradiction!

This concludes the case that λ is regular. So at least, we know that

Theorem 3.9. If λ > ω is a regular cardinal or a strong limit singular

cardinal of uncountable cofinality, then L(P(λ)) |= ¬Detλ(DZ).

In light of Shelah’s result that L(P(λ)) is a model of choice if λ is

a strong limit singular cardinal and cf(λ) > ω, together with evidences

for degree structures at other cardinals, the author (see Ref. 2) makes the

following conjecture

Conjecture 3.1 (ZFC). Let λ be any uncountable cardinal. Then Degree

Determinacy for Zermelo degrees at λ is false in L(P(λ)).

At this point, very little is known about singular cardinals that are not

strong limit.

4. Remarks

Now is the time for final comments.

4.1. Why inner models?

The first remark is regarding the question why we focus on degree structures

in inner models.
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Yang’s theorem and those I0 results are stated under large cardinal

assumption, it seems to be natural to study the consistency strength of

those degree theoretical properties. For instance,

• What is the consistency strength of having minimal covers as in

Yang’s Theorem (see page 24)?

• What is the consistency strength of having Posner-Robinson result

as in Theorem 3.6?

These are interesting questions in its own, especially for set theorists. Prop-

erties regarding generalized recursive degree are subjects of α-recursion

theory, which concerns only degrees in L (see Ref. 16). While we investi-

gate structural properties of higher level degree notions, it also makes more

sense to consider them in canonical settings such as fine structure extender

models. This is because ZFC alone, even plus large cardinal assumption,

though may decide certain individual properties, can hardly determine the

structure of degree posets. For instance, consider the structure of Zermelo

degrees at ℵω.

Example 4.1. Assume ZFC+ GCH and plus some large cardinal assump-

tion, say a measurable cardinal κ of Mitchell order o(κ) = κ++ plus a

measurable cardinal κ′ > κ. With a small forcing, one can arrange that

in the generic extension κ = ℵω, GCH remains true below ℵω, 2
ℵω = ℵω+2

while the measurability of κ′ is preserved (This combines results of Woodin

and Gitik, see Ref. 64). But then the Zermelo degree posets at ℵω can

not be well ordered (even prewellordered) in the generic extension, as every

degree has only ℵω many predecessors in the degree partial ordering. This

is in contrast to the pictures in L[µ] (see Theorem 3.2, p.19).

It is the well organized structure of L[µ] (organized using Steel’s con-

struction) that forces the degrees to line up in a well ordered fashion. The

existence of measurable cardinals alone (more precisely, without appealing

to forcings) is not strong enough to create “untamed” degrees – incompa-

rable degrees, unless we go up to the ω-limit of measurable cardinals (see

Corollary §3.2) and beyond.

4.2. Degree structures in canonical models

In §3, we analyzed Zermelo degree structures in several canonical models

or under some stronger large cardinals. An immediate conclusion is that

larger cardinals create more complicated Zermelo degree structures at some
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critical cardinals (more precisely, ω-limit of certain large cardinals). In

other words, in these models the complexity of the Zermelo degree structure

at these critical cardinals reflects the strength of the relevant cardinals.

The next natural step is to look into larger cardinal axioms and hope

to find more complicated degree structures. For instance, what degree

structures can one see at an ω-limit of strong cardinals, or Woodin cardinals,

or supercompact cardinals, etc.? During the process, it would be interesting

in itself to extend the question list on page 15 to differentiate these degree

structures, in a way that the natural order of large cardinals sorts these

structural properties into layers.

At the mean time, the pictures of Zermelo degree structures in L and

through up to the core models for finitely many measurable cardinals

strongly suggest that in any reasonable inner model, at every singular car-

dinal λ with cf(λ) = ω and below the least measurable, the Zermelo degrees

are wellordered above some degree. In particular,

Conjecture 4.1. In all fine structure extender models the Zermelo degree

structures at (their) ℵω are all (eventually) wellordered and the immediate

successor is given by Zermelo jump.

Combining these remarks, one can see that the complexity of a partic-

ular degree structure does not necessarily gives the large cardinal strength

of the core model, but it does indicate the levels of the associated cardinals

that the structure resides. In other words, from the variety of the types of

degree structures that appear in a core model one can tell the lower bound

of the large cardinals the given core model carries. This is a complete new

perspective for looking into large cardinal axioms.

4.3. New techniques are needed

Our proofs for L and up to L[µ̄] use heavily one particular form of covering

lemmas, we expect that that analysis will work as far as that form of Cov-

ering Lemma holds, namely at least up to Mitchell models for sequences of

measures.

Next key step is to check whether in M1, the minimal iterable class

model for one Woodin cardinal, the scenarios described above continue.

Conjecture 4.2. In M1, the Zermelo degrees at ℵω are well ordered.

Moreover, we expect that this to be true for singular countable cofinality

λ’s that are above or in-between critical large cardinals, as this fits well
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with the intuition that universes of small large cardinals are initial segment

of universes of larger cardinals.

Climbing up the cardinal ladder, although new pictures may appear

at certain cardinals, as well as degree structures in between these special

cardinals, as what we have just discussed about ℵω, it seems reasonable to

conjecture that the structure at a particular cardinal once appear in a core

model for certain large cardinal axiom, will stay unchanged as we move up

to core models for larger cardinals, assuming they exist.

However, as the classical form of Covering is not available for M1 and

larger core models, deeper understanding of their structuresl and new tech-

niques are necessary for the investigation of degree structures in these mod-

els.

Besides the classical fine structure models, recent developments in de-

scriptive inner model theory (see for example Sargsyan’s survey paper 66)

suggest a much advanced and daring path of investigation – looking into

higher degrees in the HODs of determinacy models, as determinacy gives

a whole family of canonical models – the ones given by Solovay hierar-

chy. Assume AD+ + V = L(P(R)), it’s believed that HOD is a canonical

model. Although it’s still an open question whether AD+ + V = L(P(R))
proves that HOD is a fine structure model, HOD of AD+ + V = L(P(R))
models are believed to be fine structure models at least all the way up to

Θ =def sup{α | ∃f : R onto−−−→ α} (see Steel 67). Based on this understanding,

the first test question would be

Question 4.1. Assume AD+ + V = L(P(R)). Look at Zermelo degrees

within HOD at (ℵω)
HOD, are they (eventually) well ordered?

This is a great question! One can not expect to solve this problem with

only Covering, one would need mouse analysis for arbitrary AD+ models.

But the mouse analysis technique is still in its development, there is very

little on this matter that is valuable to say at this point.

4.4. Evidences of the impact of large cardinals on

structures of degrees

Next we leave the canonnical models, look at the impact of large cardi-

nal alone on the structures of degrees. The theme is that stronger large

lSo far the best result on constructing core models is due to Neeman (see 65), who

produces a core model for a Woodin limit of Woodin cardinals.
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cardinal yields more complicated degree structures at certain strong limit,

countabe cofinality, singular cardinals. We have seen two evidences, one

is the prewellordered degree structure in Theorem 3.3, where you can find

incomparable degrees (see Corollary 3.2), the other is Yang Sen’s minimal

cover result quoted on page 24.

In Ref. 2, it is shown that I0, one of the strongest large cardinal hy-

potheses, entails a richer degree structures at a certain strong limit λ with

countable cofinality – it gives positive answers to Post problem, minimal

covver problem and Posner-Robinson problem. Furthermore, it proves that

I0 together with a mild indestructibility assumption imply the failure of

degree determinacy in L(P(λ)) for Zermelo degrees at a particular strong

limit, countable cofinality, singular cardinal (see Theorem 3.7) by exploiting

the richness of the degree structure provided by the large cardinal axiom.

As part of the global conjecture (see page 27), it is also conjectured that

the failure of degree determinacy in L(P(λ)) for Zermelo degrees at λ, for

countable cofinality λ, is a theorem of ZFC. But as our analysis indicates,

if one wants to prove this conjecture, the proof has to be very subtle: In

early stages of canonical inner models, the degree structures are very sim-

ple, the degree determinacy fails due to that simplicity and our approach

for proving the failure of degree determinacy by exploiting the richness of

degree structures does not work there.

4.5. Structures of other degrees

In §3, we have been focusing on Zermelo degrees, only compare structures of

Zermelo degrees crossing over inner models. But there is a whole spectrum

of degree notions one can explore, as we have seen in §2. And certainly

there are many more questions one can pursue if structures of different

degree notions are compared.

In fact, the newly discovered connection between the complexity of de-

gree structures and the large cardinal strength of relevant cardinals lead us

to review some old results with new perspective.

Recall that there are incomparable ℵω-degrees (see p.13). Comparing it

with the fact that the Zermelo degree at ℵω is wellordered, one may draw

a conclusion that smaller degree operator exhibit rich degree structures at

early stage of inner models. This is not something exciting, as the larger

degree operator often absorbs part of structure induced by the smaller

degree operator. And this is well supported by examples discussed in §2 –

structures of larger degree notions are always simpler than those given by
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smaller degree operators. For instance, while the poset (R,≤T ) is dense

and has incomparable degrees, it analogue for hyperarithmetic degrees – the

poset of hyperdegrees restricted to Π1
1 subsets of ω – is trivial, consisting

of only [∅]h and [O]h = [∅]′h. Here is a question on the spot:

Question 4.2. Assume V = L. Are there incomparable generalized hy-

perdegrees at ℵω?

Let us take a closer look. In V = L, although it is still open whether

there are minimal ℵω-degrees, if move to a Σ2-admissible ordinal α, one

starts to see minimal α-degrees. Yang’s argument gives minimal α-degrees

at α which is the ω-limit of certain large cardinals there are, a little adaption

gives minimal Zermelo degrees as well. So these large cardinals create

not only minimal ∆1-degrees at α, but any reasonable degree operator

at α. This is beyond Σ2-admissibility. Just as admissible ordinals are

“recursively” regular, ∆1-ly speaking, Σ2-admissible ordinals behave like a

very large “recursive” large cardinals. To extend this similarity, a sample

question would be to find the ordinal for minimal hyperdegrees.

Question 4.3. Assume V = L. At what ordinal α can there be minimal

generalized hyperdegrees at α?
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