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Chapter 0

Mathematical Preliminaries

In this chapter, we summarize some basic concepts and results from general prob-
ability theory which will be used in this course. Most of them can be found in
standard text books; see e.g. Chow and Teicher (1988).

0.1 Measurable spaces and functions

Let Ω be a non-empty set. A family F of subsets of Ω is called a σ-algebra if

(i) ∅ ∈ F ;

(ii) A ∈ F implies Ac ∈ F , where Ac := Ω \A denotes the complement of A;

(iii) {A1, A2, · · · } ⊆ F implies ∪∞j=1Aj ∈ F .

If F is a σ-algebra on Ω, the pair (Ω,F ) is called a measurable space. The sets
in F are called measurable sets.

If C be a family of subsets of Ω, then σ(C ) := ∩{G : G ⊇ C is a σ-algebra} is a
σ-algebra, which is called the σ-algebra generated by C . The σ-algebra generated by
the family O(Rd) of open sets in Rd is called the Borel σ-algebra of Rd and is denoted
by B(Rd). Clearly, B(Rd) contains all open sets, all closed sets, all countable unions
of closed sets, and so on.

Lemma 0.1.1 If E is a σ-algebra on E, for any f : Ω → E the family f−1(E ) :=
{f−1(B) : B ∈ E } is a σ-algebra on Ω.

Proof. (Exercise.) �
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2 CHAPTER 0. MATHEMATICAL PRELIMINARIES

Given measurable spaces (Ω,F ) and (E,E ), we say f : Ω → E is F/E -
measurable, or simply F -measurable, provided f−1(E ) ⊂ F , that is, f−1(B) ∈ F
for all B ∈ E . We call f : Rd → R a Borel function if it is B(Rd)-measurable.

Lemma 0.1.2 For any mapping f : Ω → E and any family U of subsets of E we
have σ(f−1(U )) = f−1(σ(U )).

Proof. By Lemma 0.1.1, the family f−1(σ(U )) is a σ-algebra on Ω. Since f−1(U ) ⊆
f−1(σ(U )), we have σ(f−1(U )) ⊆ f−1(σ(U )). On the other hand, let A = {A ⊆
E : f−1(A) ∈ σ(f−1(U ))}. Then U ⊆ A and f−1(A ) ⊆ σ(f−1(U )). It is not hard
to check that A is a σ-algebra. (Exercise.) Therefore we have σ(U ) ⊆ A . This
yields f−1(σ(U )) ⊆ f−1(A ) ⊆ σ(f−1(U )). �

Theorem 0.1.1 Let (Ω,F ) be a measurable space. IfX : Ω → Rn is F -measurable
and f : Rn → Rd is Borel, then the composition f ◦X : Ω → Rd is F -measurable.

Proof. For anyB ∈ B(Rd), we have f−1(B) ∈ B(Rn). It follows that (f◦X)−1(B) =
X−1(f−1(B)) ∈ F . �

Theorem 0.1.2 A continuous function f : Rn → Rd is Borel.

Proof. If f : Rn → Rd is continuous, then f−1(O(Rd)) ⊆ O(Rn). By Lemma 0.1.2,

f−1(B(Rd)) = f−1(σ(O(Rd))) = σ(f−1(O(Rd))) ⊆ σ(O(Rn)) = B(Rn).

That is, f is a Borel function. �

For a family X = {Xi : i ∈ I} of functions Xi : Ω → Rd, the σ-algebra generated
by X is defined as

σ(X ) := σ({X−1
i (B) : B ∈ B(Rd), i ∈ I}). (1.1)

For a single function X : Ω → Rd, we write σ(X) instead of σ({X}).

Theorem 0.1.3 For any function X : Ω → Rd, we have σ(X) = X−1(B(Rd)).

Proof. By Lemma 0.1.1, the family X−1(B(Rd)) = {X−1(B) : B ∈ B(Rd)} is a
σ-algebra on Ω, so X−1(B(Rd)) = σ(X−1(B(Rd))). By (1.1), we have σ(X) =
σ({X−1(B) : B ∈ B(Rd)}) = X−1(B(Rd)). �
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Theorem 0.1.4 Let (Ω,F ) be a measurable space. Then X : Ω → Rd is F -
measurable if and only if one of the following holds:

(i) X−1((−∞, x)) ∈ F for every x ∈ Rd;

(ii) X−1((x,∞)) ∈ F for every x ∈ Rd.

Proof. Suppose thatX is F -measurable. Since (−∞, x) ∈ B(Rd), we haveX−1((−∞, x)) ∈
F , that is, (i) holds. Conversely, suppose that (i) holds. Let G = {(−∞, x) : x ∈
Rd}. Then

X−1(G ) = {X−1((−∞, x)) : x ∈ Rd} ⊆ F .

It is not hard to show that B(Rd) = σ(G ). (Exercise.) By Lemma 0.1.2 we have

X−1(B(Rd)) = σ(X−1(G )) ⊆ σ(F ) = F .

Thus X is F -measurable. The second assertion follows by similar arguments. �

Theorem 0.1.5 Let {Xn : n = 1, 2, · · · } be a sequence of F -measurable real func-
tions on (Ω,F ). Then any of the functions

sup
n≥1

Xn, inf
n≥1

Xn, lim sup
n→∞

Xn and lim inf
n→∞

Xn (1.2)

is F -measurable if it is finite real-valued.

Proof. The measurability of the first two functions follows respectively from the
relations

{ω : sup
n≥1

Xn(ω) > x} =
⋃
n≥1

{ω : sup
n≥1

Xn(ω) > x}

and

{ω : inf
n≥1

Xn(ω) < x} =
⋃
n≥1

{ω : sup
n≥1

Xn(ω) < x}.

Then lim supn→∞Xn = infn≥1 supk≥nXk and lim infn→∞Xn = supn≥1 infk≥nXk

are measurable. �

Example 0.1.1 A finite or countable family U = {Ui : i ∈ I} of disjoint subsets of
Ω satisfying ∪i∈IUi = Ω is called a partition of Ω. If {Ui : i ∈ I} is a partition of Ω,
then σ(U ) = {∪j∈JUj : J ⊆ I}. (Exercise.) In this case, each Ui is called an atom
of σ(U ). (Here ∪j∈∅Uj = ∅ by convention.)
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Example 0.1.2 Let G = σ({Ui : i ∈ I}) for a partition {Ui : i ∈ I} of Ω. Then a
functionX : Ω → R is G -measurable if and only if there are real constants {ci : i ∈ I}
such that

X(ω) =
∑
i∈I

ci1Ui(ω), ω ∈ Ω. (1.3)

(Exercise.)

Example 0.1.3 Let {ci : i ∈ I} be distinct real numbers and let {Ui : i ∈ I}
be a partition of Ω. If the function X : Ω → R has representation (1.3), then
σ(X) = σ({Ui : i ∈ I}). (Exercise.)

0.2 Probability spaces and random variables

A finite measure µ on a measurable space (Ω,F ) is a function µ : F → [0,∞) such
that

(D) if A1, A2, · · · ∈ F are disjoint, then µ(∪∞j=1Aj) =
∑∞

j=1 µ(Aj).

If P is a finite measure on (Ω,F ) with P(Ω) = 1, we call it a probability measure.
In this case, the triple (Ω,F ,P) is called a probability space and each A ∈ F is called
an event. We call N ⊂ Ω a P-null set if there is B ∈ F such that N ⊆ B and
P(B) = 0. If F contains all P-null sets, we say (Ω,F ,P) is a complete probability
space. An event A ∈ F is said to occur almost surely if Ac is a P-null set.

We say the events {Ai : i ∈ I} ⊆ F are independent if

P(Ai1 ∩ · · · ∩Aik) = P(Ai1) · · ·P(Aik) (2.1)

for every finite subset {i1, · · · , ik} of the index set I. A collection {Hi : i ∈ I}
of families of events are independent if the family of events {Hi : i ∈ I} ⊆ F are
independent for all possible choices of Hi ∈ Hi with i ∈ I.

Suppose that (Ω,F ,P) is a probability space. An F -measurable function X :
Ω → Rd is called a d-dimensional random variable. When the dimension number is
unimportant or understood, we suppress the qualifier “d-dimensional”. A random
variable X induces a probability measure µX on (Rd,B(Rd)) by

µX(B) = P(X−1(B)), B ∈ B(Rd), (2.2)

which is called the distribution of X. If∫
Ω
|X(ω)|P(dω) =

∫
Rd

|x|µX(dx) <∞,



0.2. PROBABILITY SPACES AND RANDOM VARIABLES 5

the vector

E[X] :=
∫

Ω
X(ω)P(dω) =

∫
Rd

xµX(dx). (2.3)

is called the expectation of X.

A class of random variables {Xi : i ∈ I} are said to be independent if the class
of σ-algebras {σ(Xi) : i ∈ I} are independent.

Theorem 0.2.1 The two d-dimensional random variablesX and Y are independent
if and only if

E[f(X)g(Y )] = E[f(X)]E[g(Y )] (2.4)

for all bounded Borel functions f and g : Rd → R.

Proof. Clearly, if (2.4) holds for all bounded Borel functions f and g, then X and
Y are independent. Conversely, suppose that X and Y are independent. If f and g
are simple functions of the form

f =
m∑

j=1

fj1Fj and g =
n∑

j=1

gj1Gj ,

where Fj , Gj ∈ B(R), (2.4) follows from the definition of the independence. For
a general f and g, the equality (2.4) follows by an approximation using simple
functions. �

Let Xn and X be random variables taking values in Rd. We say Xn converges
to X in probability if P({ω : |Xn(ω)−X(ω)| ≥ ε}) → 0 as n→∞ for every ε > 0.
Recall that Xn converges to X almost surely if there is a P-null set N such that
Xn(ω) → X(ω) for all ω ∈ N c.

Theorem 0.2.2 If Xn → X almost surely, then Xn → X in probability.

Proof. Observe that Xn → X almost surely if and only if

P
( ∞⋂

n=1

∞⋃
j=n

{ω : |Xj(ω)−X(ω)| ≥ ε}
)

= lim
n→∞

P
( ∞⋃

j=n

{ω : |Xj(ω)−X(ω)| ≥ ε}
)

= 0

for every ε > 0. This clearly implies Xn → X in probability. �
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For p ≥ 1 let Lp(Ω,P) be the totality of real-valued random variables X such
that

‖X‖p := {E[|X|p]}1/p <∞. (2.5)

Given Xn and X ∈ Lp(Ω,P), we say Xn converges to X in Lp(Ω,P) if ‖Xn−X‖p →
0.

Theorem 0.2.3 If Xn → X in Lp(Ω,P), then Xn → X in probability.

Proof. Suppose Xn → X in Lp(Ω,P). Then for every ε > 0,

lim
n→∞

P{|Xn −X| ≥ ε} ≤ lim
n→∞

ε−pE[|Xn −X|p] = 0.

by Chebyshev’s inequality. �

0.3 Conditional expectations

Let (Ω,F ,P) be a probability space and G ⊆ F a σ-algebra. Let X : Ω → R be
a random variable such that E[|X|] < ∞. It is known that there is an a.s. unique
G -measurable random variable ξ : Ω → R such that

E[1GX] = E[1Gξ], G ∈ G ; (3.1)

see e.g. Chow and Teicher (1988, pp.202-203). We call ξ the conditional expectation
of X given G , and denote it by E[X|G ]. The conditional expectation E[X|G ] reflects
the change in the unconditional expectation E[X] due to the additional information
provided by G .

For any A ∈ F , we call E[1A|G ] the conditional probability of A given G , and
denote it by P[A|G ]. If Y is another random variable, we simply write E[X|Y ] for
E[X|σ(Y )]. The conditional probability P[A|X] is defined in a similar way.

Theorem 0.3.1 Let a and b be real constants andX and Y be real random variables
with E[|X|+ |Y |] <∞. Then we have the following properties

(i) E[aX + bY |G ] = aE[X|G ] + bE[Y |G ];

(ii) E{E[X|G ]} = E[X];

(iii) E[X|G ] = X if X is G -measurable;

(iv) E[X|G ] = E[X] if X is independent of G .
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Proof. Those properties are immediate consequences of the definition of the condi-
tional expectation. (Exercise.) �

Theorem 0.3.2 Let X and Y be real random variables with E[|Y X|] < ∞. If X
is G -measurable, then E[XY |G ] = XE[Y |G ].

Proof. It suffices to prove∫
G
XE[Y |G ]dP =

∫
G
XY dP, G ∈ G . (3.2)

If X = 1H for some H ∈ G , we have∫
G
XE[Y |G ]dP =

∫
G∩H

E[Y |G ]dP =
∫

G∩H
Y dP =

∫
G
XY dP.

Similarly, (3.2) holds for a simple function

X =
m∑

j=1

cj1Hj ,

where Hj ∈ H and cj ∈ R. For a general X the equation follows by an approxima-
tion using simple functions. �

Theorem 0.3.3 Let X be a random variable such that E[|X|] < ∞, and let H
and G be σ-algebras such that H ⊆ G ⊆ F . Then we have

E[X|H ] = E{E[X|G ]|H } (3.3)

Proof. Let H ∈ H . By the definition of the conditional expectation,∫
H
XdP =

∫
H

E[X|H ]dP.

Since H ⊆ G , we have H ∈ G and hence∫
H
XdP =

∫
H

E[X|G ]dP.

It then follows that ∫
H

E[X|H ]dP =
∫

H
E[X|G ]dP.

Certainly, E[X|H ] is H -measurable, so (3.3) follows. �
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Example 0.3.1 Suppose that (Ω,F ,P) is a probability space. Let G = σ({Ui :
i ∈ I}) for a partition {Ui : i ∈ I} ⊆ F of Ω with P(Ui) > 0 for each i ∈ I. Then
for any A ∈ F we have

P(A|G )(ω) = P(A|Ui), ω ∈ Ui. (3.4)

This gives an interpretation for the random variable P(A|G )(ω). The σ-algebra
G can be interpreted as the information obtained by observing a random system
with different states {Ui : i ∈ I} which has some influence on the event A. In
this situation, (3.4) simply means that the probability of A varies according to the
different status of the system. To show (3.4), define

η(ω) = P(A|Ui), ω ∈ Ui.

From Example 0.1.2 we know that η is a G -measurable random variable. By Exam-
ple 0.1.1, each B ∈ G can be represented as B = ∪j∈JUj for a (finite or countable)
set J ⊆ I. It follows that

E[1B1A] =
∑
j∈J

P(AUj) =
∑
j∈J

P(Uj)P(A|Uj)

=
∫
∪j∈JUj

η(ω)P(dω) = E[1Bη].

Then P(A|G ) = η by the definition of conditional probability.

Example 0.3.2 Consider a probability space (Ω,F ,P). Let G = σ({Ui : i ∈ I})
for a partition {Ui : i ∈ I} ⊆ F of Ω with P(Ui) > 0 for each i ∈ I. Clearly, for
each i ∈ I,

Pi(A) := P(A|Ui), A ∈ F (3.5)

defines a probability measure on (Ω,F ). Suppose that X is a random variable such
that E[|X|] <∞. Then we have

E[X|G ](ω) =
∫

Ω
XdPi, ω ∈ Ui, (3.6)

which gives a representation for the conditional expectation. Indeed, by Exam-
ple 0.1.2,

ξ(ω) =
∫

Ω
XdPi, ω ∈ Ui

defines a G -measurable random variable ξ. By (3.5), we have

Pi(A) =
P(A ∩ Ui)

P(Ui)
, A ∈ F
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and hence ∫
Ω
X(ω)dPi(ω) = P(Ui)−1

∫
Ui

X(ω)P(dω).

If B ∈ G has the representation B = ∪j∈JUj for J ⊆ I, then

E[1BX] =
∑
j∈J

∫
Uj

X(ω)P(dω) =
∑
j∈J

P(Uj)
∫

Ω
X(ω)Pj(dω)

=
∫
∪j∈JUj

ξ(ω)P(dω) = E[1Bξ].

By the definition of conditional expectation we get E[X|G ](ω) = ξ(ω).



Chapter 1

Discrete-time models

1.1 Introduction

This chapter is devoted to the study of discrete time models. The objective is to
present the main ideas related to option theory for the very simple models. The
link between the mathematical concept of martingale and the economic notion of
arbitrage is brought to light. The definition of complete markets and the pricing of
options in these markets are given. The Cox-Ross-Rubinstein model is treated as
an example. This chapter was adopted from Lamberton and Lapeyre (1996).

1.2 Markets and strategies

1.2.1 Financial markets

Let (Ω,F ,P) be a finite probability space, where F is the family of all subsets of
the non-empty finite set Ω. We assume that P({ω}) > 0 for all ω ∈ Ω. Suppose
that the probability space is equipped with a filtration (Fn)0≤n≤N , which is an
increasing sequence of σ-algebras included in F . The σ-algebra Fn can be viewed
as the information available at time n. A stochastic process means a collection of
random variables {Xn : n = 0, 1, · · · , N}. We say {Xn} is adapted if Xn is Fn-
measurable for each 0 ≤ n ≤ N . An adapted process {Xn} is predictable if Xn is
Fn−1-measurable for each 1 ≤ n ≤ N .

We consider a market consisting of d+ 1 financial assets, whose prices at time n
are given by the non-negative random variables S0

n, S
1
n, · · · , Sd

n, which are measurable
with respect to Fn. Then {(S0

n, S
1
n, · · · , Sd

n) : n = 0, 1, · · · , N} form a (d + 1)-
dimensional adapted stochastic process. We call Sn := (S0

n, S
1
n, · · · , Sd

n) the vector

10
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of prices. The asset indexed by 0 is the riskless asset and we have S0
0 = 1. If the

return of the riskless asset over one period is constant and equals to r, we have
S0

n = (1 + r)n. The coefficient βn := 1/S0
n is interpreted as the discount factor: if

an amount βn is investigated at time 0, then one dollar will be available at time n.
The assets indexed by 1, · · · , d are called risky assets. Naturally, we call S̃n := βnSn

the discounted prices. Of course,

S̃n = (S̃0
n, S̃

1
n, · · · , S̃d

n) = (1, βnS
1
n, · · · , βnS

d
n).

1.2.2 Self-financing strategies

A trading strategy is defined as a stochastic process φ = {(φ0
n, φ

1
n, · · · , φd

n) : 0 ≤ n ≤
N} taking values from Rd+1, where φi

n denotes the number of shares of asset i held
in the portfolio at time n. We assume φ is predictable, i.e., φ0 is F0-measurable and
φn is Fn−1-measurable for 1 ≤ n ≤ N . This assumption means that the positions
in the portfolio at time n are decided with respect to the information available at
time n− 1 and kept until time n when new quotations are availaible.

The value of the portfolio at time n is the scalar product

Vn(φ) = φn · Sn =
d∑

i=0

φi
nS

i
n. (2.1)

The discounted value is

Ṽn(φ) = βnVn(φ) = φn · S̃n. (2.2)

In particular,
Ṽ0(φ) = β0V0(φ) = V0(φ)/S0

0 = V0(φ).

Definition 1.2.1 A strategy is called self-financing if

φn · Sn = φn+1 · Sn (2.3)

for each n = 0, 1, · · · , N − 1.

The interpretation of a self-financing strategy is at each time n the investigator
adjust his position from φn to φn+1 without bring or consuming any wealth. The
equality (2.3) is obviously equivalent to

φn+1 · Sn+1 − φn · Sn = φn+1 · Sn+1 − φn+1 · Sn

or to

Vn+1(φ)− Vn(φ) = φn+1 · (Sn+1 − Sn). (2.4)
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Note that (2.4) means that the profit or loss lealized by following a self-financing
strategy is only due to the price moves. The following proposition makes this clear
in terms of discounted prices.

Proposition 1.2.1 The following are equivalent

(i) The strategy φ is self-financing.

(ii) For each n = 1, · · · , N , we have

Vn(φ) = V0(φ) +
n∑

j=1

φj ·∆Sj , (2.5)

where ∆Sj = Sj − Sj−1.

(iii) For each n = 1, · · · , N , we have

Ṽn(φ) = V0(φ) +
n∑

j=1

φj ·∆S̃j , (2.6)

where ∆S̃j = S̃j − S̃j−1.

Proof. Obviously, both (i) and (ii) are equivalent to equation (2.4). On the other
hand, (2.3) is equivalent to

φn+1 · S̃n+1 − φn · S̃n = φn+1 · S̃n+1 − φn+1 · S̃n

or to

Ṽn+1(φ)− Ṽn(φ) = φn+1 · (S̃n+1 − S̃n), (2.7)

which holds if and only (iii) holds. �

This proposition shows that, if an investor follows a self-financing strategy, the
discounted value of his portfolio is completely defined by the initial wealth and the
strategy {(φ1

n, · · · , φd
n) : 0 ≤ n ≤ N}. (This is only justified because ∆S̃0

j = 0).
More precisely, we can prove the following proposition.

Proposition 1.2.2 For any predictable process {(φ1
n, · · · , φd

n) : 0 ≤ n ≤ N} and
any F0-measurable random variable V0, there exists a unique predictable process
{φ0

n : 0 ≤ n ≤ N} such that the strategy φ = {(φ0
n, φ

1
n, · · · , φd

n) : 0 ≤ n ≤ N} is
self-financing and its initial value is V0.
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Proof. The self-financing strategy condition implies

Ṽn(φ) = φ0
n + φ1

nS̃
1
n + · · ·+ φd

nS̃
d
n

= V0 +
n∑

j=1

(
φ1

j∆S̃
1
j + · · ·+ φd

j∆S̃
d
j

)
.

Then we only need to set

φ0
n = V0 +

n−1∑
j=1

(
φ1

j∆S̃
1
j + · · ·+ φd

j∆S̃
d
j

)
− (φ1

nS̃
1
n−1 + · · ·+ φd

nS̃
d
n−1),

which defines a predictable process {φ0
n : 0 ≤ n ≤ N}. �

1.2.3 Admissible strategies and arbitrage

We have not made any assumption on the sign of the quantity φ0
n. If φ0

n < 0, we
have borrowed the amount |φ0

n| in the riskless asset at time n. If φi
n < 0 for i ≥ 1,

we say that we are short a number φi
n of asset i. In other words, short-selling and

borrowing are allowed in the investment. However, the investor must be able to pay
back his debts (in riskless or risky asset) at any time. This consideration leads to
the following

Definition 1.2.2 A strategy φ is admissible if it is self-financing and if Vn(φ) ≥ 0
for each n = 0, 1, · · · , N .

The notion of possibility of riskless profit can be formulated as follows.

Definition 1.2.3 An arbitrage strategy is an admissible strategy with zero initial
value and non-zero final value. More precisely, that is an admissible strategy φ such
that V0(φ) = 0, Vn(φ) ≥ 0 for n = 0, 1, · · · , N and P{VN (φ) > 0} > 0.

Most models exclude any arbitrge opportunity and the objective of the next
section is to characterize the models with the notion of martingale.

1.3 Martingales and arbitrage opportunities

1.3.1 Martingales and martingale transforms

We consider a finite probability space (Ω,F ,P) equipped with a filtration (Fn)0≤n≤N .
We assume that F is the family of all subsets of Ω and P({ω}) > 0 for all ω ∈ Ω.
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Definition 1.3.1 An adapted process {Mn : 0 ≤ n ≤ N} is called:

• a martingale if E[Mn+1|Fn] = Mn for all n ≤ N − 1;

• a supermartingale if E[Mn+1|Fn] ≤Mn for all n ≤ N − 1;

• a submartingale if E[Mn+1|Fn] ≥Mn for all n ≤ N − 1.

These definitions can be extended to the multi-dimensional case. For example, a
process {Mn : 0 ≤ n ≤ N} taking values from Rd is a martingale if each component
is a real-valued martingale.

Remark 1.3.1 (i) The process {Mn : 0 ≤ n ≤ N} is a martingale if and only if

E[Mn|Fm] = Mm, 0 ≤ m ≤ n ≤ N. (3.1)

(ii) If {Mn : 0 ≤ n ≤ N} is a martingale, then E[Mn] = E[M0] for each 0 ≤ n ≤
N .

(iii) The sum of two martingales is also a martingale.

(iv) Similar properties hold for supermartingales and submartingales.

Proof. (Exercise.) �

Proposition 1.3.1 Let {Mn : 0 ≤ n ≤ N} be a martingale and {Hn : 0 ≤ n ≤ N}
a predictable process. Write ∆Mn = Mn −Mn−1 and define the process {Xn : 0 ≤
n ≤ N} by X0 = H0M0 and

Xn = H0M0 +H1∆M1 + · · ·+Hn∆Mn, 1 ≤ n ≤ N. (3.2)

Then {Xn : 0 ≤ n ≤ N} is a martingale.

Proof. Clearly, {Xn} is an adapted process. For n ≥ 0 we have

E[(Xn+1 −Xn)|Fn] = E[Hn+1(Mn+1 −Mn)|Fn]
= Hn+1E[(Mn+1 −Mn)|Fn]
= Hn+1(E[Mn+1|Fn]−Mn) = 0.

It follows that
E[Xn+1|Fn] = E[Xn|Fn] = Xn.

That shows that {Xn} is a martingale. �

The process {Xn} defined by (3.2) is sometimes called the martingale transform
of {Mn} by {Hn}.
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Proposition 1.3.2 An adapted process {Mn} is a martingale if and only if for any
predictable sequence {Hn} we have

E
[ N∑

n=1

Hn∆Mn

]
= 0. (3.3)

Proof. If {Mn} is a martingale and {Hn} is a predictable process, the sequence
{Xn} defined by X0 = 0 and

Xn =
n∑

j=1

Hj∆Mj , 1 ≤ n ≤ N,

is a martingale by Proposition 1.3.1. Then we have E[XN ] = E[X0] = 0. Conversely,
for 1 ≤ j ≤ N we can define the sequence {Hn} as follows:

Hn =

{
0 for n 6= j + 1
1A for n = j + 1,

where A is any Fj-measurable set. Clearly, {Hn} is predictable and (3.3) becomes

E
[
1A(Mj+1 −Mj)

]
= 0.

Therefore, E[Mj+1 −Mj |Fj ] = 0 and hence {Mn} is a martingale. �

From Proposition 1.2.1, we know

Ṽn(φ) = V0(φ) +
n∑

j=1

φj ·∆S̃j .

If the discounted prices of the assets are martingales, by Proposition 1.3.1 the dis-
counted value Ṽn is also a martingale.

1.3.2 Viable financial markets

Definition 1.3.2 A market is called viable if there is no arbitrage opportunity.

Lemma 1.3.1 If the market is viable, for any predictable process {(φ1
n, · · · , φd

n)}
we have

G̃n(φ) :=
n∑

j=1

(
φ1

j∆S̃
1
j + · · ·+ φd

j∆S̃
d
j

)
) /∈ Γ,

where Γ is the convex cone of random variables X ≥ 0 with P{X > 0} > 0.
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Proof. Let us assume that G̃N (φ) ∈ Γ. According to Proposition 1.2.2, there exists
a unique predictable process {φ0

n} such that the strategy {(φ0
n, φ

1
n, · · · , φd

n)} is self-
financing and V0(φ) = 0. It is easy to see that Ṽn(φ) = G̃n(φ). We discuss the two
cases as follows. First, if

G̃n(φ) ≥ 0, n = 0, 1, · · · , N, (3.4)

the market is obviously not viable. Second, if (3.4) does not hold, we define

n = sup{k : P{G̃k(φ) < 0} > 0}.

It follows that n ≤ N − 1 and P{G̃n(φ) < 0} > 0. Moreover, G̃m(φ) ≥ 0 for all
m > n. We can now define a new process ψ by

ψj(ω) =

{
0 if j ≤ n,
1A(ω)φj(ω) if j > n,

where A = {G̃n(φ) < 0}. Because φ is predictable and A is Fn-measurable, ψ is
also predictable. Moreover

G̃j(ψ) =

{
0 if j ≤ n,
1A(G̃j(φ)− G̃n(φ)) if j > n.

Thus G̃j(ψ) ≥ 0 for all j ∈ {0, · · · , N} and G̃N (ψ) > 0 on A, i.e., P{G̃N (ψ) > 0} >
0. That contradicts the assumption that the market is viable and completes the
proof. �

We say two probability measures P1 and P2 on (Ω,F ) are equivalent provided
P1(A) = 0 if and only if P2(A) = 0 for every A ∈ F . Under our assumption
on the probability space (Ω,F ,P), a probability measure P∗ is equivalent to P if
and only if P∗({ω}) > 0 for every ω ∈ Ω. The following theorem gives a precise
characterisation of viable financial markets.

Theorem 1.3.1 The market is viable if and only if there exists a probability mea-
sure P∗ equivalent to P such that all discounted prices of assets are martingales
under P∗.

Proof. (a) Let us assume that there exists a probability P∗ equivalent to P under
which discounted prices are martingales. For any self-financing strategy {φn}, the
value process {Ṽn(φ)} is a P∗-martingale. Therefore, E∗[ṼN (φ)] = E∗[Ṽ0(φ)]. If
the strategy is admissible and its initial value is zero, then E∗[ṼN (φ)] = 0 with
ṼN (φ) ≥ 0. Since P∗({ω}) > 0 for all ω ∈ Ω, we have ṼN (φ) = 0. That is, the
market is viable.
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(b) Conversely, if the market is viable, according to the Lemma 1.3.1 we have
G̃N (φ) /∈ Γ for any predictable process {(φ1

n, · · · , φd
n)}. We denote by V the family

of random variables G̃N (φ) with {(φ1
n, · · · , φd

n)} predictable. Clearly, V is a vector
subspace of RΩ, which is the set of real random variables defined on Ω, and V does
not intersect Γ. Therefore it does not intersect the convex compact set K = {X ∈
Γ :

∑
ω X(ω) = 1} which is included in Γ. As a result of the convex sets separation

theorem, there exists {λ(ω) : ω ∈ Ω} such that∑
ω

λ(ω)X(ω) > 0 (3.5)

for all X ∈ K, and ∑
ω

λ(ω)G̃N (φ)(ω) = 0 (3.6)

for any predictable {(φ1
n, · · · , φd

n)}. From (3.5) we deduce that λ(ω) > 0 for all
ω ∈ Ω. We define the probability P∗ by

P∗({ω}) =
λ(ω)∑

ω′∈Ω λ(ω′)
.

Then P∗({ω}) > 0 for all ω ∈ Ω, so P∗ is equivalent to P. Moreover, for any
predictable process {(φ1

n, · · · , φd
n)} we have

E∗
(
G̃N (φ)

)
=

∑
ω∈Ω

G̃N (φ)(ω)P∗({ω})

=
1∑

ω′∈Ω λ(ω′)

∑
ω∈Ω

G̃N (φ)(ω)λ(ω)

= 0.

For any i ∈ {1, · · · , d} and any real-valued predictable process {φi
n}, by considering

the d-dimensional process ψ := {(0, · · · , 0, φi
n, 0, · · · , 0)} we get

E∗
(
G̃N (ψ)

)
= E∗

( N∑
j=1

φi
j∆S̃j

)
= 0.

By Proposition 1.3.2, the discounted prices {S̃1
n}, · · · , {S̃d

n} are P∗-martingales. �

Remark 1.3.2 By Theorem 1.3.1, if the market is viable and φ is any self-financing
strategy, there exists a probability measure P∗ equivalent to P under which the
discounted prices are martingales. It follows that {Ṽn(φ)} is also a P∗-martingale
and hence

Ṽn(φ) = E∗[ṼN (φ)|Fn], 0 ≤ n ≤ N.
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1.4 Complete markets and option pricing

1.4.1 Complete markets

We define a European option, or more generally a contingent claim, of maturity N by
giving its payoff h, which is an FN -measurable and non-negative random variable.
For instance, a call on the underlying asset {S1

n : 0 ≤ n ≤ N} with strike price
K is defined by setting h = (S1

N −K)+. A put on the same underlying asset with
the same strike price K is defined by h = (K − S1

N )+. Those two examples are
the most important ones in practice. Note that here h is only a function of SN .
There are some options dependent on the whole path of the underlying asset, i.e.
h is a function of the whole cellection {S0, S1, · · · , SN}. That is the case of the
so-called Asian options where the strike price is equal to the average of the stock
prices observed during a certain period of time before maturity.

Definition 1.4.1 The contingent claim defined by the payoff h is attainable if there
exists an admissible strategy worth h at time N .

Remark 1.4.1 In a viable financial market, we just need to find a self-financing
strategy worth h at maturity to say that h is attainable. Actually, if φ is such a
self-financing strategy, i.e., VN (φ) = h ≥ 0. Then ṼN (φ) ≥ 0 and, by Remark 1.3.2,
we know

Ṽn(φ) = E∗[ṼN (φ)|Fn] ≥ 0, 0 ≤ n ≤ N.

Consequently, the strategy φ is admissible.

Definition 1.4.2 The market is complete if every contingent claim is attainable.

To assume that a financial market is complete is a rather restrictive assumption.
The interest of complete markets is that it allows us to derive a simple theory of
contingent claim pricing and hedging. The Cox-Ross-Rubinstein model, that we
shall introduce in the next section, is a very simple example of complete market
modelling. The following theorem gives a precise characterization of complete and
viable financial markets.

Theorem 1.4.1 Suppose that F0 = {∅,Ω}. Then a viable market is complete if
and only if there exists a unique probability measure P∗ equivalent to P under which
discounted prices are martingales.

Proof. (a) Let us assume that the market is viable and complete. By Theorem 1.3.1,
there exists a probability measure P∗ equivalent to P under which discounted prices
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are martingales. Moreover, any contingent claim h, which by definition is a non-
negative FN -measurable random variable, is attainable. That is, there exists an
admissible strategy φ such that h = VN (φ). Since φ is self-financing, we know that

h/S0
N = ṼN (φ) = V0(φ) +

N∑
j=1

φj ·∆S̃j ;

see Proposition 1.2.1. Suppose that P1 and P2 are two probability measures equiv-
alent to P and the discounted prices {Ṽn(φ) : 0 ≤ n ≤ N} are martingales under
both P1 and P2. Then for i = 1 or i = 2,

Ei[ṼN (φ)] = Ei[Ṽ0(φ)] = Ei[V0(φ)] = V0(φ),

where the last equality coming from the fact that F0 = {∅,Ω}. It follows that

E1

[
h/S0

N

]
= E2

[
h/S0

N

]
.

Since h is arbitrary, we have P1 = P2 on the whole σ-algebra F = FN .

(b) Suppose the market is viable and incomplete. Then there exists some a
random variable h ≥ 0 which is not attainable. Let us call V the set of random
variables of the form

U0 +
N∑

n=1

φn ·∆S̃n,

where U0 is F0-measurable and {(φ1
n, · · · , φd

n) : 0 ≤ n ≤ N} is an Rd-valued pre-
dictable process. It follows from Proposition 1.2.2 that h/S0

N does not belong to
V . Otherwise, there exists a self-financing strategy φ such that h/S0

N = ṼN (φ) or
h = VN (φ), giving a contradiction. Hence, V is a strict subset of the set of all
random variables on (Ω,F ). Therefore, if P∗ is a probability measure equivalent to
P under which discounted prices are martingales and if we define the scalar product
(X,Y ) = E∗[XY ] for random variables, there must exist a non-zero random variable
X orthogonal to V . We define

P∗∗({ω}) =
(
1 +

X(ω)
2‖X‖∞

)
P∗({ω}),

with ‖X‖∞ = supω∈Ω |X(ω)| > 0. Clearly, P∗∗ 6= P∗ and P∗∗({ω}) > 0 for all
ω ∈ Ω so that P∗∗ is equivalent to P. For any predictable process {(φ1

n, · · · , φd
n) :

0 ≤ n ≤ N} let

U =
N∑

n=1

φn ·∆S̃n.
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Then U ∈ V and

E∗∗[U ] =
∑
ω∈Ω

U(ω)P∗∗({ω})

=
∑
ω∈Ω

U(ω)P∗({ω}) +
1

2‖X‖∞

∑
ω∈Ω

U(ω)X(ω)P∗({ω})

= E∗[U ] +
1

2‖X‖∞
(X,U) = 0,

where the last equality comes from the fact that {S̃n : 0 ≤ n ≤ N} is a P∗-martingale
and X is orthogonal to U . It follows from Proposition 1.3.2 that {S̃n : 0 ≤ n ≤ N}
is also a P∗∗-martingale. �

1.4.2 Pricing and hedging contingent claims

We assume that F0 = {∅,Ω} and the market is viable and complete. By Theo-
rem 1.4.1, there exists a unique probability measure P∗ under which the discounted
prices of financial assets are martingales. Let h be a non-negative FN -measurable
random variable and φ an admissible strategy replicating the contingent claim, i.e.,
VN (φ) = h. Then the process {Ṽn : 0 ≤ n ≤ N} is a P∗-martingale. It follows that

Ṽn(φ) = E∗[ṼN (φ)|Fn

]
,

and hence
Vn(φ)
S0

n

= E∗
[
VN (φ)
S0

N

∣∣∣∣Fn

]
.

Therefore,

Vn(φ) = S0
nE

∗
[
h

S0
N

∣∣∣∣Fn

]
, n = 0, 1, · · · , N. (4.1)

This equation shows that, at any time, the value of an admissible strategy repli-
cating h is completely determined by this contingent claim. Then it is natural to
call Vn(φ) the price at time n of the option: that is the wealth needed at time n to
replicate h at time N by following the strategy φ. If an investor sells the option at
time zero for E∗[h/S0

n], he can follow a replicating strategy φ to generate an amount
h at time N . In other words, the investor is perfectly hedged.

It is important to notice that the computation of the option price only requires
the knowledge of P∗ and not P. We could have just considered a measurable space
(Ω,F ) equipped with the filtration (F )0≤n≤N . In other words, we would only
define the set of all states and the evolution of the information over time. As soon
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as the probability space and the filtration are specified, we do not need to find the
true probability of the possible events (say, by statistical means) in order to price
the option. The analysis of the Cox-Ross-Rubinstein model will show how we can
compute the option price and the hedging strategy in practice.

1.4.3 Introduction to American options

An American option can be exercised at any time between 0 and N . We define it as
a non-negative adapted process {Zn : 0 ≤ n ≤ N}, where Zn is the immediate profit
made by exercising the option at time n. In the case of an American call option on
the stock {S1

n : 0 ≤ n ≤ N} with strike price K we have Zn = (S1
n −K)+. In the

case of a put, Zn = (K − S1
n)+.

In order to define the price {Un} of the option associated with {Zn}, we shall
think in terms of a backward induction starting at time N . Indeed, we should
obviously have UN = ZN . At what price we should sell the option at time N − 1? If
the holder exercises straight away he will earn ZN−1, or he might exercises at time N
in which case the writer must pay the amount ZN . (The holder is the buyer, and the
writer is the seller.) Therefore, at time N − 1, the writer has to earn the maximum
between ZN−1 and the amount necessary at time N − 1 to generate ZN at time N .
In other words, the writer wants the maximum between ZN−1 and the value at time
N − 1 of an admissible strategy paying off ZN at time N , i.e., S0

N−1E
∗[Z̃N |FN−1]

with Z̃N = ZN/S
0
N . Therefore, it makes sense to price the option at time N − 1 as

UN−1 = max
(
ZN−1, S

0
N−1E

∗[Z̃N |FN−1]
)
.

By induction, we define the price of the American option as

Un−1 = max
(
Zn−1, S

0
n−1E

∗
[Un

S0
n

∣∣∣Fn−1

])
for 1 ≤ n ≤ N . As before, let Ũn = Un/S

0
n be the discounted price of the option.

Then

Ũn−1 = max
(
Z̃n−1,E∗[Ũn|Fn−1]

)
. (4.2)

In particular, if we assume the interest rate over one period is constant and equal
to r, then S0

n = (1 + r)n and hence

Un−1 = max
(
Zn−1,

1
1 + r

E∗[Un|Fn−1]
)
. (4.3)

We have noticed that the discounted price of the European option is a P∗-
martingale. However, the discounted price of the American option is generally a
P∗-supermartingale.
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Proposition 1.4.1 The sequence {Ũn} is the smallest P∗-supermartingale that
dominates the process {Z̃n}.

Proof. From the equality (4.2) we know that {Ũn} is a P∗-supermartingale domi-
nating {Z̃n}. Let us consider another P∗-supermartingale {T̃n} that also dominates
{Z̃n}. Then T̃N ≥ Z̃N = ŨN . Moreover, if T̃n ≥ Ũn we have

T̃n−1 ≥ E∗[T̃n|Fn−1] ≥ E∗[Ũn|Fn−1],

and hence
T̃n−1 ≥ max

(
Z̃n−1,E∗[Ũn|Fn−1]

)
= Ũn−1.

A backward induction proves the assertion that {T̃n} dominates {Ũn}. �

1.5 Cox-Ross-Rubinstein model

The Cox-Ross-Rubinstein model is a discrete-time version of the notable Black-
Scholes model. It contains only one risky asset {Sn} in addition to the riskless asset
{S0

n}. It is assumed that S0
n = (1 + r)n, where r > −1 is the return over one period

of time. The risky asset is modelled as follows: between two consecutive periods the
relative price change is ether a or b with −1 < a < b. It follows that

Sn+1 = Sn(1 + a) or Sn(1 + b). (5.1)

The initial stock price S0 is given. Then the set of all possible events is Ω = {1+a, 1+
b}N . Each N -tuple represents the successive values of the ratio Tn := Sn/Sn−1. We
also assume that F0 = {∅,Ω} and F is the family of all subsets of Ω. For 1 ≤ n ≤ N
let

Fn = σ({T1, · · · , Tn}) = σ({S1, · · · , Sn}). (5.2)

The assumption that each singleton in Ω has strictly positive probability implies
that

P({(x1, · · · , xN )}) = P{T1 = x1, · · · , TN = xN} > 0

for each (x1, · · · , xN ) ∈ Ω. As a result, knowing P is equivalent to knowing the law
of the N -tuple (T1, · · · , TN ).

1.5.1 Viability and completeness

Proposition 1.5.1 The discounted price {S̃n} is a martingale under P if and only
if

E[Tn+1|Fn] = 1 + r, 0 ≤ n ≤ N − 1. (5.3)
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Proof. Since S̃n is Fn-measurable, the equality E[S̃n+1|Fn] = S̃n is equivalent to

E[S̃n+1/S̃n|Fn] = E
[
Tn+1

(1 + r)

∣∣∣∣Fn

]
= 1.

That is, E[Tn+1|Fn] = 1 + r . �

Proposition 1.5.2 If the market is viable, then r ∈ (a, b).

Proof. Under the assumption, there exists a probability P∗ equivalent to P under
which {S̃n} is a martingale. According to Proposition 1.5.1, we have E∗[Tn+1|Fn] =
1 + r and hance E∗[Tn+1] = 1 + r. Since Tn+1 is either equal to 1 + a or 1 + b with
non-zero probability, we must have r ∈ (a, b). �

If the condition of Proposition 1.5.2 does not hold, an arbitrage strategies can be
constructed as follows. When r ≤ a, we borrow an amount S0 at time 0 and purchase
one share of the risky asset. At time N , we pay the loan back and sell the risky
asset. We realize a profit equal to SN −S0(1 + r)N , which is always non-negative as

SN = S0

N∏
j=1

Tj ≥ (1 + a)N ≥ (1 + r)N .

Since Tn+1 is either equal to 1 + a or 1 + b with non-zero probability and b > a, we
have SN − S0(1 + r)N > 0 with non-zero probability. When r ≤ b, we can short-sell
one share of risky asset at price S0 at time 0 and invest the amount S0 to the riskless
asset. At time N , we withdraw the amount S0(1 + r)N , pay the buyer the amount
SN and realize a profit equal to SN − S0(1 + r)N . It can be seen that we have
S0(1 + r)N − SN > 0 with non-zero probability.

From now on, we assume that r ∈ (a, b) and write p = (b − r)/(b − a). Then
r = ap+ b(1− p).

Proposition 1.5.3 The process {S̃n} is a P-martingale if and only if {T1, T2, · · · , TN}
are independent and identically distributed variables and

P{T1 = 1 + a} = 1−P{T1 = 1 + b} = p. (5.4)

In this case, the market is viable and complete.

Proof. Under condition (5.4) we have

E[Tn+1|Fn] = E[Tn+1] = p(1 + a) + (1− p)(1 + b) = 1 + r,
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and hence (S̃n) is a P-martingale by Proposition 1.5.1. Conversely, if E[Tn+1|Fn] =
1 + r for 0 ≤ n ≤ N − 1, we can write

(1 + a)E[1{Tn+1=1+a}|Fn] + (1 + b)E[1{Tn+1=1+b}|Fn] = 1 + r.

On the other hand, since

E[1{Tn+1=1+a}|Fn] + E[1{Tn+1=1+b}|Fn] = 1,

we conclude

aE[1{Tn+1=1+a}|Fn] + bE[1{Tn+1=1+b}|Fn] = r = ap+ b(1− p).

Then it is easy to conclude that

E[1{Tn+1=1+a}|Fn] = p and E[1{Tn+1=1+b}|Fn] = 1− p,

or equivalently,

P{Tn+1 = 1 + a|Fn} = p and P{Tn+1 = 1 + b|Fn} = 1− p.

By induction, we prove that for any xi ∈ {1 + a, 1 + b},

P{T1 = x1, · · · , Tn = xn} =
n∏

i=1

pi,

where pi = p if xi = 1+a and pi = 1−p if xi = 1+ b. That shows that the variables
Ti are i.i.d. under P and (5.4) holds.

What we have shown implies that there is a unique probability measure P on
(Ω,F ) such that {S̃n} is a P-martingale. Thus the market is viable and complete
according to Theorem 1.4.1. �

1.5.2 Pricing call and put options

Let Cn and Pn denote respectively the value at time n of a European call and put
on a share of stock with strike price K and maturity N .

Proposition 1.5.4 The put/call parity equation

Cn − Pn = Sn −K(1 + r)n−N . (5.5)
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Proof. Since {S̃n} is a P∗-martingale,

E∗[SN |Fn] = E∗[S̃N (1 + r)N |Fn

]
= S̃n(1 + r)N = (1 + r)N−nSn.

According to (4.1) we have

Cn − Pn = (1 + r)n−NE∗[(SN −K)+ − (K − SN )+|Fn

]
= (1 + r)n−NE∗[SN −K|Fn]

= Sn −K(1 + r)n−N .

�

Theorem 1.5.1 We have Cn = c(n, Sn), where the function c(n, x) is equal to

(1 + r)N−n
N−n∑
j=0

(N − n)!
j!(N − n− j)!

pj(1− p)N−n−j
[
x(1 + a)j(1 + b)N−n−j −K

]
+
. (5.6)

Proof. From Tn = Sn/Sn−1, we have

SN = Sn

N∏
j=n+1

Tj .

By (4.1),

Cn = (1 + r)n−NE∗
[(
Sn

N∏
j=n+1

Tj −K
)

+

∣∣∣∣Fn

]
.

Note that
∏N

j=n+1 Tj is independent of Fn under P∗ and Sn is Fn-measurable. It
follows that Cn = c(n, Sn) with

c(n, x) = (1 + r)N−nE∗
[(
x

N∏
i=n+1

Ti −K
)

+

]
.

Then we obtain (5.6) by evaluating it according to the distribution of (T1, · · · , TN ).
�

Theorem 1.5.2 In the replicating strategy of a call the number of risky asset is
Hn = ∆(n, Sn−1) at time n, where ∆ is defined by

∆(n, x) =
c
(
n, x(1 + b)

)
− c

(
n, x(1 + a)

)
x(b− a)

. (5.7)
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Proof. Let H0
n denote the number of riskless assets in the replicating portfolio. We

have
H0

n(1 + r)n +HnSn = c(n, Sn).

Since H0
n and Hn are both Fn−1-measurable, they are functions of (S1, · · · , Sn−1).

But, since c(n, x) is increasing in x and since Sn only takes the values Sn−1(1 + a)
and Sn−1(1 + b), the above equality implies that

H0
n(1 + r)n +HnSn−1(1 + a) = c

(
n, Sn−1(1 + a)

)
,

and
H0

n(1 + r)n +HnSn−1(1 + b) = c
(
n, Sn−1(1 + b)

)
.

Subtracting the fist equality from the second one, we obtain:

HnSn−1(b− a) = c
(
n, Sn−1(1 + b)

)
− c

(
n, Sn−1(1 + a)

)
.

This gives the desired result. �

1.5.3 Asymptotics of the prices

Lemma 1.5.1 Let YN = XN
1 + XN

2 + · · · + XN
N , where {XN

j : j ≥ 1} are i.i.d.

random variables taking values from {−σ/
√
N, σ/

√
N} with mean µN satisfying

limN→∞NµN = µ. Then the distribution of YN converges to the Gaussian distri-
bution N(µ, σ2).

Proof. Since E[XN
j ] = µN and E[(XN

j )2] = σ2/N , we get

E
[
exp(iuYN )

]
=

(
E

[
exp(iuXN

1 )
])N

=
(
E

[
1 + iuXN

1 − (uXN
1 )2 + o((XN

1 )2)
])N

=
(
1 + iuµN − σ2u2/2N + o(1/N)

)N
.

It follows that
lim

N→∞
E

[
exp(iuYN )

]
= exp{itµ− σ2u2/2},

which proves the desired convergence in law. �

Now let us use the model to price a call or a put with maturity T on a single
stock. Let σ > 0, T > 0 and R ∈ R be fixed constants. For the integer N ≥ 1 we
write r = RT/N . Then we define a and b respectively by

log
(1 + a

1 + r

)
= − σ√

N
and log

(1 + b

1 + r

)
=

σ√
N
.
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It follows that

p =
b− r

b− a
=

eσ/
√

N − 1

eσ/
√

N − e−σ/
√

N
.

The real number R is interpreted as the instantaneous rate at all times between 0
and T because

lim
N→∞

(1 + r)N = lim
N→∞

(
1 +

RT

N

) N
RT

·RT
= eRT .

On the other hand, σ2 will be seen as the limit variance of the variable log(SN/S0)
when N is large.

Theorem 1.5.3 We have the following results on the asymptotic prices of the put
and the call at time zero:

lim
N→∞

P
(N)
0 = Ke−RTF (m)− S0F (m− σ), (5.8)

and

lim
N→∞

C
(N)
0 = S0F (σ −m)−Ke−RTF (−m), (5.9)

where m = [σ2/2− log(S0/K)−RT ]/σ and

F (x) =
1√
2π

∫ x

−∞
e−y2/2dy.

Proof. By (4.1),

P
(N)
0 = (1 + r)−NE∗

[(
K − S0

N∏
n=1

Tn

)
+
|F0

]

= (1 +RT/N)−NE∗
[(
K − S0

N∏
n=1

Tn

)
+

]
= E∗

[(
(1 +RT/N)−NK − S0e

YN
)
+

]
with YN =

∑N
n=1 log

(
Tn/(1+r)

)
. By the assumption, the variablesXN

j := log(Tj/(1+
r)) are valued in {−σ/

√
n, σ/

√
n} and are i.i.d. under P∗. Moreover,

E∗[XN
j ] = (1− 2p)

σ√
N

=
2− eσ/

√
N − e−σ/

√
N

eσ/
√

N − e−σ/
√

N

σ√
N
.

Therefore, the sequence {YN} satisfies the condition of Lemma 1.5.1 with

µ = lim
N→∞

NE∗[XN
j ] = −σ2/2.
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Then YN converges in distribution to the Gaussian variable Y := σξ−σ2/2 where ξ
has distribution N(0, 1). On the other hand, we may write ψ(y) = (Ke−RT −S0e

y)+
to see that

|P (N)
0 −E∗[ψ(YN )]|

=
∣∣∣E∗

[(
(1 +RT/N)−NK − S0e

YN
)
+
−

(
Ke−RT − S0e

YN
)
+

]∣∣∣
≤E∗

∣∣∣((1 +RT/N)−NK − S0e
YN

)
+
−

(
Ke−RT − S0e

YN
)
+

∣∣∣
≤K|(1 +RT/N)−N − e−RT |,

which goes to zero as N → ∞. Since ψ is a bounded and continuous function, we
conclude by dominated convergence that

lim
N→∞

P
(N)
0 = lim

N→∞
E∗[ψ(YN )]

=
1√
2π

∫ +∞

−∞
(Ke−RT − S0e

−σ2/2+σy)+e−y2/2dy

=
1√
2π

∫ m

−∞
(Ke−RT − S0e

−σ2/2+σy)e−y2/2dy

= Ke−RTF (m)− S0

∫ m

−∞

1√
2π
e−(y−σ)2/2dy

= Ke−RTF (m)− S0F (m− σ).

The price of the call follows easily from put/call parity

lim
N→∞

C
(N)
0 = lim

N→∞
P

(N)
0 + S0 − lim

N→∞
K(1 + r)−N

= Ke−RTF (m)− S0F (m− σ) + S0 −Ke−RT

= S0F (σ −m)−Ke−RTF (−m).

�

Remark 1.5.1 Note that the only non-directly observable parameter is σ. Its in-
terpretation as a limit variance suggests that it should be estimated by statistical
methods. We shall return to this problem later.



Chapter 2

Optimal times and American
options

2.1 Introduction

The purpose of this chapter is to address the pricing and hedging of American
options. We will establish a link between these questions and the optimal stopping
problem. To do so we will need to define the notion of optimal stopping time, which
enables us to model exercise strategies for American options. We will also define
the Snell envelope, which is the fundamental concept to solve the optimal stopping
problem. The application of these concepts to American options will be described.

2.2 Stopping times

Let (Ω,F ,P) be a finite probability space. We assume that F be the class of all
subsets of Ω and P({w}) > 0 for all ω ∈ Ω. This hypothesis is nonetheless not
essential. If it does not hold, the results remain true almost surely. Let (Fn)0≤n≤N

be a filtration defined on this probability space.

Definition 2.2.1 A random variable τ taking values in {0, 1, · · · , N} is called a
stopping time if {τ = n} ∈ Fn for every 0 ≤ n ≤ N .

The reader can verify that τ is a stopping time if and only if {τ ≤ n} ∈ Fn for
every 0 ≤ n ≤ N . We can use this equivalent definition to generalize the concept of
stopping time to the continuous-time setting.

29
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For a stopping time τ , we denote by Fτ the family of events A such that A∩{τ =
n} ∈ Fn for every 0 ≤ n ≤ N . It is easy to show that Fτ ⊆ FN is a σ-algebra, which
is often called the σ-algebra determined prior to τ . Clearly, the random variable τ
is Fτ -measurable.

Given an adapted sequence {Xn} and a stopping time τ , letXτ
n(ω) = Xτ(ω)∧n(ω).

We call {Xτ
n} the sequence stopped at τ .

Proposition 2.2.1 Let {Xn} be an adapted sequence and τ a stopping time. Then
the stopped sequence {Xτ

n} is adapted. Moreover, if {Xn} is a martingale (resp.
supermartingale or submartingale), then {Xτ

n} is also a martingale (resp. super-
martingale or submartingale).

Proof. Let φj = 1{j≤τ}. Since {j ≤ τ} = {τ < j}c = {τ ≤ j − 1}c ∈ Fj−1, the
process {φn : 0 ≤ n ≤ N} is predictable. Moreover, we see that

Xτ
n = X0 +

n∑
j=1

φj(Xj −Xj−1).

It is then clear that {Xτ
n} is adapted to the filtration (Fn). Furthermore, if {Xn}

is a martingale, then {Xτ
n} is also a martingale with respect to (Fn) since it is

the martingale transform of {Xn}. Similarly, we can show that if the sequence
{Xn} is a supermartingale (resp. submartingale), the stopped sequence {Xτ

n} is
still a supermartingale (resp. a submartingale) using the predictability and the
non-negativity of {φj}. �

For stopping times τ and σ satisfying τ ≤ σ, it is easy to show that Fτ ⊆ Fσ.
Moreover, we have the following

Proposition 2.2.2 Suppose {Mn} is a martingale and τ and σ are stopping times
such that τ ≤ σ, then we have

Mτ = E[Mσ|Fτ ]. (2.1)

Proof. Since τ is a stopping time, for any event A ∈ Fτ and any real random
variable X we have

E[1AX] =
N∑

j=0

E[1A∩{τ=j}X] =
N∑

j=0

E
[
E(1A∩{τ=j}X|Fj)

]

=
N∑

j=0

E
[
1A∩{τ=j}E(X|Fj)

]
= E

[
1A

N∑
j=0

1{τ=j}E(X|Fj)
]
.
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It follows that

E[X|Fτ ] =
N∑

j=0

1{τ=j}E[X|Fj ].

Applying this to X = MN we obtain

E[MN |Fτ ] =
N∑

j=0

1{τ=j}E[MN |Fj ] =
N∑

j=0

1{τ=j}Mj = Mτ .

Similarly, we have E[MN |Fσ] = Mσ. Therefore,

E[Mσ|Fτ ] = E[E(MN |Fσ)|Fτ ] = E[MN |Fτ ] = Mτ ,

proving the equality (2.1). �

2.3 Optimal stopping times

The theory of optimal stopping times play a very important role in the study of
America options. In this section we give the characterizations of some optimal
stopping times in terms of Snell envelopes. Let (Ω,F ,P) be a finite probability
space. We assume that F be the class of all subsets of Ω and P({w}) > 0 for all
ω ∈ Ω. Let (Fn)0≤n≤N be a filtration defined on this probability space.

2.3.1 Snell envelopes and Optimal times

Let us consider a sequence {Zn : 0 ≤ n ≤ N} defined on the probability space
(Ω,F ,P) which is adapted to the filtration (Fn)0≤n≤N . Let {Un} be defined induc-
tively by

Un−1 =

{
ZN for n = N ,
max

{
Zn−1,E[Un|Fn−1]

}
for 1 ≤ n ≤ N .

(3.1)

The sequence {Un} is called the Snell envelope of {Zn}.

Proposition 2.3.1 The Snell envelope {Un} defined by (3.1) is the smallest super-
martingale that dominates {Zn}.

Proof. From (3.1) we know that {Un} is a supermartingale dominating {Zn}. Let
us consider another supermartingale {Tn} that also dominates {Zn}. Then TN ≥
ZN = UN . Moreover, if Tn ≥ Un we have

Tn−1 ≥ E[Tn|Fn−1] ≥ E[Un|Fn−1],
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and hence
Tn−1 ≥ max

{
Zn−1,E[Un|Fn−1]

}
= Un−1.

A backward induction proves that {Tn} dominates {Un}. �

By definition, we have Un ≥ Zn with equality for n = N . In the case of a strict
inequality, we have Un = E[Un+1|Fn]. This suggests that by stopping adequately
the sequence {Un} it is possible to obtain a martingale as the following proposition
shows.

Proposition 2.3.2 The random variable define by

τ0 = inf{n ≥ 0 : Un = Zn} (3.2)

is a stopping time and the stopped sequence {U τ0
n } is a martingale.

Proof. Since UN = ZN , we see that τ0 is a well-defined element of {0, 1, · · · , N}.
Moreover, we have {τ0 = 0} = {U0 = Z0} ∈ F0 and

{τ0 = k} = {U0 > Z0} ∩ · · · ∩ {Uk−1 > Zk−1} ∩ {Uk = Zk} ∈ Fk

for 1 ≤ k ≤ N . To demonstrate that {U τ0
n } is a martingale, we set φj = 1{τ0≥j} and

write

U τ0
n = U0 +

n∑
j=1

φj∆Uj ,

as in the proof of Proposition 2.2.1. It follows that

U τ0
n+1 − U τ0

n = φn+1(Un+1 − Un) = 1{n+1≤τ0}(Un+1 − Un) (3.3)

for 0 ≤ n ≤ N − 1. By the definition Un = max{Zn,E[Un+1|Fn]} we find Un > Zn

on the set {n+ 1 ≤ τ0}. Consequently Un = E[Un+1|Fn] and we deduce from (3.3)
that

U τ0
n+1 − U τ0

n = 1{n+1≤τ0}(Un+1 −E[Un+1|Fn]).

Since {n+ 1 ≤ τ0} = {τ0 < n+ 1}c = {τ0 ≤ n}c ∈ Fn, we can take the conditional
expectation on both sides of the equality to see that

E[(U τ0
n+1 − U τ0

n )|Fn] = 1{n+1≤τ0}E{Un+1 −E[Un+1|Fn]|Fn} = 0.

Then {U τ0
n } is a martingale. �

We denote by Tn,N the set of stopping times taking values in {n, n+ 1, · · · , N}.
Notice that Tn,N is a finite set since Ω is assumed to be finite.
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Corollary 2.3.1 The stopping time τ0 defined by (3.2) satisfies

U0 = E[Zτ0 |F0] = sup
τ∈T0,N

E[Zτ |F0]. (3.4)

Proof. Since U τ0 is a martingale, we have

U0 = U τ0
0 = E[U τ0

N |F0] = E[Uτ0 |F0] = E[Zτ0 |F0].

On the other hand, for τ ∈ T0,N the stopped sequence U τ is a supermartingale.
Then

U0 ≥ E[U τ
N |F0] = E[Uτ |F0] ≥ E[Zτ |F0],

which yields the result. �

Definition 2.3.1 A stopping time τ is said to be optimal for the sequence {Zn} if

E[Zτ |F0] = sup
σ∈T0,N

E[Zσ|F0]. (3.5)

If we think of Zn as the total winnings of a gamble after n games, we see from
(3.5) that an optimal stopping time τ maximize the expected gain given F0. Corol-
lary 2.3.1 shows that τ0 is an optimal stopping time. By similar arguments we may
generalize the result of Corollary 2.3.1 to the following equality:

Un = E[Zτn |Fn] = sup
τ∈Tn,N

E[Zτ |Fn], (3.6)

where τn = inf{j ≥ n : Uj = Zj}. This gives an alternate definition of the sequence
{Un}.

Proposition 2.3.3 A stopping time τ is optimal if and only if

E[Zτ ] = sup
σ∈T0,N

E[Zσ]. (3.7)

Proof. If τ is an optimal stopping time, for any σ ∈ T0,N we have E[Zτ |F0] ≥
E[Zσ|F0] and hence

E[Zτ ] = E[E[Zτ |F0]] ≥ E[E[Zσ|F0]] = E[Zσ],

which clearly implies (3.7). Conversely, suppose that (3.7) holds. Corollary 2.3.1
implies that E[Zτ ] = E[U0]. But {Un} is a supermartingale dominating {Zn}, so we
conclude that

E[Zτ ] ≤ E[Uτ ] ≤ E[U0] = E[Zτ ], (3.8)

and hence Zτ = Uτ . It follows that E[Zτ |F0] = E[Uτ |F0] ≤ U0. In view of (3.8) we
get E[Zτ |F0] = U0, which implies the optimality of τ . �
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Theorem 2.3.1 A stopping time τ is optimal if and only if Zτ = Uτ and {U τ
n} is a

martingale.

Proof. If Zτ = Uτ and {U τ
n} is a martingale, we have U0 = E[U τ

N |F0] = E[Uτ |F0] =
E[Zτ |F0]. Then the optimality of τ is ensured by Corollary 2.3.1. Conversely, if τ
is optimal, we have

U0 = E[Zτ |F0] ≤ E[Uτ |F0]

since Uτ ≥ Zτ . But, Uτ is a supermartingale, so it is always true that E[Uτ |F0] ≤ U0.
It follows that

U0 = E[Zτ |F0] = E[Uτ |F0].

Since Uτ ≥ Zτ , we must have Uτ = Zτ . From E[Uτ |F0] = U0 and the inequalities

U0 ≥ E[Uτ∧n|F0] ≥ E[Uτ |F0] = E{E[Uτ |Fn]|F0}

based on the supermartingale property of {U τ
n} we get

U0 = E[Uτ∧n|F0] = E[Uτ |F0] = E{E[Uτ |Fn]|F0}.

But we have Uτ∧n ≥ E[Uτ |Fn], so Uτ∧n = E[Uτ |Fn]. That proves {U τ
n} is a

martingale. �

By Theorem 2.3.1 the optimal stopping time τ0 defined by (3.2) is the smallest
optimal stopping time. In the next section, we shall give a characterization of the
largest optimal stopping time in terms of Doob’s decomposition.

2.3.2 The Largest optimal time

Suppose then that {Un} is the Snell envelope of an adapted sequence {Zn}. Then
{Un} is a supermartingale. By Doob’s decomposition, there is a unique martingale
{Mn} and a unique non-decreasing process {An} such that

Un = Mn −An, 0 ≤ n ≤ N − 1. (3.9)

We can give a characterization of the largest optimal stopping time for {Zn} using
the non-decreasing process {An}:

Proposition 2.3.4 The largest optimal stopping time for {Zn} is given by

τmax =

{
N if AN = 0,

inf{n : An+1 6= 0} if AN 6= 0.
(3.10)
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Proof. Since {An} is predictable, it is straightforward to see that τmax is a stopping
time. From Un = Mn − An and because Aj = 0 for j ≤ τmax, we deduce that
U τmax = M τmax and then conclude that U τmax is a martingale. To show the optimality
of τmax it is sufficient to prove Uτmax = Zτmax . Note that

Uτmax =
N−1∑
j=0

1{τmax=j}Uj + 1{τmax=N}UN

=
N−1∑
j=0

1{τmax=j} max{Zj ,E[Uj+1|Fj ]}+ 1{τmax=N}ZN .

We have E[Uj+1|Fj ] = E[Mj+1 − Aj+1|Fj ] = Mj − Aj+1. On the set {τmax = j}
we have Aj = 0 and Aj+1 > 0, so Uj = Mj and E[Uj+1|Fj ] = Mj − Aj+1 < Uj .
It follows that Uj = max{Zj ,E[Uj+1|Fj ]} = Zj . Finally, we get Uτmax = Zτmax .
It remains to show that it is the largest optimal stopping time. Suppose that τ
is an optimal stopping time such that τ ≥ τmax and P{τ > τmax} > 0. We have
E[Mτ ] = E[M0] = E[U0] and hence

E[Uτ ] = E[Mτ ]−E[Aτ ] = E[U0]−E[Aτ ] < E[U0].

Then U τ cannot be a martingale, which is in contradiction to the assumption that
τ is an optimal stopping time. That establishes the claim. �

2.3.3 Snell envelopes of Markov chains

The aim of this paragraph is to compute Snell envelopes in a Markovian setting. A
sequence {Xn : 0 ≤ n ≤ N} of random variables taking their values in a finite set E
is called a Markov chain if we have

P{Xn+1 = y|X0 = x0, · · · , Xn−1 = xn−1, Xn = x} = P{Xn+1 = y|Xn = x} (3.11)

for any 0 ≤ n ≤ N − 1 and any element x0, · · · , xn−1, x, y of E. The chain is said to
be homogeneous if the value P (x, y) = P{Xn+1 = y|Xn = x} does not depend on n.
The matrix P = (P (x, y))(x,y)∈E×E indexed by E × E, is then called the transition
matrix of the chain. Clearly, the matrix P has non-negative entries and satisfies∑

y∈E P (x, y) = 1 for all x ∈ E. We can also define the notion of a Markov chain
with respect to the filtration (F )0≤n≤N .

Definition 2.3.2 A sequence {Xn : 0 ≤ n ≤ N} of random variables taking values
in E is a homogeneous Markov chain with respect to the filtration (Fn)0≤n≤N with
transition matrix P if {Xn} is adapted and if we have

E[f(Xn+1)|Fn] = Pf(Xn), (3.12)
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for every 0 ≤ n ≤ N−1 and every real-valued function f on E, where Pf represents
the function such that

Pf(x) =
∑
y∈E

P (x, y)f(y).

If one interprets real-valued functions on E as matrices with a single column
indexed by E, then Pf is indeed the product of the two matrices P and f . It can
also be easily seen that a Markov chain, as defined at the beginning of the section, is
a Markov chain with respect to its natural filtration defined by Fn = σ(X0, · · · , Xn).
The following proposition is an immediate consequence of the latter definition and
the definition of a Snell envelope.

Proposition 2.3.5 Let {Zn : 0 ≤ n ≤ N} be an adapted sequence defined by
Zn = ψ(n,Xn), where {Xn : 0 ≤ n ≤ N} is a homogeneous Markov chain with
transition matrix P and ψ is a function from {0, 1, · · · , N}×E to R. Then the Snell
envelope {Un} of the sequence {Zn} is given by Un = u(n,Xn), where the function
u(·, ·) is defined by u(N, ·) = ψ(N, ·) and

u(n− 1, ·) = max{ψ(n− 1, ·), Pu(n, ·)}, 1 ≤ n ≤ N. (3.13)

2.4 Applications to American options

Let (Ω,F ,P) be a finite probability space where F is the class of all subsets of Ω
and P({w}) > 0 for all ω ∈ Ω. Suppose that (Fn)0≤n≤N is a filtration satisfying
F0 = {φ,Ω} and FN = F . We consider a viable and complete market and denote by
P∗ the unique probability under which the discounted asset prices are martingales.

2.4.1 Pricing American options

An American option can be exercised at any time between 0 and N . We define it as
a non-negative adapted process {Zn : 0 ≤ n ≤ N}, where Zn is the immediate profit
made by exercising the option at time n. In the case of an American call option on
the stock {S1

n : 0 ≤ n ≤ N} with strike price K we have Zn = (S1
n −K)+. In the

case of a put, Zn = (K − S1
n)+.

In order to define the price {Un} of the option associated with the sequence of
payoff {Zn}, we shall think in terms of a backward induction starting at time N .
Indeed, we should obviously have UN = ZN . Let us consider at what price we should
sell the option at time N − 1. If the holder exercises straight away the writer will
have to pay ZN−1. The holder might also choose to exercise the option at time N in
which case the writer must pay the amount ZN . (The holder is the buyer, and the
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writer is the seller.) Therefore, at time N − 1 the writer has to earn the maximum
between ZN−1 and the amount necessary at time N − 1 to generate ZN at time N .
In other words, the writer wants the maximum between ZN−1 and the value at time
N−1 of an admissible strategy paying off ZN at time N , that is, S0

N−1E
∗[Z̃N |FN−1]

with Z̃N = ZN/S
0
N . Therefore, it makes sense to price the option at time N − 1 as

UN−1 = max
{
ZN−1, S

0
N−1E

∗[Z̃N |FN−1]
}
.

By induction, we define the price of the American option as

Un−1 = max
{
Zn−1, S

0
n−1E

∗[Un/S
0
n

∣∣Fn−1

]}
, 1 ≤ n ≤ N. (4.1)

As before, let Ũn = Un/S
0
n be the discounted price of the option. Then we have

Ũn−1 = max
{
Z̃n−1,E∗[Ũn|Fn−1]

}
, 1 ≤ n ≤ N. (4.2)

In other words, the discounted price {Ũn} is the Snell envelope under P∗ of the
discounted payoff {Z̃n}. We have noticed that the discounted price of the Euro-
pean option is a P∗-martingale. From (4.2) we see that the discounted price of the
American option is generally a P∗-supermartingale.

2.4.2 Hedging American options

We have defined the value process {Un} of an American option described by the
adapted non-negative sequence {Zn}. We know the discounted price of the option
{Ũn} is the Snell envelope of {Z̃n} under P∗. By (3.6) we have

Ũn = sup
τ∈Tn,N

E∗[Z̃τ |Fn] (4.3)

and consequently

Un = S0
n sup

τ∈Tn,N

E∗[Zτ/S
0
τ |Fn]. (4.4)

By Doob’s decomposition, we can write Ũn = M̃n − Ãn, where {M̃n} is a P∗-
martingale and {Ãn} is an increasing predictable process, null at time zero. Since
the market is complete, there is a self-financing strategy φ such that VN (φ) = S0

NM̃N

and so ṼN (φ) = M̃N . Since {ṼN (φ)} is a P∗-martingale, we have

Ṽn(φ) = E∗[ṼN (φ)|Fn] = E∗[M̃N |Fn] = M̃n, (4.5)

and consequently Ũn = Ṽn(φ)−Ãn. Then we have Un = Vn(φ)−An with An = S0
nÃn.

From this equality, it is obvious that the writer of the option can hedge himself
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perfectly. Indeed, once the writer receives the premium U0 = V0(φ), he can generate
a wealth equal to Vn(φ) at time n which is bigger than Un and a fortiori Zn.

Now what is the optimal date to exercise the option? The date of exercise is
to be chosen among all the stopping times. For the buyer of the option, there is
no point in exercising at time n when Un > Zn, because he would trade an asset
worth Un (the option) for an amount Zn (by exercising the option). Thus, as the
first condition, an optimal date τ of exercise should satisfy Uτ = Zτ . On the other
hand, there is no point in exercising after the time

τmax = inf{j : Aj+1 6= 0} = inf{j : Ãj+1 6= 0} (4.6)

because selling the option at that time provides the holder with a wealth Uτmax =
Vτmax(φ) and, following the strategy φ from that time, he creates a portfolio whose
value is strictly bigger than the option’s at times τmax+1, τmax+2, · · · , N . Therefore
we set τ ≤ τmax as the second condition for an optimal date τ of exercise, which
implies that {Ũ τ

n} is a martingale. As a result of those two conditions, optimal dates
of exercise are optimal stopping times for the sequence {Z̃n} under probability P∗.

Let us consider the writer’s point of view. If he hedges himself using the strategy
φ as defined above, he gets the wealth Vn(φ) at time n. If the buyer exercises at a
stopping time τ which is not optimal, then P∗{Uτ > Zτ} > 0 or P∗{Aτ > 0} > 0. In
both cases, the writer makes a profit Vτ (φ)−Zτ = Uτ +Aτ−Zτ which is non-negative
and is strictly positive with non-zero probability.

2.4.3 Relations of two options

We know that the discounted price of an European option is a P∗-martingale and
that of an American option is generally a P∗-supermartingale. Let us give some
more comparison of the two type of options.

Proposition 2.4.1 Let Cn be the value at time n of the American option described
by a non-negative adapted sequence {Zn} and let cn be the value at time n of the
European option defined by the FN -measurable random variable h = ZN . Then we
have Cn ≥ cn for every 0 ≤ n ≤ N . Moreover, if cn ≥ Zn for every 0 ≤ n ≤ N , then
cn = Cn for every 0 ≤ n ≤ N .

Proof. Under P∗ the discounted value {c̃n} is a martingale and {C̃n} is a super-
martingale. Since CN = cN = ZN clearly, we have

C̃n ≥ E∗[C̃N |Fn] = E∗[c̃N |Fn] = c̃n.

If cn ≥ Zn for every 0 ≤ n ≤ N , the sequence {c̃n} is a martingale that dominates
{Z̃n}. Since {C̃n} is the smallest supermartingale that dominates {Z̃n}, we have
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C̃n ≤ c̃n and so Cn ≤ cn for every 0 ≤ n ≤ N . Finally, we get Cn = cn for every
0 ≤ n ≤ N . �

The inequality Cn ≥ cn makes sense since the American option entitles the
holder to more rights than its European counterpart. One checks readily that if
the relationships of Proposition 2.6.1 did not hold, there would be some arbitrage
opportunities by trading the options.

Proposition 2.4.2 Consider a market with a single risky asset with price {Sn} and
a riskless asset {S0

n} with constant interest rate r ≥ 0 on each period. With the
notation of Proposition 2.4.1, if Zn = (Sn−K)+ is a call option with strike price K
on one unit of the risky asset, then cn = Cn for every 0 ≤ n ≤ N .

Proof. By using the martingale properties of {S̃n} and {c̃n} we have

c̃n = (1 + r)−NE∗[(SN −K)+|Fn] ≥ E∗[S̃N −K(1 + r)−N |Fn] = S̃n −K(1 + r)−N .

It follows that
cn ≥ Sn −K(1 + r)−(N−n) ≥ Sn −K.

Since cn ≥ 0, we have cn ≥ (Sn − K)+ = Zn and then Proposition 2.4.1 implies
Cn = cn. �

The above proposition asserts an equality between the price of the European
call and the price of the corresponding American call. This property does not hold
for the put, nor in the case of calls on currencies or dividend paying stocks. For
further discussions on the Snell envelope and optimal stopping, one may consult
Neveu (1972, Chapter VI) and Dacunha-Castelle and Duflo (1986, Section 5.1). For
the theory of optimal stopping in the continuous case, see El Karoui (1981) and
Shiryayev (1978).

2.4.4 American options of Markovian assets

Let us consider a market which consists of a riskless asset and a risky asset. Suppose
that the interest rate over one period is constant and equal to r. The price of the
riskless asset is then S0

n = (1 + r)n. Under this assumption, (4.1) becomes

Un−1 = max
{
Zn−1, (1 + r)−1E∗[Un|Fn−1]

}
, 1 ≤ n ≤ N. (4.7)

Suppose that the price of the risky asset {Sn : 0 ≤ n ≤ N} is a homogeneous
Markov chain under the probability P∗ with transition matrix P . Let us consider
the American option given by {Zn : 0 ≤ n ≤ N} with Zn = ψ(n,Xn) for a function
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ψ from {0, 1, · · · , N} × E to R+. Then the price sequence {Un} is given by Un =
u(n,Xn), where the function u(·, ·) is defined by u(N, ·) = ψ(N, ·) and

u(n− 1, ·) = max
{
ψ(n− 1, ·), (1 + r)−1Pu(n, ·)

}
, 1 ≤ n ≤ N. (4.8)

From (4.4) we get the pricing formula:

Un = (1 + r)n sup
τ∈Tn,N

E∗[(1 + r)−τψ(τ, Sτ )
∣∣Fn

]
, 0 ≤ n ≤ N. (4.9)

Let us consider a CRR model. Suppose that b > a > −1 are given constants
and let p = (b − r)/(b − a). In the CRR model, we have Sn = S0

∏n
j=1 Tj , where

{Tj} are i.i.d. random variables under the probability P∗ with P∗{Tj = 1 + a} = p
and P∗{Tj = 1 + b} = 1− p. In this case, the price at time n of the American call
with strike price K ≥ 0 can be written as Pn = P (n, Sn) where the function P (·, ·)
is defined by P (N,x) = (K − x)+ and

P (n− 1, x) = max
{
(K − x)+, (1 + r)−1f(n, x)

}
, 1 ≤ n ≤ N, (4.10)

with

f(n, x) = pP (n, x(1 + a)) + (1− p)P (n, x(1 + b)). (4.11)

Alternatively, we can also define P (·, ·) by

P (n, x) = sup
τ∈Tn,N

E∗
[
(1 + r)−τ

(
K − x

τ∏
j=1

Tj

)
+

]
. (4.12)

Proposition 2.4.3 The function x 7→ P (0, x) is convex and non-increasing.

Proof. From (4.12) it is clearly seen that x 7→ P (0, x) is non-increasing. Suppose
that x, y ≥ 0 and α, β ≥ 0 with α + β = 1. Setting ητ =

∏τ
j=1 Tj , we have by the

convexity of x 7→ (K − x)+ that

αP (0, x) + βP (0, y) = α sup
τ∈T0,N

E∗
[
(1 + r)−τ

(
K − xητ

)
+

]
+β sup

τ∈T0,N

E∗
[
(1 + r)−τ

(
K − yητ

)
+

]
≥ sup

τ∈T0,N

E∗
[
(1 + r)−τα

(
K − xητ

)
+

+ β
(
K − yητ

)
+

]
≥ sup

τ∈T0,N

E∗
[
(1 + r)−τ

(
K − αxητ − βyητ

)
+

]
= P (0, αx+ βy).

Then x 7→ P (0, x) is a convex function. �
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Proposition 2.4.4 Suppose that −1 < a < 0. Then there is a constant x∗ ∈ [0,K)
such that P (0, x) > (K − x)+ if x∗ < x < K/(1 + a)N and P (0, x) = (K − x)+
otherwise.

Proof. By Proposition 2.3.4, the function x 7→ P (0, x) is convex so it is continuous.
It is to see that P (0, 0) = K. Let x∗ = inf{x ≥ 0 : P (0, x) 6= (K − x)+}. Then
P (0, x) = (K − x)+ for 0 ≤ x ≤ x∗. If x ≥ K/(1 + a)N , we have x

∏τ
j=1 Tj ≥

x(1 + a)N ≥ K for any τ ≤ N . Then P (0, x) = 0 for x ≥ K/(1 + a)N . From (4.10)
and (4.11) we have

P (n− 1, x) ≥ 1
1 + r

f(n, x) ≥ p

1 + r
P (n, x(1 + a)).

Applying this relation inductively we get

P (0, x) ≥ pN

(1 + r)N
P (N,x(1 + a)N ) =

pN

(1 + r)N
[K − x(1 + a)N ].

That shows P (0, x) > 0 for K < x < K/(1+a)N . Now the desired result will follows
by the monotonicity and convexity of x 7→ P (0, x). �

By the result of Proposition 2.4.4, the holder of the American option would
keep his option if x∗ < S0 < K/(1 + a)N . Otherwise he should exercise the option
immediately.

2.5 Strategies with consumption

2.5.1 Definition and basic properties

Let (Ω,F ,P) be a finite probability space where F is the class of all subsets of Ω
and P({w}) > 0 for all ω ∈ Ω. Suppose that (Fn)0≤n≤N is a filtration satisfying
F0 = {φ,Ω} and FN = F . A strategy with consumption can be introduced in the
following way: At time n, once the new price S0

n, · · · , Sd
n are quoted, the investor

readjusts his positions from φn to φn+1 and selects the wealth γn+1 to consume at
time n + 1. Any endowment being excluded and the new positions being decided
given prices at time n, we deduce

φn · Sn = φn+1 · Sn + γn+1. (5.1)

Then a strategy with consumption is defined as a pair (φ, γ), where the strategy
φ = {(φ0

n, φ
1
n, · · · , φd

n) : 0 ≤ n ≤ N} is a predictable process taking values in Rd+1,
representing the numbers of assets held in the portfolio, and the consumption process
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γ = {γn : 0 ≤ n ≤ N} is a predictable process taking values in R+, representing the
wealth consumed at each step. The above equation gives the relationship between
the processes φ and γ, which replaces the self-financing condition introduced before.

Recall that the value and discounted value of the strategy φ = {(φ0
n, φ

1
n, · · · , φd

n)}
at time n are defined respectively as Vn(φ) = φn · Sn and Ṽn(φ) = φn · S̃n. We have
the following

Proposition 2.5.1 The following conditions are equivalent:

(i) The pair (φ, γ) defines a trading strategy with consumption.

(ii) For every 0 ≤ n ≤ N we have

Vn(φ) = V0(φ) +
n∑

j=1

φj ·∆Sj −
n∑

j=1

γj . (5.2)

(iii) For every 0 ≤ n ≤ N we have

Ṽn(φ) = V0(φ) +
n∑

j=1

φj ·∆S̃j −
n∑

j=1

γj/S
0
j−1. (5.3)

Proof. Obviously, (5.1) holds if and only if

φn+1 · Sn+1 − φn · Sn = φn+1 · Sn+1 − φn+1 · Sn − γn+1,

that is,

Vn+1(φ)− Vn(φ) = φn+1 · (Sn+1 − Sn)− γn+1. (5.4)

The last equation is clear equivalent to (ii). On the other hand, (5.1) is equivalent
to

φn · S̃n = φn+1 · S̃n + γn+1/S
0
n,

which holds if and only if

φn+1 · S̃n+1 − φn · S̃n = φn+1 · S̃n+1 − φn+1 · S̃n − γn+1/S
0
n,

that is,

Ṽn+1(φ)− Ṽn(φ) = φn+1 · (S̃n+1 − S̃n)− γn+1/S
0
n. (5.5)

The last equality holds for all 0 ≤ n ≤ N if and only (iii) is true. �
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2.5.2 Hedging with consumption strategies

Suppose that the market is viable and complete. Then there is a unique probability
P∗ under which the discounted asset prices are martingales. By Proposition 2.5.1,
the discounted value process {Ṽn(φ)} of a consumption strategy is a supermartingale
under P∗. The following result shows the converse is also true.

Proposition 2.5.2 Let {Ũn} is a supermartingale under P∗. Then there is a trad-
ing strategy with consumption (φ, γ) such that Ṽn(φ) = Ũn for every 0 ≤ n ≤ N .

Proof. By Doob’s decomposition, we can write Ũn = M̃n− Ãn, where {M̃n} is a P∗-
martingale and {Ãn} is an increasing predictable process, null at time zero. Since
the market is complete, there is a self-financing strategy ψ = {ψn : 0 ≤ n ≤ N}
that hedges the contingent claim S0

NM̃N . Then ṼN (ψ) = M̃N . Since {Ṽn(ψ)} is a
P∗-martingale, we have

Ṽn(ψ) = E∗[ṼN (ψ)|Fn] = E∗[M̃N |Fn] = M̃n.

Now we define the strategy φ by setting φ0
n = ψ0

n − Ãn and φi
n = ψi

n for 0 ≤ n ≤ N
and 1 ≤ i ≤ d. It follows that

Ṽn(φ) = Ṽn(ψ)− Ãn = M̃n − Ãn = Ũn. (5.6)

By Proposition 2.5.1 we have

Ṽn(ψ) = Ṽ0(ψ) +
n∑

j=1

ψn ·∆S̃j = Ṽ0(φ) +
n∑

j=1

φn ·∆S̃j (5.7)

since ∆S̃0
j = 0. Let γn = 0 and γn = S0

n−1(Ãn − Ãn−1) for 1 ≤ n ≤ N . We see
immediately that {γn} is a non-negative predictable process. From (5.6) and (5.7)
it follows that

Ṽn(φ) = Ṽn(ψ)− Ãn = Ṽ0(φ) +
n∑

j=1

φn ·∆S̃j −
n∑

j=1

γj/S
0
j−1.

Then (φ, γ) is a trading strategy with consumption. �

We say that a trading strategy with consumption (φ, γ) hedges the American
option defined by the non-negative adapted sequence {Zn} if Vn(φ) ≥ Zn for every
0 ≤ n ≤ N .

Proposition 2.5.3 Let {Zn} be a non-negative adapted sequence. Then there is
at least one trading strategy with consumption that hedges {Zn}, whose value is
precisely the value {Un} of the American option. Moreover, any trading strategy
with consumption (φ, γ) hedging {Zn} satisfies Vn(φ) ≥ Un for every 0 ≤ n ≤ N .
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Proof. Let Z̃n = Zn/S
0
n. We know that the discounted value {Ũn} is a supermartin-

gale. By Proposition 2.5.2, there is a trading strategy with consumption (φ, γ) such
that Ṽn(φ) = Ũn and so Vn(φ) = Un for all 0 ≤ n ≤ N . Since the discounted value
{Ũn} is the smallest supermartingale that dominates {Z̃n}, any trading strategy
with consumption (φ, γ) hedging {Zn} satisfies Vn(φ) ≥ Un for all 0 ≤ n ≤ N . �

2.5.3 Budget-feasible consumptions

Let us consider a viable and complete market and denote by P∗ the unique probabil-
ity under which the discounted asset prices are martingales. The endowment of an
investor at time zero can be represented by a number x ≥ 0. A consumption process
{γn} is said to be budget-feasible from the endowment x ≥ 0 if there is a strategy
φ such that the pair (φ, γ) defines a trading strategy with consumption satisfying
V0(φ) = x and Vn(φ) ≥ 0 for every 0 ≤ n ≤ N .

Proposition 2.5.4 A consumption process {γn} is budget-feasible from the endow-
ment x ≥ 0 if and only if

E∗
[ N∑

j=1

γj/S
0
j−1

]
≤ x. (5.8)

Proof. Suppose that {γn} is budget-feasible from the endowment x ≥ 0. Then there
is a strategy φ such that the pair (φ, γ) defines a trading strategy with consumption
satisfying V0(φ) = x and Vn(φ) ≥ 0 for every 0 ≤ n ≤ N . By Proposition 2.5.1,

Ṽn(φ) = V0(φ) +
n∑

j=1

φj ·∆S̃j −
n∑

j=1

γj/S
0
j−1,

where the second term on the right hand side is a martingale under P∗. Taking the
expectation we find

0 ≤ E∗[Ṽn(φ)] = x−E∗
[ N∑

j=1

γj/S
0
j−1

]
,

which yields (5.8). Conversely, suppose that (5.8) holds. We define a P∗-martingale
by

Mn = x+ E∗
[ N∑

j=1

γj/S
0
j−1

∣∣∣∣Fn

]
−E∗

[ N∑
j=1

γj/S
0
j−1

]
. (5.9)



2.5. STRATEGIES WITH CONSUMPTION 45

By Proposition 2.5.1 and 2.5.2, there is a trading strategy with consumption (φ, γ)
such that

Ṽn(φ) = Mn −
n∑

j=1

γj/S
0
j−1. (5.10)

From (5.9) and (5.10) it follows that

Ṽn(φ) = x+ E∗
[ N∑

j=n+1

γj/S
0
j−1

∣∣∣∣Fn

]
−E∗

[ N∑
j=1

γj/S
0
j−1

]
≥ 0.

In particular, we have Ṽ0(φ) = x. �



Bibliography

[1] Chow, Y.S. and Teicher, H. (1988): Probability Theory: Independence, Inter-
changeability, Martingales (2nd edition). Springer-Verlag, Berlin.

[2] Lamberton, D. and Lapeyre, B. (1996): Introduction to Stochastic Calculus
Applied to Finance. Chapman and Hall, London.

46


