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Chapter 1

Measurable Spaces

1.1 Measurable spaces

In this section, we discuss some properties of σ-algebras and measurable transformations. Let
Ω and E be non-empty sets.

Definition 1.1.1 A family F of subsets of Ω is called a σ-algebra on Ω if

(i) ∅ ∈ F and Ω ∈ F ;

(ii) A ∈ F implies Ac ∈ F ;

(iii) {A1, A2, · · · } ⊆ F implies
⋃∞
k=1Ak ∈ F .

If F is a σ-algebra on Ω, we call (Ω,F ) a measurable space. The sets in F are called measurable
sets.

Proposition 1.1.1 Suppose that I is an arbitrary index set and Fα is a σ-algebra on Ω for
each α ∈ I. Then F :=

⋂
α∈I Fα is a σ-algebra.

Proof. By the above definition, ∅ ∈ Fα and Ω ∈ Fα for each α ∈ I. Then ∅ ∈ F and Ω ∈ F .
If A ∈ F , for each α ∈ I we have A ∈ Fα and hence Ac ∈ Fα, so Ac ∈ F . Suppose that
{A1, A2, · · · } ⊆ F . For each α ∈ I we have {A1, A2, · · · } ⊆ Fα so that

⋃∞
k=1Ak ∈ Fα, implying⋃∞

k=1Ak ∈ F . �

Let f be a map from Ω to E. For A ⊆ Ω we write f(A) = {f(ω) ∈ B : ω ∈ Ω} and for
B ⊆ E we write f−1(B) = {ω ∈ Ω : f(ω) ∈ B}. If C is a family of subsets of Ω, then

σ(C ) :=
⋂
{F : F ⊇ C is a σ-algebra} (1.1.1)

defines a σ-algebra, which is called the σ-algebra generated by C .

Proposition 1.1.2 Let f : Ω → E be a map and G a σ-algebra on E. Then f−1(G ) :=
{f−1(B) ⊆ Ω : B ∈ G } is a σ-algebra on Ω.

1



2 CHAPTER 1. MEASURABLE SPACES

Proof. (Homework.) �

In the situation of the above proposition, we call f−1(G ) the σ-algebra generated by f and
is denoted by σ(f). For a class H of mappings from Ω to E, the σ-algebra generated by H is
defined as

σ(H ) := σ({f−1(A) : A ∈ E , f ∈ H }). (1.1.2)

Proposition 1.1.3 Let U be a family of subsets of E. Then we have σ(f−1(U )) = f−1(σ(U ))
for any mapping f : Ω → E.

Proof. By Proposition 1.1.2 we find that f−1(σ(U )) is a σ-algebra. Since f−1(σ(U )) ⊇ f−1(U ),
we have f−1(σ(U )) ⊇ σ(f−1(U )). On the other hand, let G = {B ⊆ E : f−1(B) ∈ σ(f−1(U ))}.
It is easily seen that f−1(G ) ⊆ σ(f−1(U )). If B ∈ U , we have f−1(B) ∈ f−1(U ) ⊆ σ(f−1(U ))
and hence B ∈ G . That shows U ⊆ G . It is not hard to check that G is a σ-algebra on E so
that σ(U ) ⊆ G . Consequently, we have f−1(σ(U )) ⊆ f−1(G ) ⊆ σ(f−1(U )). �

Given two measurable spaces (Ω,F ) and (E,E ), we say a mapping f : Ω → E is F/E -
measurable, or simply F -measurable, provided f−1(E ) ⊆ F . A one-to-one correspondence
φ : Ω → E is called an isomorphism if φ is F/E -measurable and φ−1 is E /F -measurable. We
say (Ω,F ) and (E,E ) and isomorphic if there is an isomorphism between them.

Proposition 1.1.4 If every f ∈ H is F/E -measurable, then σ(H ) ⊆ F .

Proof. Under the assumption, we have {f−1(A) : A ∈ E , f ∈ H } ⊆ F and hence σ(H ) ⊆ F .
�

Proposition 1.1.5 Let (Ω,F ), (E,E ) and (G,G ) be measurable spaces. If f : Ω → E is
F/E -measurable and h : E → G is E /G -measurable, the composition h ◦ f : Ω → G is F/G -
measurable.

Proof. Since h is E /G -measurable, we have h−1(G ) ⊆ E and hence

(h ◦ f)−1(G ) = f−1(h−1(G )) ⊆ f−1(E ).

From the measurability of f we get f−1(E ) ⊆ F . Consequently, h ◦ f is F/G -measurable. �

Let O(Rd) denote the family of all open sets on the Euclidean space Rd. We call B(Rd) :=
σ(O(Rd)) the Borel σ-algebra of on Rd. Clearly, B(Rd) includes all open sets, closed sets,
intervals, singletons, finite sets and countable sets.

Proposition 1.1.6 Let L (Rd) = {(−∞, b] : b ∈ Rd} and R(Rd) = {[a,∞) : a ∈ Rd}. Then
B(Rd) = σ(L (Rd)) = σ(R(Rd)).

Proof. As observed above, we have L (Rd) ⊆ B(Rd). Since B(Rd) is a σ-algebra, we conclude
that σ(L (Rd)) ⊆ B(Rd). On the other hand, for any a ≤ b ∈ Rd we have (a, b] = (−∞, b] \
(−∞, a] ∈ σ(L (Rd)). Since each element of O(Rd) is the union of a countable number of intervals
of the form (a, b], we get O(Rd) ⊆ σ(L (Rd)) and hence B(Rd) = σ(O(Rd)) ⊆ σ(L (Rd)). That
shows B(Rd) = σ(L (Rd)). The equality B(Rd) = σ(R(Rd)) follows by similar arguments.
(Homework.) �
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Corollary 1.1.1 Let S (Rd) = {(a, b] : a ≤ b ∈ Rd}. Then B(Rd) = σ(S (Rd)).

Proposition 1.1.7 Let f be a real function on (Ω,F ). Then following properties are equiva-
lent:

(i) f is F/B(R)-measurable;

(ii) f−1((−∞, b]) ∈ F for every b ∈ R;

(iii) f−1((−∞, b)) ∈ F for every b ∈ R;

(iv) f−1([a,−∞)) ∈ F for every a ∈ R;

(v) f−1((a,−∞)) ∈ F for every a ∈ R.

Proof. Clearly, (i) implies (ii) – (v). Now suppose (ii) holds. In other words, f−1(L (R)) ⊆ F .
Then Propositions 1.1.6 and 1.1.3 imply

f−1(B(R)) = f−1(σ(L (R))) = σ(f−1(L (R))) ⊆ F .

Then (ii) holds. Clearly, (iii) implies (ii), so it also implies (i). The remaining assertions are
immediate. �

Corollary 1.1.2 Let {fn} be a bounded sequence of real functions on (Ω,F ). If each fn is
F -measurable, then the following real functions are F -measurable: infn f , supn f , lim infn f ,
lim supn f .

Example 1.1.1 A finite or countable family {Ui : i ∈ I} of disjoint subsets of Ω satisfying⋃
i∈I Ui = Ω is called a partition of Ω. If C = {Ui : i ∈ I} is a partition of Ω, then σ(C ) ={ ⋃
j∈J Uj : J ⊆ I

}
with

⋃
j∈∅ Uj = ∅ by convention. (Homework.)

Example 1.1.2 Let C = {Ui : i ∈ I} be a finite or countable partition of Ω. We equip R with
the σ-algebra B(R). Then a function X : Ω → R is σ(C )-measurable if and only if

X(ω) =
∑
i∈I

ci1Ui(ω), ω ∈ Ω, (1.1.3)

for a family of real constants {ci : i ∈ I}. (Homework.)

Example 1.1.3 Let {ci : i ∈ I} be distinct real numbers and let C = {Ui : i ∈ I} be a
partition of Ω. Let (R,B(R)) be given as in the last example. If the function X : Ω → R has
representation (1.1.3), then σ(X) = σ(C ). (Homework.)

1.2 Metric spaces and Borel functions

Definition 1.2.1 Let E be a non-empty set. A function ρ : E × E → R is called a metric if it
satisfies:
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(i) ρ(x, y) ≥ 0 for all x, y ∈ E;

(ii) ρ(x, y) = 0 if and only if x = y for all x, y ∈ E;

(iii) ρ(x, y) = ρ(y, x) for all x, y ∈ E;

(iv) ρ(x, y) ≤ ρ(x, z) + ρ(y, z) for all x, y, z ∈ E.

In this case, we call (E, ρ) a metric space.

Suppose that ρ is a metric on E. For x, y ∈ E let r(x, y) = 1 ∧ ρ(x, y). It is easy to show
that r(·, ·) is also a metric on E. In this sequel, we assume (E, ρ) is a fixed metric space.

Definition 1.2.2 Let a ∈ E and r > 0. We call B(a, r) := {x : ρ(a, x) < r} a ball centered at
a with radius r. A set U ⊆ E is called an open set, if for each a ∈ U there is some r = r(a) > 0,
such that B(a, r) ∈ U . A set F is called a closed set if E \ F is an open set.

Clearly, the sets E and ∅ are simultaneously open and closed. A typical metric space is the
space Rd equipped with the Euclidean metric determined by

|x− y| =
( d∑
j=1

|xj − yj |2
)1/2

.

Definition 1.2.3 Let x ∈ A ⊆ E. If there is some r > 0 such that B(x, r) ⊆ A, we call x an
interior point of A. We call A◦ := {interior points of A} the interior of A and call Ā := ((Ac)◦)c

the closure of A. It is not hard to show that A◦ is the largest open subset of A and Ā is the
smallest closed superset of A. The set ∂A := Ā \A◦ is called the boundary of A. We say A ⊆ E
is dense in F ⊆ E if Ā ⊇ F . The space E is said to be separable is it has a countable dense
subset.

Proposition 1.2.1 Let A ⊆ E. Then x ∈ Ā if and only if there is a sequence {xn} ⊆ A, such
that xn → x as n→∞.

Proof. “⇒” Suppose that x ∈ Ā = ((Ac)◦)c, so x /∈ (Ac)◦. According to the definition of the
interio, for every n ≥ 1 the inclusion B(x, 1/n) ⊆ Ac does not hold. In other word, for every
n ≥ 1 there is some xn ∈ B(x, 1/n) such that xn /∈ Ac. That is, xn ∈ B(x, 1/n) ∩ A. It follows
that xn ∈ A and ρ(xn, x) < 1/n, so we have xn → x as n→∞.

“⇐” Suppose there is {xn} ⊆ A such that xn → x as n → ∞. We shall prove x ∈ Ā =
((Ac)◦)c. If this is not true, we have x ∈ (Ac)◦, that is, there is some r > 0 such thatB(x, r) ⊆ Ac.
Then xn /∈ B(x, r) for every n ≥ 1, which is in contradiction to the fact xn → x. �

Definition 1.2.4 Let (E, ρ) and (F, r) be two metric spaces. We say f : E → F is continuous
at x ∈ E if for each ε > 0 there exists δ > 0 such that f(Bρ(x, δ)) ⊆ Br(f(x), ε). We say f is
continuous on E if it is continuous at every x ∈ E. We say f is uniformly continuous on E if
for each ε > 0 there exists δ > 0 such that f(Bρ(x, δ)) ⊆ Br(f(x), ε) for every x ∈ E.
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Theorem 1.2.1 A mapping f : (E, ρ) → (F, r) is continuous if and only if f−1(U) ⊆ E is open
whenever U ⊆ F is open.

Proof. “⇒” Suppose that f is continuous and U ⊆ F is an open set. For each x ∈ f−1(U)
we have y := f(x) ∈ U . Since U is open, there is some ε > 0 such that Br(y, ε) ⊆ U . By the
continuity of f , there is δ > 0 so that

f(Bρ(x, δ)) ⊆ Br(f(x), ε)) = Br(y, ε).

It follows that
Bρ(x, δ) ⊆ f−1(Br(y, ε)) ⊆ f−1(U).

That shows that f−1(U) is an open set.

“⇐” Suppose that f−1(U) ⊆ E is open whenever U ⊆ F is an open set. Let x ∈ E and
ε > 0. Then f−1(Br(f(x), ε)) ⊆ E is an open set and x ∈ f−1(Br(f(x), ε)). It follows that
Bρ(x, δ) ⊆ f−1(Br(f(x), ε)) for some δ > 0, which implies that f(Bρ(x, δ)) ⊆ Br(f(x), ε). Then
f is continuous. �

Corollary 1.2.1 A mapping f : (E, ρ) → (F, r) is continuous if and only if f−1(A) ⊆ E is
closed whenever A ⊆ F is a closed set.

Let O(E) denote the family of open subsets of E. We call B(E) := σ(O(E)) the Borel
σ-algebra of E. A set B ∈ B(E) is called a Borel set and a B(E)-measurable real function
f : E → R is called a Borel function.

Proposition 1.2.2 A continuous function f : E → R is a Borel function.

Proof. Since f is continuous, by Theorem 1.2.1 we have f−1(O(R)) ⊆ O(E). It follows that

f−1(B(R)) = f−1(σ(O(R)) = σ(f−1(O(R))) ⊆ σ(O(E)) = B(E).

Then f is B(E)/B(R)-measurable. �

Proposition 1.2.3 For any non-empty set A ⊆ E, let

ρ(x,A) = inf{ρ(x, y) : y ∈ A}, x ∈ E. (1.2.1)

Then ρ(·, A) is a uniformly continuous function on E.

Proof. Let x, y ∈ E. For any z ∈ A we have

ρ(x,A)− ρ(y, z) ≤ ρ(x, z)− ρ(y, z) ≤ ρ(x, y).

Then we can take supz∈A in both sides to get

ρ(x,A)− ρ(y,A) ≤ ρ(x, y).
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A similar argument shows that

ρ(y,A)− ρ(x,A) ≤ ρ(x, y).

Combining those two inequalities, we obtain

|ρ(x,A)− ρ(y,A)| ≤ ρ(x, y).

Then ρ(·, A) is uniformly continuous on E. �

Proposition 1.2.4 Let C(E)+ denote the class of bounded, non-negative and continuous func-
tions on E. Then σ(C(E)+) = B(E).

Proof. By Proposition 1.2.2, each f ∈ C(E)+ is B(E)-measurable. Then Propositions 1.1.4
implies σ(C(E)+) ⊆ B(E). For fixed U ∈ O(E) let h(x) = 1 ∧ ρ(x, U c). By Proposition 1.2.3,
we have hn := h1/n ∈ C(E)+ so hn is σ(C(E)+)-measurable. Clearly, h(x) = 0 for x ∈ U c

and 0 < h(x) ≤ 1 for x ∈ U . It follows that hn → 1U , so 1U is σ(C(E)+)-measurable and
consequently U ∈ σ(C(E)+). That shows that O(E) ⊆ σ(C(E)+). Thus B(E) = σ(O(E)) ⊆
σ(C(E)+). �

We shall often need to consider functions taking values in the extended real line R̄ := [−∞,∞]
denote the. A metric ρ1 on R̄ is defined by

ρ1(x, y) =
∣∣∣ x

1 + |x|
− y

1 + |y|

∣∣∣.
Proposition 1.2.5 Let (Ω,F ) be a measurable space and f : Ω → R̄ an extended real-valued
function on Ω. Then following properties are equivalent:

(i) f is F/B(R̄)-measurable;

(ii) f−1([−∞, b]) ∈ F for every b ∈ R;

(iii) f−1([−∞, b)) ∈ F for every b ∈ R;

(iv) f−1([a,−∞]) ∈ F for every a ∈ R;

(v) f−1((a,−∞]) ∈ F for every a ∈ R.

Proof. (Homework.) �

Corollary 1.2.2 Let {fn} be a sequence of extended real-valued functions on (Ω,F ). If each fn
is F -measurable, then the following extended real-valued functions are F -measurable: infn f ,
supn f , lim infn f , lim supn f .

Definition 1.2.5 We say a sequence {xn} ⊆ E is Cauchy if ρ(xm, xn) → 0 as m,n → ∞. We
say xn converges to x ∈ E as n→∞, if ρ(xn, x) → 0 as n→∞. In this case, we write xn → x.
The space (E, ρ) is said to be complete if every Cauchy sequence in it converges.

Proposition 1.2.6 Let Ω be a Borel subset of some complete separable metric space with
F = B(Ω). Then there is a closed subset F of [0, 1] such that (Ω,F ) is isomorphic to (F,B(F )).

Proof. This follows immediately from Parthasarathy (1967, p.14, Theorem 2.12). (Homework:
Read and understand the proof.) �
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1.3 Monotone classes of sets

We simply write An↑ if {An} is a non-decreasing sequence of sets and write An↓ if {An} is a
non-increasing sequence of sets. If An↑ and A =

⋃∞
n=1An, we write An ↑ A. Similarly, if An↓

and A =
⋂∞
n=1An, we write An ↓ A.

Definition 1.3.1 A class A of subsets of Ω is called an algebra on Ω if

(i) ∅ ∈ A and Ω ∈ A ;

(ii) A ∈ A implies Ac ∈ A ;

(iii) {A1, A2, · · · , An} ⊆ F implies
⋃n
k=1Ak ∈ F .

Definition 1.3.2 A class D of subsets of the non-empty set Ω is called a monotone class if it
has the following properties:

(i) If {An} ⊆ D and An↑, then
⋃∞
n=1An ∈ D ;

(ii) If {An} ⊆ D and An↓, then
⋂∞
n=1An ∈ D .

Let C be a class of subsets of Ω. Then

µ(C ) :=
⋂
{D : D ⊇ C is a monotone class}. (1.3.1)

is a monotone class, which is called the monotone class generated by C .

Lemma 1.3.1 If D is simultaneously an algebra and a monotone class, it is a σ-algebra.

Proof. It is sufficient to show that D is closed under the operation of countable unions. Suppose
that {An} ⊆ D . Since D is an algebra, we have Bn :=

⋃n
k=1Ak ∈ D for each n ≥ 1. By the

definition of the monotone class we have
⋃∞
n=1An =

⋃∞
n=1Bn ∈ D . �

Theorem 1.3.1 If C is an algebra, then µ(C ) = σ(C ) .

Proof. Since a σ-algebra is a monotone class, we have σ(C ) ⊇ µ(C ). To prove µ(C ) ⊇ σ(C ),
it is sufficient to show µ(C ) is a σ-algebra. By Lemma 1.3.1 we only need to show µ(C ) is an
algebra. Since Ω ∈ C ⊂ µ(C ), it suffices to show A,B ∈ µ(C ) implies B ∪A and A \B ∈ µ(C ).
For A ⊆ Ω, let

DA = {B ⊆ Ω : B ∪A,B \A and A \B ∈ µ(C )}.

The desired result will follow if we can prove DA ⊇ µ(C ) for all A ∈ µ(C ). We show this in
three steps as follows.

Step 1) We prove DA is a monotone class. If {Bn} ⊆ DA and Bn ↑ B, we have Bn ∪ A,
Bn \A and A \Bn ∈ µ(C ). Since µ(C ) is a monotone class, it is easily seen that B ∪A, B \A
and A \ B ∈ µ(C ), and so B ∈ DA. Similarly, if {Bn} ⊆ DA and Bn ↓ B, we have B ∈ DA.
Thus DA is a monotone class.
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Step 2) For A ∈ C , we prove DA ⊇ µ(C ). Suppose that B ∈ C . Since C is an algebra, we
have B ∪A, B \A and A \B ∈ C ⊆ µ(C ). It follows that B ∈ DA. That shows DA ⊇ C . Since
DA is a monotone class we get DA ⊇ µ(C ).

Step 3) For A ∈ µ(C ), we prove DA ⊇ µ(C ). Suppose that B ∈ C . By the last step, we
have DB ⊇ µ(C ). In particular, we get A ∈ DB which implies B ∈ DA. It follows that DA ⊇ C
and hence DA ⊇ µ(C ). �

Corollary 1.3.1 If C is an algebra and D ⊇ C is a monotone class, then D ⊇ µ(C ) = σ(C ).

Definition 1.3.3 A class C of subsets of Ω is called a π-class if A ∩ B ∈ C for all A,B ∈ C .
A class D of subsets of Ω is called a λ-class if

(i) Ω ∈ D and Ω ∈ D ;

(ii) A,B ∈ D and A ⊆ B imply B \A ∈ D ;

(iii) {An} ⊆ D and An↑ imply
⋃∞
n=1An ∈ D .

For a class C of subsets of Ω, let

λ(C ) :=
⋂
{D : D ⊇ C is a λ-class}. (1.3.2)

Then λ(C ) is a λ-class, which is called the λ-class generated by C .

Lemma 1.3.2 If D is simultaneously a π-class and a λ-class, it is a σ-algebra.

Proof. By the definition of the λ-class, we have Ω ∈ D . Moreover, if A ∈ D , then Ac = Ω\A ∈ D .
For any sequence {An} ⊆ D let Bn =

⋃n
j=1Aj . Then Acn ∈ D for each n ≥ 1 and hence

Bc
n =

⋂n
j=1A

c
j ∈ D . It follows that Bn = (Bc

n)
c ∈ D . Using the definition of the λ-class again

we conclude that Bn ↑
⋃∞
n=1An ∈ D . Then D is a σ-algebra. �

Theorem 1.3.2 If C is a π-class, then λ(C ) = σ(C ).

Proof. Since a σ-algebra is a λ-class, we have λ(C ) ⊆ σ(C ). To show σ(C ) ⊆ λ(C ) it suffices
to prove λ(C ) is a σ-algebra. By Lemma 1.3.2, we only need to show that λ(C ) is a π-class.
For A ⊆ Ω let DA = {B ⊆ Ω : A ∩B ∈ λ(C )}. The desired result follows once it is proved that
DA ⊇ λ(C ) for all A ∈ λ(C ). This property can be in three steps: Step 1) Prove DA is a λ-class
for A ∈ λ(C ); Step 2) Prove DA ⊇ λ(C ) for A ∈ C ; Step 3) Prove DA ⊇ λ(C ) for A ∈ λ(C ).
We omit the details. (Homework: Gives the details of the last part of the proof.) �

Corollary 1.3.2 If C is a π-class and D ⊇ C is a λ-class, then D ⊇ λ(C ) = σ(C ).
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1.4 Monotone systems of functions

Definition 1.4.1 A non-empty family M of non-negative extended real-valued functions on Ω
is called a monotone system if the following conditions are satisfied:

(i) For any f1, f2 ∈ M and a1, a2 ∈ R with a1f1 + a2f2 ≥ 0 we have a1f1 + a2f2 ∈ M ;

(ii) If {fn} ⊆ M and fn ↑ f , then f ∈ M .

Theorem 1.4.1 Let C be an algebra and M a monotone system on Ω. If M contains the
indicators of all sets in C , it contains all non-negative σ(C )-measurable functions.

Proof. Let D = {A ⊆ Ω : 1A ∈ M }. By the assumption, we have D ⊇ C . We claim that D is
a monotone class. Indeed, suppose that {Bn} ⊆ D and Bn ↑ B. Then 1Bn ↑ 1B ∈ M by the
definition of the monotone system. It follows that B ∈ D . If {Bn} ⊆ D and Bn ↓ B, we have
1Bn ∈ M . By the definition again we have 1B1 − 1Bn ∈ M and (1B1 − 1Bn) ↑ 1B1 − 1B ∈ M .
It follows that 1B = 1B1 − (1B1 − 1B) ∈ M and hence B ∈ D . Now we have D ⊇ µ(C ) = σ(C )
by Corollary 1.3.1. In other words, 1A ∈ M for each A ∈ σ(C ). For a non-negative and
σ(C )-measurable function f and n ≥ 1, let

fn =
n2n∑
k=1

k − 1
2n

1{(k−1)/2n≤f<k/2n} + n1{f≥n}.

It is easy to see that fn ∈ M and fn ↑ f . Then f ∈ M by the definition of the monotone class.
�

Definition 1.4.2 A family L of non-negative extended real-valued functions on Ω is called a
λ-system if

(i) 1 ∈ L ;

(ii) For any f1, f2 ∈ L and a1, a2 ∈ R with a1f1 + a2f2 ≥ 0 we have a1f1 + a2f2 ∈ L ;

(iii) If {fn} ⊆ L and fn ↑ f , then f ∈ L .

Theorem 1.4.2 Let C be a π-class and L a λ-system. If L contains the indicators of all sets
in C , it contains all non-negative σ(C )-measurable function.

Proof. This follows by similar arguments as in the proof of Theorem 1.4.1. (Homework.) �

Given a family U of non-negative functions on Ω, we may define the following λ-system:

Λ(U ) =
⋂
{L : L ⊇ U is a λ-system}, (1.4.1)

which is called the λ-system generated by U .

Lemma 1.4.1 For |x| ≤ 1, define {Pn(x)} inductively by P0(x) ≡ 0 and

Pn(x) = Pn−1(x) +
1
2
[
x2 − P 2

n−1(x)
]
. (1.4.2)

Then Pn(x) ≥ 0 and Pn(x) ↑ |x| as n→∞.
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Proof. If 0 ≤ Pn−1(x) ≤ |x| ≤ 1, then clearly Pn(x) ≥ Pn−1(x) and

Pn(x) = Pn−1(x) +
1
2
[
|x|+ Pn−1(x)

][
|x| − Pn−1(x)

]
≤ Pn−1(x) +

[
|x| − Pn−1(x)

]
≤ |x|.

By induction in n ≥ 0 we have 0 ≤ Pn(x) ≤ |x| and Pn(x) ↑. Let P (x) = limn→∞ Pn(x). From
(1.4.2) we obtain 0 = x2 − P 2(x) and hence P (x) = |x|. �

Theorem 1.4.3 Let U be a family of bounded non-negative functions on Ω which is closed
under multiplication. Then Λ(U ) contains all non-negative σ(U )-measurable functions.

Proof. Step 1) For any non-negative function g on Ω, let

Lg = {f ∈ Λ(U ) : fg ∈ Λ(U )}.

It is easy to show that Lg is a λ-system for g ∈ Λ(U ). (Homework: Prove this fact.)

Step 2) Let g ∈ U . For any f ∈ U , we have fg ∈ U ⊆ Λ(U ) and hence f ∈ Lg. That is,
Lg ⊇ U . Since Lg is a λ-system, it follows that Lg ⊇ Λ(U ).

Step 3) Let g ∈ Λ(U ). For any f ∈ U , we have Lf ⊇ Λ(U ) and hence g ∈ Lf . This implies
that f ∈ Lg. It follows that Lg ⊇ U . Since Lg is a λ-system, we have Lg ⊇ Λ(U ). Then the
definition of Lg implies that Λ(U ) is closed under multiplication.

Step 4) For bounded f, g ∈ Λ(U ), let us prove f ∧ g ∈ Λ(U ). Obviously, we may assume
0 ≤ f, g ≤ 1 and hence |f − g| ≤ 1. From the last step and the definition of the λ-system it
follows that

(f − g)2 = f2 + g2 − 2fg ∈ Λ(U ).

Let {Pn(x)} be defined as in Lemma 1.4.1. By induction in n ≥ 0 we have Pn(f − g) ∈ Λ(U )
and hence |f − g| ∈ Λ(U ). It then follows that

f ∧ g =
1
2
[
f + g − |f − g|

]
∈ Λ(U ).

Step 5) Let F = {A ⊆ Ω : 1A ∈ Λ(U )}. It is easily seen that F is a λ-class and a π-class, so
it is a σ-algebra. Let f ∈ U and α > 0. Then (α−1f)∧1 ∈ Λ(U ) and so 1−[(α−1f)∧1]n ∈ Λ(U ).
It follows that

1−
[
(α−1f) ∧ 1

]n ↑ 1{f<α} ∈ Λ(U )

by the definition of the λ-system. That means that {f < α} ∈ F and so f is F -measurable.
By Proposition 1.1.4 we have σ(U ) ⊆ F . That is, 1A ∈ Λ(U ) for every A ∈ σ(U ).

Step 6) Let f ≥ 0 be σ(U )-measurable. For n ≥ 1 define fn as in the proof of Theorem 1.4.1.
By the last step and the definition of the λ-system it is easy to show that fn ∈ Λ(U ). Since
fn ↑ f , we have f ∈ Λ(U ). �

Let Ω be a non-empty set and (E,E ) a measurable space. Recall that the σ-algebra generated
by a mapping g : Ω → E is defined as σ(g) := g−1(E ).

Theorem 1.4.4 A function φ : (Ω, σ(g)) → (R,B(R)) is measurable if and only if there is a
measurable function f : (E,E ) → (R,B(R)) such that φ = f ◦ g.
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Proof. “⇐” Since g is σ(g)/E -measurable, this follows from Proposition 1.1.5.

“⇒” The proof of this part is a typical application of the monotone system method. Let
L = {f ◦ g : f is a non-negative and measurable function on (E,E )}. We shall prove that L is
a monotone system containing the indicator of every set in σ(g).

(a) Suppose that A ∈ σ(g). Then we have A = g−1(B) for some B ∈ E . It follows that

1A(ω) = 1g−1(B)(ω) = 1B(g(ω)) = 1B ◦ g(ω), ω ∈ Ω.

Thus L contains the indicators of all sets in σ(g). In particular, 1 ∈ L .

(b) Suppose that {φ1, φ2} ∈ L and {a1, a2} ∈ R with a1φ1 + a2φ2 ≥ 0. Then there are non-
negative and measurable functions f1 and f2 on (E,E ) such that φ1 = f1 ◦ g and φ2 = f2 ◦ g.
Let h = a1f1 + a2f2 and f = h1{h≥0}. It is easy to see that f is a non-negative and measurable
function on (E,E ) and

a1φ1(ω) + a2φ2(ω) = f ◦ g(ω) = h ◦ g(ω), ω ∈ Ω.

Thus we have a1φ1 + a2φ2 ∈ L .

(c) Suppose that {φn} ⊆ L and 0 ≤ φn ↑ φ. For each n ≥ 1, there is a non-negative and
measurable function fn on (E,E ) such that φn = fn ◦ f . Let h = supn≥1 fn and f = h1{h<∞}.
Then f is a non-negative and measurable function on (E,E ) and φ = f ◦ g. It follows that
φ ∈ L .

We have shown that L is a monotone system containing the indicator of every set in σ(g).
By Theorem 1.4.1 we see that L contains all non-negative σ(g) measurable functions on Ω. If φ
is a measurable function on (Ω, σ(g)), both φ+ and φ− are non-negative measurable functions.
Then φ+ and φ− ∈ L by the above arguments. Suppose that φ+ = f1 ◦ g and φ− = f2 ◦ g,
where f1 and f2 and both non-negative and measurable functions on (E,E ). Then f = f1 − f2

is a measurable function on (E,E ) and φ = f ◦ g. �

Theorem 1.4.5 Let (E, ρ) be a metric space and L a λ-system which contains all bounded,
non-negative and continuous functions. Then L contains all non-negative Borel functions.

Proof. Clearly, the class U of bounded, non-negative and continuous functions on E is closed
under multiplication. By Proposition 1.2.4 we have B(E) = σ(U ). Then Theorem 1.4.3 implies
that L ⊇ Λ(U ) contains all non-negative B(E)-measurable functions on E. �
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Chapter 2

Random Variables and Distributions

2.1 Extension theorem of measures

Let S be a class of subsets of the non-empty set Ω. A mapping µ : S → [−∞,∞] is called a
set function on S . It is said to be σ-finite if there is a sequence {A1, A2, · · · } ⊆ S such that⋃∞
n=1An = Ω and −∞ < µ(An) <∞ for each n ≥ 1. Suppose that µ1 and µ2 are set functions

on the set classes S1 and S2 on Ω, respectively. If S1 ⊆ S2 and µ1(A) = µ2(A) for every
A ∈ S1, we say µ2 is an extension of µ1 on S2.

Let µ be a set function on the set class S . We say it is finitely additive if for any finite
sequence of disjoint sets {A1, · · · , An} ⊆ S such that A :=

⋃n
k=1Ak ∈ S we have µ(A) =∑n

k=1 µ(Ak). We say it is σ-additive if for any countable sequence of disjoint sets {A1, A2, · · · } ⊆
S such that A :=

⋃∞
k=1Ak ∈ S we have µ(A) =

∑∞
k=1 µ(Ak).

Definition 2.1.1 Let S be a set class on Ω containing the empty set ∅. A σ-additive set
function µ on S satisfying µ(∅) = 0 is called a signed measure. A non-negative signed measure
is called a measure. If µ is a measure on the measurable space (Ω,F ), we call (Ω,F , µ) a
measure space. If µ(Ω) = 1 in addition, we call (Ω,F , µ) a probability space.

Proposition 2.1.1 Suppose that µ is a signed measure on (Ω,F ) and {An} ⊆ F . If An ↑ A,
then µ(An) ↑ µ(A). If µ(A1) <∞ and An ↓ A, then µ(An) ↓ µ(A).

Proof. (Homework.) �

Let (E, ρ) be a metric space. A measure µ on (E,B(E)) is said to be regular if

µ(B) = sup{µ(C) : C ⊆ B is closed} = inf{µ(U) : U ⊇ B is open}.

Theorem 2.1.1 A finite measure µ on (E,B(E)) is regular.

Proof. Let R be the class of regular sets in B(E). We need to show that R = B(E). We first
prove that R is a σ-algebra. Clearly, ∅ and Ω ∈ R. Suppose that A ∈ R and ε > 0. There
exists an open set Uε ⊇ A and a closed set Cε ⊆ A such that

µ(Uε)− ε < µ(A) < µ(Cε) + ε.

13
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It then follows that

µ(Ac) = µ(E)− µ(A) < µ(E)− µ(Uε) + ε = µ(U cε ) + ε

and

µ(Ac) = µ(E)− µ(A) > µ(E)− µ(Cε)− ε = µ(Ccε)− ε.

Note that that U cε ⊆ Ac ⊆ Ccε , where U cε is closed and Ccε is open. Since ε > 0 is arbitrary,
we have Ac ∈ R. Next we let {Bn} ⊆ R and B =

⋃∞
n=1Bn. For ε > 0 there are open sets

Un,ε ⊇ Bn and closed sets Cn,ε ⊆ Bn such that

µ(Un,ε \ Cn,ε) < ε/2n+1, n ≥ 1.

Set Uε =
⋃∞
n=1 Un,ε and Fε =

⋃∞
n=1Cn,ε. We have

⋃n
k=1Ck,ε ↑ Fε. Since µ is finite, there is

n0 = n0(ε) ≥ 1 such that

µ
(
Fε \

n0⋃
n=1

Cn,ε

)
= µ(Fε)− µ

( n0⋃
n=1

Cn,ε

)
< ε/2.

Setting Cε =
⋃n0
n=1Cn,ε, we have Cε ⊆ B ⊆ Uε and

µ(Uε \ Cε) ≤ µ(Uε \ Fε) + µ(Fε \ Cε)

≤ µ
( ∞⋃
n=1

(Un,ε \ Cn,ε)
)

+ ε/2

≤
∞∑
n=1

ε/2n+1 + ε/2 = ε.

This proves that B ∈ R. If follows that R is a sub-σ-algebra of B(E). The theorem will follow
if we can show R contains all closed subsets of E. Let F ⊆ E be closed. Of course, we have
µ(F ) = sup{µ(C) : C ⊆ F is closed}. For each n ≥ 1, the set Un = {x ∈ E : ρ(x, F ) < 1/n} is
open. On the other hand, we have F =

⋂∞
n=1 Un and so limn→∞ µ(Un) = µ(F ). It follows that

µ(F ) = inf{µ(U) : U ⊇ F is open}. �

Corollary 2.1.1 Suppose that µ and ν are finite measures on (E,B(E)). (i) If µ(U) = ν(U)
for all open sets U ⊆ E, then µ(B) = ν(B) for all B ∈ B(E); (ii) If µ(C) = ν(C) for all closed
sets C ⊆ E, then µ(B) = ν(B) for all B ∈ B(E).

Definition 2.1.2 A class S of subsets of Ω is called a semi-algebra if

(i) ∅ ∈ S and Ω ∈ S ;

(ii) A ∈ S and B ∈ S imply A ∩B ∈ S ;

(iii) If A1, B ∈ S and A1 ⊆ B, there is a finite family {A2, · · · , An} ⊆ S such that B =⋃n
k=1Ak.

Theorem 2.1.2 (Extension Theorem) A measure µ on a semi-algebra S has an extension µ̄ on
σ(S ), that is, µ̄ is a measure on σ(S ) and µ̄(A) = µ(A) for every A ∈ S . If µ is also σ-finite
on S , its extension on σ(S ) is unique.

Proof. See Chow and Teicher (1988, pp.159-162). �
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2.2 Distributions of random variables

Suppose that (Ω,F ) and (E,E ) are measurable spaces and f : Ω → E is an F/E -measurable
transformation. Let µ be a measure on (Ω,F ) and let µf (B) = µ(f−1(B)) for B ∈ E . It is easy
to show that µf is a measure on (E,E ), which is called the measure induced by f .

Definition 2.2.1 Let (Ω,F ,P) be a probability space. A measurable transformation X from
(Ω,F ) to (R,B(R)) is called a random variable. The measure PX on (R,B(R)) induced by X
is called the distribution of X.

By Proposition 1.1.7, a real function X defined on (Ω,F ) is a random variable if and only
if X−1((−∞, b]) ∈ F for every b ∈ R.

Definition 2.2.2 A non-decreasing and right continuous function F on R is called a distribution
function. Then the limits F (∞) := limx→∞ F (x) and F (−∞) := limx→−∞ F (x) exist for a
distribution function F . If F (∞) = 1 and F (−∞) = 0 in addition, we call F a probability
distribution function on R.

In particular, if PX is the distribution on (R,B(R)) of a one-dimensional random variable
X, then FX(x) := PX((−∞, x]) defines a probability distribution function FX , which is called
the distribution function of X. The following theorem shows that the distribution of a one-
dimensional random variable is uniquely determined by its distribution function.

Theorem 2.2.1 For each distribution function F on R, there is a unique σ-finite measure µF
on (R,B(R)) such that

µF ((a, b]) = F (b)− F (a), a ≤ b ∈ R. (2.2.1)

To prove the above theorem, we need some lemmas. Set S = {(a, b] : −∞ ≤ a ≤ b ≤ ∞},
where (a, b] = (a,∞) for b = ∞ by convention. Clearly, S is a semi-algebra.

Lemma 2.2.1 Let E0 ∈ S and let {Ek} ⊆ S be a sequence of disjoint sets such that Ek ⊆ E0.
Then we have

∞∑
k=1

µF (Ek) ≤ µF (E0).

Proof. We first consider the finite subsequence {E1, · · · , En} ⊆ S . Write Ek = (ak, bk] for
0 ≤ k ≤ n. By re-enumerating the sequence, we may assume that a1 ≤ a2 ≤ · · · ≤ an. Since the
intervals {(ak, bk] : k ≥ 1} are disjoint and (ak, bk] ⊆ (a0, b0] for each k ≥ 1, we have

a0 ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ an ≤ bn ≤ b0.

It follows that
n∑
k=1

µF (Ek) =
n∑
k=1

[F (bk)− F (ak)] ≤ F (b0)− F (a0) = µF (E0).

Then we get the desired inequality by letting n→∞. �
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Lemma 2.2.2 Let E0 ∈ S and {Ek} ⊆ S . If E0 ⊆
⋃∞
k=1Ek, we have

µF (E0) ≤
∞∑
k=1

µF (Ek).

Proof. Write Ek = (ak, bk] for k ≥ 0. We first consider the case where a0 < b0 ∈ R. Choose a
constant 0 < ε < b0−a0. Set K0 = [a0 +ε, b0] and Vk = (ak, bk+εk), where εk is to be specified.
Then we have K0 ⊆ E0 ⊆

⋃∞
k=1Ek ⊆

⋃∞
k=1 Vk. By the Heine-Borel theorem, K0 has a finite

covering {V1, · · · , Vn} ⊆ {V1, V2, · · · }. It is easily seen that

F (b0)− F (a0 + ε) ≤
n∑
k=1

[F (bk + εk)− F (ak)] ≤
∞∑
k=1

[F (bk + εk)− F (ak)].

Since F is right continuous, we can choose εk so that

F (bk + εk) ≤ F (bk) + ε/2k.

Then we get

F (b0)− F (a0 + ε) ≤
∞∑
k=1

{[F (bk)− F (ak)] + ε/2k} =
∞∑
k=1

[F (bk)− F (ak)] + ε.

Letting ε ↓ 0 we obtain

F (b0)− F (a0) ≤
∞∑
k=1

[F (bk)− F (ak)],

as desired. In the general case a0 < b0 ∈ R̄, the result follows by a limit procedure. �

Proof of Theorem 2.2.1. By Lemmas 2.2.1 and 2.2.2 we find that µF is a measure on the
semi-algebra S . Since µF is clearly σ-finite, it has a unique extension on B(R) = σ(S ) by
Theorem 2.1.2. �

The measure defined by (2.2.1) with F (x) ≡ x is called the Lebesgue measure on (R,B(R)).
Let λ denote the Lebesgue measure. It is easy to see that λ({x0}) = 0 for any singleton set
{x0} ⊆ R. Consequently, λ({x1, x2, · · · }) = 0 for any sequence {x1, x2, · · · } ⊆ R.

2.3 Examples of distribution functions

Given the finite or countable sets {x1, x2, · · · } ⊆ R and {p(x1), p(x2), · · · } ⊆ (0,∞) such that∑
k p(xk) = 1, we can define a probability distribution function F by

F (x) =
∑
xk≤x

p(xk) =
∑
k

pi(xi)1(−∞,x](xi), x ∈ R, (2.3.1)

which is called a step probability distribution function. If F is defined by (2.3.1) and if µF is the
corresponding σ-finite measure on (R,B(R)) given by Theorem 2.2.1, then we have

µF (B) =
∑
k

pi(xi)1B(xi), B ∈ B(R). (2.3.2)
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Let λ denote the Lebesgue measure on (R,B(R)). A probability distribution function F is
said to be singular if there is E ∈ B(R) such that λ(E) = 0 and µF (E) = 1. Clearly, a step
distribution function is singular. A probability distribution function F is said to be absolutely
continuous if

F (x) =
∫ x

−∞
p(y)dy, x ∈ R, (2.3.3)

where p(·) is a non-negative function on R such that∫ ∞

−∞
p(y)dy = 1.

(For the moment, we understand the integrals in the Riemannian sense.) In this case, the
function p(·) is called the density of F .

Example 2.3.1 For fixed x0 ∈ R, let

F (x) =
{

0 if x < x0,
1 if x ≥ x0.

Then F is a step probability distribution function on R, which gives a degenerate distribution.
Clearly, we have

µF (B) =
{

1 if x0 ∈ B
0 if x0 /∈ B.

We shall write PF = δx0 .

Example 2.3.2 For any parameter λ > 0, we can define a step probability distribution function
F on R by

F (x) =
∑
i≤x

e−λ
λi

i!
, x ∈ R,

which gives the Poissonian distribution.

Example 2.3.3 For any m ∈ R and σ > 0, we can define an absolutely continuous probability
distribution function F on R by

F (x) =
1√
2πσ

∫ x

∞
e−(y−µ)2/2σdy, x ∈ R,

which gives the Gaussian distribution N(µ, σ2).

Example 2.3.4 A continuous singular distribution function can be defined as follows. Let

G1 =
(1

3
,
2
3

)
,

G2 =
( 1

32
,

2
32

) ⋃ (2
3

+
1
32
,
2
3

+
2
32

)
,

· · · · · ·

Gn =
⋃ {( n−1∑

k=1

ak
3k

+
1
3n
,

n−1∑
k=1

ak
3k

+
2
3n

)
: ak = 0 or 2

}
.
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Then G :=
⋃∞
n=1Gn is an open subset of [0, 1]. The closed set E := [0, 1]\G is called the Cantor

set. Let

F (u) =
n−1∑
k=1

ak
2k

+
1
2n
,

n−1∑
k=1

ak
3k

+
1
3n

< u <

n−1∑
k=1

ak
3k

+
2
3n
.

We can extend F to a probability distribution function on R by setting F (x) = 1 for x ≥ 1 and

F (x) = inf{F (y) : y ∈ G and y > x}

for x < 1. Clearly, µF ([0, 1]) = 1 and µF (G) = 0. It follows that µF (E) = µF ([0, 1])−µF (G) = 1.
On the other hand, we have

λ(G) =
∞∑
n=1

λ(Gn) =
∞∑
n=1

2n−1

3n
= 1.

Thus λ(E) = λ([0, 1])− λ(G) = 0, so F is singular. It is not hard to show that F is continuous.
(Homework.)

2.4 Multi-dimensional random variables

Definition 2.4.1 Let (Ω,F ,P) be a probability space. A measurable transformation X from
(Ω,F ) to (Rd,B(Rd)) is called a d-dimensional random variable. The probability measure PX
on (Rd,B(Rd)) induced by X is called the distribution of X.

Definition 2.4.2 A real-valued function F on Rd is called a probability distribution function if

(i) F (x1, · · · , xn) → 0 as xi → −∞ for some i, and F (x1, · · · , xn) → 1 as xi →∞ for all i;

(ii) F is right-continuous in each xi;

(iii) for all hi ≥ 0 and xi ∈ R, the following inequality holds:

F (x1 + h1, x2 + h2, · · · , xd + hd)
−[F (x1, x2 + h2, · · · , xd + hd) + · · ·

+F (x1 + h1, x2 + h2, · · · , xd−1 + hd−1, xd)]
+[F (x1, x2, x3 + h3, · · · , xd + hd) + · · ·

+F (x1 + h1, x2 + h2, · · · , xd−2 + hd−2, xd−1, xd)]
− · · ·
+(−1)dF (x1, x2, · · · , xd) ≥ 0.

The following result can be proved similarly as Theorem 2.2.1.
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Theorem 2.4.1 For each distribution function F on Rd, there is a unique σ-finite measure µF
on (Rd,B(Rd)) such that

µF ((x, x+ h]) = F (x1 + h1, x2 + h2, · · · , xd + hd)
−[F (x1, x2 + h2, · · · , xd + hd) + · · ·

+F (x1 + h1, x2 + h2, · · · , xd−1 + hd−1, xd)]
+[F (x1, x2, x3 + h3, · · · , xd + hd) + · · ·

+F (x1 + h1, x2 + h2, · · · , xd−2 + hd−2, xd−1, xd)]
− · · ·
+(−1)dF (x1, x2, · · · , xd) ≥ 0.

for x ∈ Rd and h ∈ Rd
+.

Proposition 2.4.1 A d-dimensional function X = (X1, · · · , Xd) defined on (Ω,F ,P) is a ran-
dom variable if and only if each Xj (1 ≤ j ≤ d) is a random variable.

Proof. “⇒” Suppose X is a d-dimensional random variable. Then X−1(B) ∈ F for each
B ∈ B(Rd). Fix β ∈ R and 1 ≤ i ≤ d. Let Bi = (−∞, β] and Bk = R for all k 6= i. Clearly,
we have B =

∏d
k=1Bk ∈ B(Rd) and hence X−1

i ((−∞, β]) = X−1(B) ∈ F , proving that Xi is a
one-dimensional random variable.

“⇐” Suppose that each Xk is a random variable. For b ∈ Rd we have

X−1((−∞, b]) =
d⋂

k=1

X−1
k ((−∞, bk]) ∈ F .

Thus X is a d-dimensional random variable. �

Definition 2.4.3 Let X = (X1, · · · , Xd) be a d-dimensional random variable. The distribution
PX of X is a probability measure on (Rd,B(Rd)) defined by

PX(B) = P({ω : X(ω) ∈ B}), B ∈ B(Rd). (2.4.1)

The the distribution function FX of X is defined by

FX(x) = PX
(
(−∞, x]

)
, x ∈ B(Rd). (2.4.2)

We sometimes write PX1,X2,··· ,Xd
and FX1,X2,··· ,Xd

instead of PX and FX , respectively. It is
easy to show that

FX1,X2,··· ,Xd
(∞, x2, · · · , xd) = FX2,··· ,Xd

(x2, · · · , xd),

FX1,X2,··· ,Xd
(∞,∞, · · · , xd) = FX3,··· ,Xd

(x3, · · · , xd),

etc. Moreover, for any permutation {i1, i2, · · · , id} of {1, 2, · · · , d} we have

FXi1
,Xi2

,··· ,Xid
(xi1 , xi2 , · · · , xid) = FX1,X2,··· ,Xd

(x1, x2, · · · , xd).
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2.5 Independence

Let (Ω,F ,P) be a fixed probability space. We assume that all random variables are defined
on this space. Let T be a nonempty index set.

Definition 2.5.1 Suppose Ft ∈ F for each t ∈ T . We say the events {Ft : t ∈ T} are
independent if for any finite subset {t1, · · · , tn} ⊆ T ,

P
( n⋂
j=1

Ftj

)
=

n∏
j=1

P(Ftj ). (2.5.1)

Definition 2.5.2 Suppose that Dt ⊆ F for each t ∈ T . We say the classes {Dt : t ∈ T} are
independent if the events {Ft : t ∈ T} are independent whenever Ft ∈ Dt for every t ∈ T .

Clearly, if {Dt : t ∈ T} are independent event classes and if Ct ⊆ Dt for each t ∈ T , then the
classes {Ct : t ∈ T} are also independent.

Definition 2.5.3 Suppose that for each t ∈ T we have a random variable Xt. Let σ(Xt) denote
the σ-algebra generated by Xt. We say the random variables {Xt : t ∈ T} are independent if
{σ(Xt) : t ∈ T} are independent classes of events.

Theorem 2.5.1 Let X and Y be respectively m-dimensional and m-dimensional random vari-
ables. Then X and Y are independent if and only if

F(X,Y )(x, y) = FX(x) · FY (y) (2.5.2)

for every x ∈ Rm and y ∈ Rn.

Proof. If X and Y are independent, by (2.5.1) we have

F(X,Y )(x, y) = P({X ≤ x} ∩ {X ≤ x}) = P{X ≤ x} ·P{X ≤ x} = FX(x) · FY (y),

proving (2.5.2). Conversely, suppose (2.5.2) holds for every x ∈ Rm and y ∈ Rn. We shall prove
the independence of X and Y in two steps.

Step 1) Let C = {(−∞, x] : x ∈ Rm}. Then C is a π-class on Rm and λ(C ) = σ(C ) = B(Rm).
For fixed y ∈ Rn let

D = {A ∈ B(Rm) : P{X ∈ A, Y ≤ y} = P{X ∈ A} ·P{Y ≤ y} holds}.

By (2.5.2) we have C ⊆ D . We claim that D is a λ-class. Indeed, we clearly have Rm ∈ D .
Moreover, if A,B ∈ D and A ⊆ B, we have

P{X ∈ B \A, Y ≤ y} = P({X ∈ B, Y ≤ y} \ {X ∈ B, Y ≤ y})
= P{X ∈ B, Y ≤ y} −P{X ∈ A, Y ≤ y}
= P{X ∈ B} ·P{Y ≤ y} −P{X ∈ A} ·P{Y ≤ y}
= P{X ∈ B \A} ·P{Y ≤ y}.
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Consequently, B \A ∈ D . If {An} ⊆ D and An ↑ A, we have

P{X ∈ A, Y ≤ y} = lim
n→∞

P{X ∈ An, Y ≤ y}

= lim
n→∞

P{X ∈ An} ·P{Y ≤ y} = P{X ∈ A} ·P{Y ≤ y},

and hence A ∈ D . Then D is a λ-class and the monotone class theorem implies that D ⊇
λ(C ) = B(Rm). By the definition of D we have D ⊆ B(Rm) and so D = B(Rm).

Step 2) Let E = {(−∞, x] : x ∈ Rn}. Then E is a π-class on Rn and λ(C ) = σ(C ) = B(Rn).
Fix A ∈ B(Rm) and let

U = {B ∈ B(Rn) : P{X ∈ A, Y ∈ B} = P{X ∈ A} ·P{Y ∈ B} holds}.

The result proved in the last step implies that E ⊆ U . By repeating the above arguments one
shows that U is a λ-class and so U = B(Rn). In other words,

P{X ∈ A, Y ∈ B} = P{X ∈ A} ·P{Y ∈ B}.

holds for every A ∈ B(Rm) and B ∈ B(Rn). That proves the theorem. �
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Chapter 3

Integration and Mathematical
Expectation

3.1 Definition of integrals

Definition 3.1.1 Let (Ω,F ) be a measurable space. An extended real-valued function f on
(Ω,F ) is said to be simple if there exists a sequence of disjoint sets {A1, · · · , An} ⊆ F and
{a1, · · · , an} ⊆ R̄ such that

f(ω) =
n∑
k=1

ak1Ak
(ω), ω ∈ Ω, (3.1.1)

where ±∞ · 0 = 0 by convention. (We may assume
⋃n
k=1Ak = Ω, so that {Ak} is a partition of

Ω.)

Proposition 3.1.1 A simple function is measurable.

Proof. Suppose f has the representation (3.1.1) with
⋃n
k=1Ak = Ω. For any B ∈ B(R̄), let

{ak1 , · · · , akm} = B ∩ {a1, · · · , an}. It is easy to see that f−1(B) =
⋃m
i=1Aki

∈ F . Then f is
measurable. �

Proposition 3.1.2 (i) A non-negative measurable function is the limit of an increasing sequence
of non-negative simple functions; (ii) An extended real-valued measurable function is the limit
of a sequence of simple functions.

Proof. Suppose f is a non-negative measurable function. For n ≥ 1 and k ≥ 1, let

fn(ω) =
n2n∑
k=1

k − 1
2n

1{(k−1)/2n≤f<k/2n}(ω) + n1{f≥n}(ω).

Clearly, fn is a simple function and fn ↑ f . That proves first assertion. The second assertion
follows as an immediate consequence. �

23
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Definition 3.1.2 Let (Ω,F , µ) be a σ-finite measure space. The integrals of extended real
measurable functions are defined in the following way:

(i) For a simple function f =
∑n

k=1 ak1Ak
we define∫

Ω
fdµ =

n∑
k=1

akµ(Ak),

which is clearly independent of the particular form of the representation of f .

(ii) For a non-negative measurable function f we define∫
Ω
fdµ = sup

{ ∫
Ω
hdµ : h is a simple function and 0 ≤ h ≤ f

}
.

(iii) For a measurable function f we set f+ = 0 ∨ f and f− = 0 ∨ (−f). If
∫
Ω f

+dµ < ∞ or∫
Ω f

−dµ <∞, we define ∫
Ω
fdµ =

∫
Ω
f+dµ−

∫
Ω
f−dµ.

If
∫
Ω f

+dµ+
∫
Ω f

−dµ <∞, we say f is integrable. If
∫
Ω f

+dµ =
∫
Ω f

−dµ = ∞, we say the
integral

∫
Ω fdµ does not exist.

(iv) For A ∈ F and a measurable function f we set∫
A
fdµ =

∫
Ω
f1Adµ

if the integral on the right hand side exists.

The integrals of complex functions can be introduced in the obvious way: If f1 and f2 are
extended real measurable functions and if f = f1 + if2, we define∫

Ω
fdµ =

∫
Ω
f1dµ+ i

∫
Ω
f2dµ.

In this chapter, we shall only discuss integrals of extended real functions. To express explicitly
the integration variable, we sometimes write∫

A
fdµ =

∫
A
f(ω)dµ(ω) =

∫
A
f(ω)µ(dω).

3.2 Convergence theorems of integrals

In this section, we prove three important convergence theorems of integrals. Let (Ω,F , µ) be a
σ-finite measure space.

Theorem 3.2.1 (Monotone Convergence Theorem) Let f and fn be non-negative measurable
functions on (Ω,F , µ). If fn ↑ f , then ∫

Ω
fndµ ↑

∫
Ω
fdµ.
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Proof. Since fn ≤ fn+1 ≤ f , it is easy to show that∫
Ω
fndµ ≤

∫
Ω
fn+1dµ ≤

∫
Ω
fdµ

and hence

a := lim
n→∞

∫
Ω
fndµ ≤

∫
Ω
fdµ.

We will prove the desired result in three steps.

Step 1) Suppose that
∫
Ω fdµ <∞. For ε > 0, let h be a simple function such that 0 ≤ h ≤ f

and ∫
Ω
fdµ− ε ≤

∫
Ω
hdµ ≤

∫
Ω
fdµ.

Suppose h has the representation h =
∑n

k=1 ak1Ak
. Note that if ai = ∞, we must have µ(Ai) = 0.

Then we may assume 0 ≤ ai <∞ for all 1 ≤ i ≤ n. For 0 < c < 1 let Ωm,c = {ω ∈ Ω : fm(ω) ≥
ch(ω)}. Then fm ≥ fm1Ωm,c ≥ ch1Ωm,c . It follows that∫

Ω
fmdµ ≥

∫
Ω
ch1Ωm,cdµ = c

∫
Ω
h1Ωm,cdµ. (3.2.1)

By Definition 3.1.1,∫
Ω
h1Ωm,cdµ =

∫
Ω

n∑
k=1

ak1Ak∩Ωm,cdµ =
n∑
k=1

akµ(Ak ∩ Ωm,c). (3.2.2)

Since 0 ≤ h ≤ f and fm ↑ f, we have Ωm,c ↑ Ω. From (3.2.1) and (3.2.2) it follows that

lim
m→∞

∫
Ω
fmdµ ≥ lim

m→∞
c

n∑
k=1

akµ(Ak ∩ Ωm,c) = c
n∑
k=1

akµ(Ak) = c

∫
Ω
hdµ.

Since 0 < c < 1 is arbitrary, we get

lim
m→∞

∫
Ω
fmdµ ≥

∫
Ω
hdµ ≥

∫
Ω
fdµ− ε,

and hence

lim
n→∞

∫
Ω
fndµ =

∫
Ω
fdµ.

Step 2) Suppose that
∫
Ω fdµ = ∞ and µ({f = ∞}) = 0. For N > 0, let h be a simple

function such that 0 ≤ h ≤ f and
∫
Ω hdµ ≥ N . Clearly, µ({h = ∞}) = 0 so we may assume

0 ≤ h <∞. As in the proof of the last step, we have

lim
n→∞

∫
Ω
fndµ ≥

∫
Ω
hdµ ≥ N.

It follows that

lim
n→∞

∫
Ω
fndµ = ∞ =

∫
Ω
fdµ.
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Step 3) Suppose that
∫
Ω fdµ = ∞ and b := µ{f = ∞} > 0. Let AN,n = {ω : fn(ω) ≥ N}.

Since fn ↑ f , we have AN,n ⊆ AN,n+1 and AN :=
⋃∞
n=1AN,n ⊇ {f = ∞}. It follows that

limn→∞ µ(AN,n) = µ(AN ) ≥ b. In view of the relation∫
Ω
fndµ ≥

∫
Ω
fn1AN,n

dµ ≥
∫

Ω
N1AN,n

dµ = Nµ(AN,n),

we have
lim
n→∞

∫
Ω
fndµ ≥ lim

n→∞
Nµ(AN,n) ≥ Nb.

Since N > 0 is arbitrary, the desired result follows. �

Corollary 3.2.1 Let f be a measurable function and {An} ⊆ F be such that An ↑ A ∈ F . If∫
A fdµ exists, then

∫
An
fdµ exists for every n ≥ 1 and∫

A
fdµ = lim

n→∞

∫
An

fdµ.

Proof. (Homework.) �

Corollary 3.2.2 For any non-negative measurable function f we have∫
Ω
fdµ =

∫ ∞

0
µ{f ≥ t}dt

where dt denote the integral with respect to the Lebesgue measure.

Proof. Since f is non-negative, we have∫
Ω
fdµ = lim

n→∞

∫
Ω

∞∑
i=1

( i− 1
2n

)
1{(i−1)/2n≤f<i/2n}dµ

= lim
n→∞

∞∑
i=1

( i− 1
2n

)
µ
{ i− 1

2n
≤ f <

i

2n
}

= lim
n→∞

∞∑
i=1

i−1∑
j=1

1
2n
µ
{ i− 1

2n
≤ f <

i

2n
}

= lim
n→∞

∞∑
j=1

∞∑
i=j+1

1
2n
µ
{ i− 1

2n
≤ f <

i

2n
}

= lim
n→∞

∞∑
j=1

1
2n
µ
{ j

2n
≤ f

}
= lim

n→∞

∫ ∞

0

∞∑
j=1

µ
{ j

2n
≤ f

}
1{(j−1)/2n≤t<j/2n}dt

=
∫ ∞

0
µ{t ≤ f}dt,

where we have used the monotone convergence theorem for two times. �
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Proposition 3.2.1 Suppose that α ∈ R and f is a measurable function on (Ω,F , µ). Then we
have ∫

Ω
αfdµ = α

∫
Ω
fdµ.

(This means if one of the integrals exists, so does the other and the equality holds.)

Proof. When f is a simple function, the equality follows from Definition 3.1.2. In the case
where f is a non-negative measurable function, we have by Proposition 3.1.2 a sequence of
simple functions {fn} such that 0 ≤ fn ↑ f . If α ≥ 0, we can use the monotone convergence
theorem to the sequence of simple functions {αfn} to see∫

Ω
αfdµ = lim

n→∞

∫
Ω
αfndµ = lim

n→∞
α

∫
Ω
fndµ = α

∫
Ω
fdµ.

If α < 0, we have (αf)+ = 0 and (αf)− = −|α|f . Then we can use Definition 3.1.2 and the
result just proved to get∫

Ω
αfdµ = −

∫
Ω
|α|fdµ = −|α|

∫
Ω
fndµ = α

∫
Ω
fdµ.

Finally, we obtain the general result by considering the decomposition αf = (αf)+ − (αf)− in
the two cases α ≥ 0 and α < 0. �

Proposition 3.2.2 Let g and f be two measurable functions on (Ω,F , µ) such that f + g is
well-defined. If ∫

Ω
fdµ,

∫
Ω
gdµ and

∫
Ω
fdµ+

∫
Ω
gdµ

all exist, then we have ∫
Ω
(f + g)dµ =

∫
Ω
fdµ+

∫
Ω
gdµ.

Proof. Step 1) Suppose that f and g are simple functions given by

f =
m∑
i=1

ai1Ai and g =
n∑
j=1

bj1Bj .

In this case, we have∫
Ω
(f + g)dµ =

∫
Ω

( m∑
i=1

ai1Ai +
n∑
j=1

bj1Bj

)
dµ

=
∫

Ω

( ∑
i,j

ai1Ai∩Bj +
∑
i,j

bj1Ai∩Bj

)
dµ

=
∫

Ω

[∑
i,j

(ai + bj)1Ai∩Bj

]
dµ

=
∑
i,j

(ai + bj)µ(Ai ∩Bj)

= · · · · · ·

=
∫

Ω
fdµ+

∫
Ω
gdµ.
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Step 2) Suppose that f and g are non-negative measurable functions. By Proposition 3.1.2
there are simple functions fn and gn such that 0 ≤ fn ↑ f and 0 ≤ gn ↑ g. By the monotone
convergence theorem and the last step,∫

Ω
(f + g)dµ =

∫
Ω

lim
n→∞

(fn + gn)dµ = lim
n→∞

∫
Ω
(fn + gn)dµ

= lim
n→∞

∫
Ω
fndµ+ lim

n→∞

∫
Ω
gndµ =

∫
Ω
fdµ+

∫
Ω
gdµ.

Step 3) In the general case, from the relation

(f + g)+ − (f + g)− = f + g = f+ − f− + g+ − g−

we obtain

(f + g)+ + f− + g− = (f + g)− + f+ + g+.

Then the result of Step 2) implies that∫
Ω
(f + g)+dµ+

∫
Ω
f−dµ+

∫
Ω
g−dµ =

∫
Ω
(f + g)−dµ+

∫
Ω
f+dµ+

∫
Ω
g+dµ. (3.2.3)

By the assumption, we have
∫
f−dµ+

∫
g−dµ <∞ or

∫
f+dµ+

∫
g+dµ <∞. Suppose that∫

Ω
f−dµ+

∫
Ω
g−dµ <∞. (3.2.4)

It is easy to show that (f + g)− ≤ f− + g−. Then (3.2.4) implies that∫
Ω
(f + g)−dµ <∞. (3.2.5)

From (3.2.3), (3.2.4) and (3.2.5) we get∫
Ω
(f + g)+dµ−

∫
Ω
(f + g)−dµ =

∫
Ω
f+dµ−

∫
Ω
f−dµ+

∫
Ω
g+dµ−

∫
Ω
g−dµ,

giving the desired result. �

Corollary 3.2.3 Let a and b be real numbers and g and f be measurable functions on (Ω,F , µ)
such that af + bg is well-defined. If∫

Ω
fdµ,

∫
Ω
gdµ and a

∫
Ω
fdµ+ b

∫
Ω
gdµ

all exist, then we have ∫
Ω
(af + bg)dµ = a

∫
Ω
fdµ+ b

∫
Ω
gdµ.

Proof. This follows immediately by Propositions 3.2.2 and 3.2.2. �
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Corollary 3.2.4 Suppose that f is a measurable function on (Ω,F , µ) such that
∫
Ω fdµ exists.

If {Ak} is a sequence of disjoint measurable sets and if we let A =
⋃∞
k=1Ak, then∫

A
fdµ =

∞∑
k=1

∫
Ak

fdµ.

Proof. This follows immediately by Corollary 3.2.1 and Proposition 3.2.2. �

Proposition 3.2.3 Suppose that g : (Ω,F ) → (E,B) is a measurable mapping and f :
(E,B) → (R̄,B(R̄)) is a measurable function. Then we have∫

Ω
f ◦ gdµ =

∫
E
fdµg,

where µg is the measure on (E,B) induced by µ and g.

Proof. Step 1) Suppose that f is a simple function on (E,B) given by

f(x) =
m∑
k=1

ak1Ak
(x), x ∈ E.

Then we have

f ◦ g(ω) =
m∑
k=1

ak1Ak
(g(ω)) =

m∑
k=1

ak1g−1(Ak)(ω),

which is a simple function on (Ω,F ). It follows that∫
Ω
f ◦ gdµ =

m∑
k=1

akµ(g−1(Ak)) =
m∑
k=1

akµg(Ak) =
∫
E
fdµg.

Step 2) Suppose that f is a non-negative measurable function. By Proposition 3.1.2 there
is a sequence of simple functions {fn} such that 0 ≤ fn ↑ f . Clearly, each fn ◦ g is a simple
function on (Ω,F ) and 0 ≤ fn ◦ g ↑ f ◦ g. By the monotone convergence theorem and the result
proved in Step 1),∫

Ω
f ◦ gdµ = lim

n→∞

∫
Ω
fn ◦ gdµ = lim

n→∞

∫
E
fndµg =

∫
E
fdµg.

Step 3) For a general measurable function f , it is easy to show that (f ◦ g)± = f± ◦ g. By
the result proved in the last step we have∫

Ω
(f ◦ g)±dµ =

∫
Ω
(f± ◦ g)dµ =

∫
Ω
f±dµg,

yielding the desired result. �

Theorem 3.2.2 (Fatou’s Lemma) Let g and fn be measurable functions on (Ω,F , µ).
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(i) If g is integrable and g ≤ fn, then

lim inf
n→∞

∫
Ω
fndµ ≥

∫
Ω

lim inf
n→∞

fndµ.

(ii) If g is integrable and g ≥ fn, then

lim sup
n→∞

∫
Ω
fndµ ≤

∫
Ω

lim sup
n→∞

fndµ.

Proof. We shall only give the proof of (i), which implies (ii) as a consequence. Let hn = infk≥n fk.
Then 0 ≤ (hn − g) ↑ and the monotone convergence theorem yields

lim
n→∞

∫
Ω
(hn − g)dµ =

∫
Ω

lim
n→∞

(hn − g)dµ,

that is,

lim
n→∞

∫
Ω
hndµ−

∫
Ω
gdµ =

∫
Ω

lim
n→∞

hndµ−
∫

Ω
gdµ.

It follows that

lim
n→∞

∫
Ω
hndµ =

∫
Ω

lim
n→∞

hndµ =
∫

Ω
lim inf
n→∞

fndµ. (3.2.6)

On the other hand, for any j ≥ n we have∫
Ω
fjdµ ≥

∫
Ω

inf
k≥n

fkdµ =
∫

Ω
hndµ

and hence

inf
j≥n

∫
Ω
fjdµ ≥

∫
Ω
hndµ. (3.2.7)

Then we may use (3.2.6) and (3.2.7) to see that

lim inf
n→∞

∫
Ω
fndµ = lim

n→∞
inf
j≥n

∫
Ω
fjdµ ≥ lim

n→∞

∫
Ω
hndµ =

∫
Ω

lim inf
n→∞

fndµ.

That proves the desired result. �

Theorem 3.2.3 (Dominated Convergence Theorem) Let g and h be integrable functions on
(Ω,F , µ). If {fn} is a sequence of measurable functions such that g ≤ fn ≤ h for each n and
f = limn→∞ fn, then

lim
n→∞

∫
Ω
fndµ =

∫
Ω

lim
n→∞

fndµ =
∫

Ω
fdµ.

Proof. Since f = lim infn→∞ fn = lim supn→∞ fn, we get the result easily by Fatou’s lemma. �

Proposition 3.2.4 If f and g are two measurable functions on (Ω,F , µ) satisfying f
a.e.= g,

that is, µ({f 6= g}) = 0, then we have ∫
Ω
fdµ =

∫
Ω
gdµ.
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Proof. Step 1) Suppose that f and g are simple functions given by

f =
m∑
i=1

ai1Ai and g =
n∑
j=1

bj1Bj ,

where {Ai} and {Bj} ⊆ F are two partitions of Ω. If µ(Ai ∩Bj) > 0, then Ai ∩Bj 6= ∅ and we
must have ai = bj . It follows that∫

Ω
fdµ =

m∑
i=1

aiµ(Ai) =
m∑
i=1

n∑
j=1

aiµ(Ai ∩Bj)

=
m∑
i=1

n∑
j=1

bjµ(Ai ∩Bj) =
n∑
j=1

bjµ(Bj) =
∫

Ω
gdµ.

Step 2) Suppose that f and g are non-negative measurable functions. By Proposition 3.1.2
there are simple functions fn and gn such that 0 ≤ fn ↑ f and 0 ≤ gn ↑ g. Let N = {ω : f(ω) 6=
g(ω)} and hn = fn1N+gn1Nc . Then hn is a simple function and 0 ≤ hn ↑ f1N+g1Nc = f . Under
the assumption, we have µ(N) = 0. It follows that hn

a.e.= gn. By the monotone convergence
theorem and the result proved in Step 1),∫

Ω
fdµ = lim

n→∞

∫
Ω
hndµ = lim

n→∞

∫
Ω
gndµ =

∫
Ω
gdµ.

Step 3) For general measurable functions f and g, from f
a.e.= g we have f± a.e.= g±. By the

result of the last step, ∫
Ω
f±dµ =

∫
Ω
g±dµ,

which implies the desired result. �

Definition 3.2.1 Let h be an extended real-valued function on (Ω,F , µ). If there is an F -
measurable function f and a set N ∈ F such that f1Nc = h1Nc and µ(N) = 0, we say h is
µ-a.e. F -measurable. If the integral of f exists, we say the integral of h exists and define∫

Ω
hdµ =

∫
Ω
fdµ.

If f is µ-integrable, we say h is µ-integrable.

Clearly, all the results in this section can be extended to µ-a.e. measurable functions.

Definition 3.2.2 Let F be a distribution function on Rd and f a measurable function on
(Rd,B(Rd)). Then F defines a unique σ-finite measure µF on (Rd,B(Rd)) via Theorem 2.4.1.
We define the Lebesgue-Stieltjes integral∫

Rd

fdF =
∫

Rd

fdµF .
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Proposition 3.2.5 Suppose that F is a bounded distribution function on and f is a bounded
continuous function on Rd. Then the Lebesgue-Stieltjes integral defined above coincides with
the Riemannian-Stieltjes integral.

Proof. This follows from the dominated convergence theorem. (Homework: Give the details.)
�

3.3 Mathematical expectation

Let (Ω,F ,P) be a probability space and X a random variable defined on this space. Let
g : R → R be a Borel function. Then g(X) is also a random variable. Let FX denotes the
distribution function of X and write

E[g(X)] =
∫

Ω
g(X(ω))dP(ω) =

∫
R
g(y)dFX(y). (3.3.1)

Definition 3.3.1 We say that the mathematical expectation of g(X) exists if E[|g(X)|] < ∞.
In this case, we call E[g(X)] the expectation of g(X).

Example 3.3.1 Suppose that FX is a step distribution function with discontinuity points
{x1, x2, · · · } and jump sizes {p(x1), p(x2), · · · }. Then E[g(X)] exists if and only if

∞∑
n=1

|g(xn)|p(xn) <∞.

In this case, we have

E[g(X)] =
∫

R
g(y)dFX(y) =

∞∑
n=1

g(xn)p(xn).

Example 3.3.2 Let FX be absolutely continuous with density p(y). Then E[g(X)] exists if and
only if

∫
R |g(y)|p(y)dy <∞. In this case,

E[g(X)] =
∫

R
g(y)p(y)dy.

Let L1 = L1(Ω,F ,P) = {all random variables X such that E[|X|] <∞}.

Proposition 3.3.1 (i) For any X ∈ L1, we have |E[X]| ≤ E[|X|]; (ii) For X,Y ∈ L1 and
α, β ∈ R, we have αX + βY ∈ L1 and E[αX + βY ] = αE[X] + βE[Y ]; (iii) If E[|X|p] <∞ for
some p > 0, then E[|X|q] <∞ for 0 ≤ q ≤ p.

Proof. (Homework.) �

Proposition 3.3.2 Let X be a random variable and let p > 0. If E[|X|p] <∞, then xpP{|X| >
x} → 0 as x→∞.
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Proof. Let F denote the distribution function of X. Observe that

E[|X|p] =
∫
{|X|≥x}

|X|pdP +
∫
{|X|<x}

|X|pdP.

Under our assumption, the second term converges to E[|X|p] as x→∞. Then we have

0 = lim
x→∞

∫
{|X|≥x}

|X|pdP = lim
x→∞

xp
∫
{|X|≥x}

(|X|/x)pdP ≥ lim sup
x→∞

xpP{|X| ≥ x},

giving the desired result. �

Proposition 3.3.3 Let X be a non-negative random variable with distribution function F .
Then we have

E[X] =
∫ ∞

0
[1− F (x)]dx =

∫ ∞

0
P{X > x}dx =

∫ ∞

0
P{X ≥ x}dx. (3.3.2)

Proof. Note that

E[X] =
∫ ∞

0
xdF (x) = lim

n→∞

∫ n

0
xdF (x).

By integration by parts,∫ n

0
xdF (x) = nF (n)−

∫ n

0
F (x)dx

= −n[1− F (n)] +
∫ n

0
[1− F (x)]dx

= −nP{X > n}+
∫ n

0
[1− F (x)]dx. (3.3.3)

If E[X] < ∞, Proposition 3.3.2 implies nP{X > n} → 0 as n → ∞. Then we obtain the first
equality in (3.3.2) by letting n→∞ in (3.3.3). On the other hand, if∫ ∞

0
[1− F (x)]dx <∞,

we get from (3.3.3) that∫ n

0
xdF (x) ≤

∫ n

0
[1− F (x)]dx ≤

∫ ∞

0
[1− F (x)]dx <∞.

Letting n→∞ gives

E[X] =
∫ ∞

0
xdF (x) ≤

∫ ∞

0
[1− F (x)]dx <∞.

Then we obtain the first equality in (3.3.2) again from (3.3.3). The second equality is immediate.
The last equality holds since P{X > x} 6= P{X ≥ x} for at most countably many points. �
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Corollary 3.3.1 For any random variable X with distribution function F ,

E[|X|] =
∫ ∞

0
[1− F (x)]dx+

∫ 0

−∞
F (x)dx.

If E[|X|] <∞, we have

E[X] =
∫ ∞

0
[1− F (x)]dx−

∫ 0

−∞
F (x)dx.

Proof. Recall that X+ = 0∨X and X− = 0∨ (−X). Let Y = −X−. Let F± and G denote the
distribution functions of X± and Y , respectively. We have

F+(x) =
{
F (x) x ≥ 0
0 x < 0

, G(x) =
{

1 x ≥ 0
F (x) x < 0.

Then Proposition 3.3.3 implies that

E[X+] =
∫ ∞

0
[1− F (x)]dx

and

E[X−] =
∫ ∞

0
P{X− ≥ x}dx =

∫ ∞

0
P{Y ≤ −x}dx

=
∫ ∞

0
G(−x)dx = −

∫ −∞

0
G(y)dy =

∫ 0

−∞
F (y)dy.

Since |X| = X+ +X− and X = X+ −X−, we have the desired result. �

Corollary 3.3.2 Let X be a random variable and let 0 < p <∞. Then

E[|X|p] =
∫ ∞

0
P{|X| ≥ x1/p}dx <∞

if and only if

∞∑
n=1

P{|X| ≥ n1/p} <∞.

Proof. By Proposition 3.3.3, we have

E[|X|p] =
∫ ∞

0
P{|X|p ≥ x}dx =

∫ ∞

0
P{|X| ≥ x1/p}dx.

Since x 7→ P{|X| ≥ x1/p} is non-increasing, the desired result follows. �

Corollary 3.3.3 Let X be a random variable and let 0 < p < ∞. If npP{|X| ≥ n} → 0 as
n→∞, we have E[|X|q] <∞ for any 0 ≤ q < p.
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Proof. By Proposition 3.3.3 it follows that

E[|X|q] =
∫ ∞

0
P{|X| ≥ x1/q}dx =

∫ ∞

0
P{|X| ≥ y}qyq−1dy

= q

∫ ∞

0
y−1−(p−q)ypP{|X| ≥ y}dy. (3.3.4)

Under the condition, we have ypP{|X| ≥ y} → 0 as y →∞. Then the right hand side of (3.3.4)
is finite. �

3.4 Some inequalities

A real-valued function φ defined on an open interval I ⊆ R is said to be convex if

φ(λx+ (1− λ)y) ≤ λφ(x) + (1− λ)φ(y), x, y ∈ I, 0 ≤ λ ≤ 1.

Lemma 3.4.1 If φ is a convex function on I ⊆ R, it has left and right derivatives φ′l(x) and
φ′r(x) at every x ∈ I and

φ′l(x) ≤ φ′r(x) ≤ φ′l(y) ≤ φ′r(y), x ≤ y ∈ I.

Proof. Suppose that x1 < x2 < x < y ∈ I. It is easy to show that

φ(x1)− φ(x)
x1 − x

≤ φ(x2)− φ(x)
x2 − x

≤ φ(y)− φ(x)
y − x

.

Then the left derivative exists

φ′l(x) =↑ lim
z↑x

φ(z)− φ(x)
z − x

≤ φ(y)− φ(x)
y − x

.

The remaining assertions hold by similar arguments. �

Theorem 3.4.1 (Jessen’s inequality) Let X be a random variable and φ a convex function on
R such that E[X] and E[φ(X)] exit. Then φ(E[X]) ≤ E[φ(X)].

Proof. By Lemma 3.4.1, the convex function φ is continuous on R. The convexity implies that

φ(z)− φ(y) ≥ φ′r(y)(z − y).

In particular, we have a.s.

φ(X)− φ(E[X]) ≥ φ′r(E[X])(X −E[X]).

Taking the expectation in both sides we get the result. �

Corollary 3.4.1 If p ≥ 1 and E[|X|p] <∞, then |E[X]|p ≤ (E[|X|])p ≤ E[|X|p].
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Proposition 3.4.1 Let X be a random variable and g(·) is a non-negative, Borel and even
function which is non-decreasing on [0,∞). Then for any ε > 0 we have

P{|X| > ε} ≤ E[g(X)]
g(ε)

.

Proof. Let E = {ω ∈ Ω, |X(ω)| ≥ ε}. Then

E[g(X)] =
∫
E
g(X(ω))dP(ω) +

∫
Ec

g(X(ω))dP(ω)

For each ω ∈ E, we have |X(ω)| ≥ ε, so g(X(ω)) ≥ g(ε). It follows that

E[g(X)] ≥
∫
E
g(X(ω))dP(ω) + 0 = g(ε)P(E),

giving the desired inequality. �

Corollary 3.4.2 (Chebyshev/Markov) For any p > 0 and ε > 0,

P{|X| > ε} ≤ E[|X|p]
εp

.

Theorem 3.4.2 (Hölder) Suppose 1 < p, q < ∞ and 1/p + 1/q = 1. Let X and Y be random
variables such that E[|X|p] + E[|X|q] <∞. Then we have

E[|XY |] ≤ {E[|X|p]}1/p{E[|Y |q]}1/q. (3.4.1)

Proof. We first show

α1/pβ1/q ≤ α

p
+
β

q
, α ≥ 0, β ≥ 0. (3.4.2)

Indeed, (3.4.2) is equivalent to

1
p

lnα+
1
q

lnβ ≤ ln
(α
p

+
β

q

)
,

which is obvious since lnx is a concave function. To show (3.4.1), we may certainly assume
E[|X|p]E[|X|q] 6= 0. For any ω ∈ Ω, we set

α =
|X(ω)|p

E[|X|p]
and β =

|X(ω)|q

E[|X|q]

in (3.4.2) to get
|X(ω)Y (ω)|

{E[|X|p]}
1
p {E[|X|q]}

1
q

≤ |X(ω)|p

pE[|X|p]
+
|Y (ω)|q

qE[|Y |q]

It follows that

|X(ω)Y (ω)| ≤ {E[|X|p]}
1
p {E[|X|q]}

1
q

(
|X(ω)|p

pE[|X|p]
+
|Y (ω)|q

qE[|Y |q]

)
Taking the expectations in both sides, we obtain the desired inequality. �
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Corollary 3.4.3 (Schwarz) For any random variables X and Y , we have

{E[|XY |]}2 ≤ E[X2]E[Y 2].

Theorem 3.4.3 (Minkowsky) Let 1 ≤ p <∞. Then

{E[|X + Y |p]}1/p ≤ {E[|X|p]}1/p + {E[|Y |p]}1/p. (3.4.3)

Proof. It suffices to assume 1 < p <∞ and E[|X|p+|X|q] <∞. Let q be such that 1/p+1/q = 1.
By Hölder’s Inequality,

E[|X + Y |p] ≤ E[|X + Y |p−1|X|] + E[|X + Y |p−1|Y |]
≤ {E[|X + Y |(p−1)q]}1/q({E[|X|p]}1/p + {E[|Y |p]}1/p).

From 1/p+ 1/q = 1 we get p = (p− 1)q. Then (3.4.3) follows. �
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Chapter 4

Product Spaces

4.1 Product measurable spaces

Let E and F be two non-empty sets. We call E × F := {(x, y) : x ∈ E, y ∈ F} the Cartesian
product of E and F . For A ⊆ E and B ⊆ F , we call A × B a rectangle in E × F and refer A
and B as its sides. A typical product space is the Euclidean plane R2 = R× R.

The section of C ⊆ E × F determined by x0 ∈ E refers to the set Cx0 := {y ∈ F : (x0, y) ∈
C} ⊆ F . The section of a function f on E × F determined by x0 ∈ E refers to the the function
fx0 on F defined by fx0(y) := f(x0, y) for y ∈ F . Similarly, we define the sections Cy0 and fy0

determined by y0 ∈ F . In particular, we have (A×B)x0 = B or ∅ according as x0 ∈ A or /∈ A,
and (A×B)y0 = A or ∅ according as y0 ∈ B or /∈ B.

Let (E,E ) and (F,F ) be two measurable spaces. If A ∈ E and B ∈ F , we call A × B a
measurable rectangle. It is easy to check that the class R of all measurable rectangles on E ×F
is a π-class. We call E ×F := σ(R) the product σ-algebra on E × F .

Theorem 4.1.1 If C ∈ E ×F , we have Cx0 ∈ F for each x0 ∈ E, and Cy0 ∈ E for each y0 ∈ F .

Proof. Let x0 ∈ E be fixed and let A = {C ⊆ E × F : Cx0 ∈ F}. If C = A × B for A ∈ E
and B ∈ F , then Cx0 = B or φ according as x0 ∈ A or ∈ Ac. In both cases, we have Cx0 ∈ F .
It follows that A ⊇ R. Furthermore, it is easy to show that (Dc)x0 = (Dx0)

c for D ⊆ E × F
and

( ⋃∞
n=1Cn

)
x0

=
⋃∞
n=1(Cn)x0 for {Cn} ⊆ E × F . Then A is closed under the operations of

complements and countable union. Thus A is a σ-algebra, and hence A ⊇ σ(R) = E × F .
That shows Cx0 ∈ F for every C ∈ E ×F . The proof of the second assertion is similar. �

Theorem 4.1.2 Let f be an extended real-valued measurable function on (E × F,E × F ).
Then fx0 is an F -measurable function for each x0 ∈ E, and fy0 is and E -measurable function
for each y0 ∈ F .

Proof. This follows from Theorem 4.1.1 and the identities

(fx0)
−1(D) = (f−1(D))x0

and (fy0)−1(D) = (f−1(D))y0

for D ∈ B(R̄). (Homework: Prove one of the above equalities.) �

39
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Proposition 4.1.1 If E and F are separable metric spaces, we have B(E×F ) = B(E)×B(F ).

Proof. (Homework; see e.g. Cohn (1980).) �

The definition of product σ-algebras can be generalized to higher dimensions in a obvious way.
With such an extension, one may use Proposition 4.1.1 inductively to see that B(Rd) = B(R)d

for any integer d ≥ 1. (Homework.)

4.2 Product measures and Fubini’s theorem

Let us consider two σ-finite measure spaces (E,E , µ) and (F,F , ν).

Proposition 4.2.1 If C ∈ E × F , then x 7→ ν(Cx) is an E -measurable function on E, and
y 7→ ν(Cy) is an F -measurable function on F.

Proof. We only give the proof of the first assertion since the second one follows by symmetry.
By Theorem 4.1.1 we have Cx ∈ F for each x ∈ E. Suppose that ν is a finite measure and let

A = {C ∈ E ×F : x 7→ ν(Cx) is E -measurable}.

One sees easily that A is a λ-class. For A ∈ E and B ∈ F , we have ν((A×B)x) = 1A(x)ν(B)
and so A×B ∈ A . Then A contains the π-class R of measurable rectangles. From the monotone
class theorem it follows that A ⊇ σ(R) = E ×F . That is, x 7→ ν(Cx) is E -measurable for every
C ∈ E ×F . In the case where ν is a general σ-finite measure, there is a partition {Fn} ⊆ F of
F such that ν(Fn) <∞ for every n ≥ 1. For n ≥ 1 we define the finite measure νn on (F,F ) by
νn(B) = ν(B ∩ Fn) for B ∈ F . Then ν =

∑∞
n=1 νn. By the result proved above, x 7→ νn(Cx) is

E -measurable for every every n ≥ 1. It follows that x 7→ ν(Cx) =
∑∞

n=1 νn(Cx) is E -measurable.
�

Proposition 4.2.2 For each C ∈ E ×F , we have∫
E
ν(Cx)µ(dx) =

∫
F
µ(Cy)ν(dy). (4.2.1)

Proof. We first consider the case where both µ and ν are finite measures. Let C = {C ∈ E ×F :
the equality (4.2.1) holds}. By the properties of integrals it is easy to show that C is a λ-class.
If C = A×B for A ∈ E and B ∈ F , then ν(Cx) = 1A(x)ν(B) and µ(Cy) = 1B(y)µ(A) so that
both sides of (4.2.1) are equal to µ(A)ν(B). Then C ⊇ R so that C ⊇ σ(R) = E ×F . If µ
and ν are general σ-finite measures, there are partitions {En} ⊆ E and {Fn} ⊆ F of E and F ,
respectively, such that ν(En)+ν(Fn) <∞ for every n ≥ 1. For n ≥ 1 define µn(A) = µ(A∩En)
for A ∈ E and define νn(B) = ν(B ∩ Fn) for B ∈ F . Then µn and νn are finite measures on
(E,E ) and (F,F ), respectively. By the result proved above,∫

Em

νn(Cx)µm(dx) =
∫
Fn

µm(Cy)νn(dy).

Taking the summations over m,n ≥ 1 we obtain (4.2.1). �
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Theorem 4.2.1 There is a unique σ-finite measure λ on (E × F,E ×F ) such that

λ(A×B) = µ(A)ν(B), A ∈ E , B ∈ F . (4.2.2)

Furthermore, for each C ∈ E ×F we have

λ(C) =
∫
E
ν(Cx)µ(dx) =

∫
F
µ(Cy)ν(dy). (4.2.3)

Proof. By Proposition 4.2.2 and the monotone convergence theorem of integrals it is easy to
show that (4.2.3) defines a non-negative and σ-additive set function λ satisfying λ(∅) = 0. That
is, λ is a measure on E ×F . Clearly, (4.2.2) holds. Now suppose µ and ν are finite and γ is a
measure on E ×F such that

γ(A×B) = µ(A)ν(B), A ∈ E , B ∈ F .

Let C = {C ∈ E ×F : λ(C) = γ(C)}. It is easy to show that C is a λ-class and C ⊇ R. Then
C ⊇ σ(R) = E ×F , which gives the uniqueness assertion. The general case can be treated by
the decomposition arguments. �

The measure λ defined by (4.2.3) is called the product of µ and ν is denoted by µ× ν.

Corollary 4.2.1 (Fubini) The following conditions are equivalent

(i) µ× ν(C) = 0;

(ii) ν(Cx) = 0 for µ-a.e. x ∈ E;

(iii) µ(Cy) = 0 for ν-a.e. y ∈ F .

Theorem 4.2.2 (Fubini) Let f be a non-negative extended real-valued measurable function on
(E × F,E ×F ). Then the functions

x 7→
∫
F
f(x, y)ν(dy) and y 7→

∫
E
f(x, y)ν(dx) (4.2.4)

are E - and F -measurable, respectively. Moreover, we have∫
E×F

fd(µ× ν) =
∫
E

[ ∫
F
f(x, y)ν(dy)

]
µ(dx) =

∫
F

[ ∫
E
f(x, y)µ(dx)

]
ν(dy). (4.2.5)

Proof. Let C ∈ E ×F . By Proposition 4.2.1 the function

x 7→ ν(Cx) =
∫
F

1Cx(y)ν(dy) =
∫
F

1C(x, y)ν(dy)

is E -measurable. That is, the first function in (4.2.4) is E -measurable if f = 1C . By the linearity
of the integral, it is E -measurable if f is a E × F -measurable simple function. Then we get
the E -measurability of the first function in (4.2.4) by approximating the general non-negative
E × F -measurable function by an increasing sequence of non-negative simple functions. By
Theorem 4.2.1 we have∫

E×F
1Cd(µ× ν) = µ× ν(C) =

∫
E
ν(Cx)µ(dx) =

∫
E

[ ∫
F

1C(x, y)ν(dy)
]
µ(dx).
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Thus the first equality in (4.2.5) holds if f = 1C . By the linearity of the integrals, it also holds
if f is a E × F -measurable simple function. For a general non-negative E × F -measurable
function the equality follows by the monotone convergence theorem. Other assertions hold by
symmetry. �

Theorem 4.2.3 (Fubini) Let f be an integrable extended real-valued function on the product
measure space (E × F,E × F , µ × ν). Then for µ-a.e. x ∈ E the section fx is a integrable
function on (F,F , ν), and for ν-a.e y ∈ F the section fy is a integrable function on (E,E , µ).
Moreover, the functions

x 7→
∫
F
f(x, y)ν(dy) and y 7→

∫
E
f(x, y)ν(dx)

are a.e. E - and F -measurable, respectively, and∫
E×F

fd(µ× ν) =
∫
E

[ ∫
F
f(x, y)ν(dy)

]
µ(dx) =

∫
F

[ ∫
E
f(x, y)µ(dx)

]
ν(dy). (4.2.6)

Proof. By Theorem 4.2.2, we have

∞ >

∫
E×F

|f |d(µ× ν) =
∫
E

[ ∫
F
|f(x, y)|ν(dy)

]
µ(dx)

=
∫
E

[ ∫
F
(f+(x, y) + f−(x, y))ν(dy)

]
µ(dx)

=
∫
E

[ ∫
F
f+(x, y)ν(dy)

]
µ(dx) +

∫
E

[ ∫
F
f−(x, y)ν(dy)

]
µ(dx).

Then for µ-a.e. x ∈ E we have∫
F
|f(x, y)|ν(dy) =

∫
F
f+(x, y)ν(dy) +

∫
F
f−(x, y)ν(dy) <∞.

In other words, fx is a integrable function on (F,F , ν) for µ-a.e. x ∈ E. It follows that

x 7→
∫
F
f(x, y)ν(dy) =

∫
F
f+(x, y)ν(dy)−

∫
F
f−(x, y)ν(dy)

is a µ-a.e. well-defined measurable function. By Theorem 4.2.2 we have∫
E

[ ∫
F
f(x, y)ν(dy)

]
µ(dx)

=
∫
E

[ ∫
F
f+(x, y)ν(dy)

]
µ(dx)−

∫
E

[ ∫
F
f−(x, y)ν(dy)

]
µ(dx)

=
∫
E×F

f+d(µ× ν)−
∫
E×F

f−d(µ× ν)

=
∫
E×F

fd(µ× ν),

which gives the first equality in (4.2.6). Other assertions follow by similar arguments. �
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The theory of product measures plays a very important role in probability theory. This can
be seen from the following situation. Suppose that µ and ν are two probability measures on
(R,B(R)). We can construct a probability space (Ω,F ,P) by setting Ω = R, F = B(R2)
and P = µ × ν. For ω = (ω1, ω2) ∈ Ω let X1(ω) = ω1 and X2(ω) = ω2. Then (X1, X2) is a
two-dimensional random variable defined on (Ω,F ,P) and X1 and X2 are independent. We
remark that all the results given above can be developed for multi-dimensional product spaces
and measures; see e.g. Halmos (1974).

4.3 Measures defined by kernels

Definition 4.3.1 Let (E,E ) and (F,F ) be two measurable spaces. A function K : E ×F →
[0,∞] is called a kernel from (E,E ) to (F,F ) if

(i) for each fixed B ∈ F , the function x 7→ K(x,B) is E -measurable;

(ii) for each fixed x ∈ E , the function B 7→ K(x,B) is a measure on (F,F ).

A kernel K is said to be σ-finite if there are {En} ⊆ E and {Fn} ⊆ F such that E =
⋃∞
m=1Em,

F =
⋃∞
m=1 Fn and

sup
x∈Em

K(x, Fn) <∞, m, n ≥ 1.

We call K a probability kernel if K(x, F ) = 1 for all x ∈ E in addition.

Example 4.3.1 For each t > 0 we can define a probability kernel pt(·, ·) on (R,B(R)) by

pt(x,B) =
1√
2πt

∫
B
e|y−x|

2/2tdy.

Proposition 4.3.1 Let K be a σ-finite kernel from (E,E ) to (F,F ). Then for any C ∈ E ×F ,
the function x 7→ K(x,Cx) is E -measurable.

Proposition 4.3.2 Let µ be a σ-finite measure on (E,E ) and K a σ-finite kernel from (E,E )
to (F,F ). Then

λ(C) :=
∫
E
K(x,Cx)µ(dx), C ∈ E ×F , (4.3.1)

defines a σ-finite measure λ on (E × F,E ×F ).

In the situation of Proposition 4.3.2 we shall write λ(dx, dy) = µ(dx)K(x, dy).

Theorem 4.3.1 Let f be a non-negative extended real-valued measurable function on (E ×
F,E ×F ). Then the function

x 7→
∫
F
f(x, y)K(x, dy)

is E -measurable. Moreover, if λ is defined by (4.3.1) then∫
E×F

fdλ =
∫
E

[ ∫
F
f(x, y)K(x, dy)

]
µ(dx).
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Theorem 4.3.2 Let f be an integrable extended real-valued function on the (E×F,E ×F , λ),
where λ is defined by (4.3.1). Then for µ-a.e. x ∈ E the section fx is a integrable function on
(F,F ,K(x, ·)). Moreover, the function

x 7→
∫
F
f(x, y)K(x, dy)

is a.e. E -measurable, and∫
E×F

fdλ =
∫
E

[ ∫
F
f(x, y)K(x, dy)

]
µ(dx). (4.3.2)

Those results can be proved by obvious modifications of the proofs in the last two sections.

4.4 Kolmogorov’s Consistency theorem

Given an non-empty index set T , we note RT the set of all functions w : t 7→ wt = w(t) from T to
R. In the sequel, we may write an element w ∈ RT more explicitly as w· or w(·) or {wt : t ∈ T}.
In particular, when T = {1, · · · , n}, we identify RT with the n-dimensional space Rn.

For any ordered finite set {t1, · · · , tn} ⊆ T we define the projection πt1,··· ,tn : RT → Rn by
setting πt1,··· ,tn(w) = (wt1 , · · · , wtn) for w ∈ RT .

Definition 4.4.1 A set A ⊆ RT is called a cylinder if there exist {t1, · · · , tn} ⊆ T and M ⊆ Rn

such that

A = π−1
t1,··· ,tn(M) = {w ∈ RT : (wt1 , · · · , wtn) ∈M}. (4.4.1)

We remark that the representation (4.4.1) for the cylinder A is not unique. Indeed, if A
has representation (4.4.1) and if tn+1 /∈ {t1, · · · , tn}, we also have A = π−1

t1,··· ,tn,tn+1
(M ×R). Of

course, if both A and {t1, · · · , tn} are given, the set M satisfying (4.4.1) is uniquely determined.
The cylinder A defined by (4.4.1) is said to be Borel if M ∈ B(Rn). Let CT denote the collection
of all Borel cylinders on RT .

Lemma 4.4.1 The collection CT of Borel cylinders is an algebra on RT .

Proof. Clearly, we have RT ∈ CT and ∅ ∈ CT . If A is given by (4.4.1) for {t1, · · · , tn} ⊆ T
and M ∈ B(R)n, we have Ac = π−1

t1,··· ,tn(M c) ∈ CT . Now suppose that Ak ∈ CT for k =
1, · · · ,m. Then for each k there exist {tk,1, · · · , tk,nk

} ⊆ T and Mk ∈ B(Rnk) such that Ak =
π−1
tk,1,··· ,tk,nk

(Mk). Let {t1, · · · , tn} =
⋃m
k=1{tk,1, · · · , tk,nk

}. Clearly, for each k there exists

M̄k ∈ B(Rn) such that Ak = π−1
t1,··· ,tn(M̄k). Thus

m⋃
k=1

Ak =
m⋃
k=1

π−1
t1,··· ,tn(M̄k) = π−1

t1,··· ,tn

( m⋃
k=1

M̄k

)
(4.4.2)

is a Borel cylinder. That shows that CT is an algebra on RT . �

Let B(R)T = σ(CT ). Clearly, πt1,··· ,tn is a measurable mapping from (RT ,B(R)T ) to
(Rn,B(R)n). Moreover, if we understand RT as a topological product space, then B(R)T =
B(RT ). (Homework.)
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Example 4.4.1 A one-dimensional stochastic process with index set [0,∞) is a random element
X taking values in (R[0,∞),B(R)[0,∞)). Suppose that X is defined on the probability space
(Ω,F ,P). Given ω ∈ Ω we have X(ω) = X·(ω) ∈ R[0,∞). In other words, for each fixed ω ∈ Ω,
the function t 7→ Xt(ω) is an element of R[0,∞), which is called the path of X. We can also regard
the stochastic process as a family of random variables {Xt : t ∈ [0,∞)}, where each variable Xt

takes values in R. There is another way is to understand the stochastic process X, namely, we
consider it as a function X : (t, ω) 7→ Xt(ω) from [0,∞)× Ω to R.

Definition 4.4.2 Suppose for each ordered finite set {t1, · · · , tn} ⊆ T there is a probability
measure Pt1,··· ,tn on (Rn,B(Rn)). We say {Pt1,··· ,tn : n ≥ 1, {t1, · · · , tn} ⊆ T} are consistent if
they have the following properties:

(i) if Bi ∈ B(R) for 1 ≤ i ≤ n and {i1, · · · , in} is a permutation of {1, · · · , n}, then

Pti1 ,··· ,tin (Bi1 × · · · ×Bin) = Pt1,··· ,tn(B1 × · · · ×Bn);

(ii) if m ≤ n and Bi ∈ B(R) for 1 ≤ i ≤ m, then

Pt1,··· ,tm(B1 × · · · ×Bm) = Pt1,··· ,tm,tm+1,··· ,tn(B1 × · · · ×Bm × R× · · · × R).

Proposition 4.4.1 Suppose that P is a probability measure on (RT ,B(RT )). Then for any
{t1, · · · , tn} ⊆ T we can define a probability measure Pt1,··· ,tn on (Rn,B(Rn)) by

Pt1,··· ,tn(B) = P (π−1
t1,··· ,tn(B)), B ∈ B(Rn). (4.4.3)

Moreover, the probability measures {Pt1,··· ,tn : n ≥ 1, {t1, · · · , tn} ⊆ T} are consistent.

Proof. (Homework.) �

The following important theorem shows that the converse of Proposition 4.2.1 is also true.

Theorem 4.4.1 (Kolmogorov) If the probability measures {Pt1,··· ,tn : n ≥ 1, {t1, · · · , tn} ⊆ T}
are consistent, there is a unique probability measure P on (RT ,B(RT )) such that (4.4.3) holds.

Proof. Step 1) For any A ∈ CT we can find {t1, · · · , tn} ⊆ T and M ∈ B(Rn) such that
A = π−1

t1,··· ,tn(M). By the consistency we see that the value PT (A) := Pt1,··· ,tn(M) is independent
of the particular choice of {t1, · · · , tn} andM . We claim that PT is a finitely additive set function
on the algebra CT . To see that, suppose that {A1, · · · , Am} is a sequence of disjoint subsets of CT .
As shown in the proof of Lemma 4.4.1, there exist {t1, · · · , tn} ⊆ T and {M̄1, · · · , M̄m} ⊆ B(Rn)
such that Ak = π−1

t1,··· ,tn(M̄k) for each 1 ≤ k ≤ m. Clearly, the sets {M̄1, · · · , M̄m} are disjoint.
By (4.4.2) we have

PT

( m⋃
k=1

Ak

)
= Pt1,··· ,tn

( m⋃
k=1

M̄k

)
=

m∑
k=1

Pt1,··· ,tn(M̄k) =
m∑
k=1

PT (Ak),

giving the finite additivity of PT .

Step 2) We shall prove that PT is σ-additive so it is a measure on CT . This will follow if we
can show {Ak} ⊆ CT and Ak ↓ ∅ imply PT (Ak) ↓ 0. In other words, we only need to show: if
{Ak} ⊆ CT is a decreasing sequence and PT (Ak) ↓ ε0 > 0, then

⋂∞
k=1Ak 6= ∅.
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Let us write Ak = π−1
Tk

(Mk) for some Tk = {t1, · · · , tnk
} ⊆ T and Mk ∈ B(Rnk). In view of

the relation Ak ⊇ Ak+1, we may assume Tk ⊆ Tk+1, so that nk ≤ nk+1. Let T∞ = {t1, t2, · · · }.
By the definition of PT , we have PT (Ak) = Pt1,··· ,tnk

(Mk) ≥ ε0 > 0. Since Pt1,··· ,tnk
is a

probability on B(Rnk), there is a compact set Fk = Fk(ε0) ⊆Mk such that Pt1,··· ,tnk
(Mk \Fk) <

ε0/2k+1. Let Bk = π−1
t1,··· ,tnk

(Fk) ∈ CT and Ck = B1 ∩ · · · ∩ Bk. Then Ck ⊆ Bk ⊆ Ak. Since PT
is finite additive, we have

PT (Ak \ Ck) = PT

(
Ak ∩

( k⋃
i=1

Bc
i

))
= PT

( n⋃
i=1

(Ak \Bi)
)

≤ PT

( n⋃
i=1

(Ai \Bi)
)
≤

n∑
i=1

PT (Ai \Bi)

≤
n∑
i=1

Pt1,··· ,tni
(Mi \ Fi) ≤

n∑
i=1

ε0
2i+1

<
ε0
2
.

It follows that PT (Ck) = PT (Ak) − PT (Ak \ Ck) > PT (Ak) − ε0/2 > 0. In particular, we have
Ck 6= ∅, so there exists some wk = wk(·) ∈ Ck. For m ≥ k ≥ 1 we have wm ∈ Cm ⊆ Ck ⊆ Bk
and hence πt1,··· ,tnk

(wm) = (wm(t1), · · · , wm(tnk
)) ∈ Fk. By the method of diagonalization, it is

easy to find a subsequence {wki
} ⊆ {wk} such that wki

(tj) → some xj for every j ≥ 1. Since Fk
is compact, we have (x1, · · · , xnk

) ∈ Fk. Now we define w0 ∈ RT by

w0(t) =
{
xj if t = tj ,
0 if t ∈ T \ T∞.

Then πt1,··· ,tnk
(w0) = (x1, · · · , xnk

) ∈ Fk, and so w0 ∈ Bk ⊆ Ak. That implies w0 ∈
⋂∞
k=1Ak

and so
⋂∞
k=1Ak 6= ∅.

Step 3) Since CT is an algebra, by measure extension theorem PT has a unique extension P
on B(RT ). The equality (4.4.3) follows from the definition of PT . �

Example 4.4.2 Let µ be a probability measure on (R,B(R)) and let pt(·, ·) be the kernel
defined as in Example 4.3.1. For any 0 = t0 < t1 < · · · < tn let

Pt0,t1,··· ,tn(A) =
∫
A
µ(dx0)pt1−t0(x0, dx1) · · · ptn−tn−1(xn−1, dxn), A ∈ B(Rn+1),

and

Pt1,··· ,tn(B) =
∫

R
µ(dx0)

∫
B
pt1−t0(x0, dx1) · · · ptn−tn−1(xn−1, dxn), B ∈ B(Rn).

If 0 ≤ t0 < t1 < · · · < tn and if {i1, · · · , in} is a permutation of {1, · · · , n}, we define the
probability measure Pti1 ,··· ,tin on (Rn,B(Rn)) by

Pti1 ,··· ,tin (Bi1 × · · · ×Bin) = Pt1,··· ,tn(B1 × · · · ×Bn), Bi ∈ B(R).

Then the family of probability measures {Pt1,··· ,tn : n ≥ 1, {t1, · · · , tn} ⊆ [0,∞)} are consistent.
By Theorem 4.4.1 there is a unique probability measure P on (R[0,∞),B(R[0,∞))) such that
(4.4.3) holds for any {t1, · · · , tn} ⊆ [0,∞). Let Xt(w) = wt for t ≥ 0 and w ∈ R[0,∞). Then
w 7→ X·(w) is a stochastic process defined on the probability space (R[0,∞),B(R[0,∞)), P ). This
process is known as a one-dimensional standard Brownian motion with initial distribution µ.
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By obvious modifications of the arguments, one can generalize the results in this section to
the case where R is replaced by the d-dimensional space Rd. We leave the consideration of those
to the reader.
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Chapter 5

Convergence of Random Variables

5.1 Borel-Cantelli lemma

In this section, we prove the very important Borel-Cantelli lemma which will be used in our
subsequent investigation. Let (Ω,F ,P) be a given probability space and let {En} ⊆ F be a se-
quence of events. We often need to evaluate the probability of the the event E =

⋂∞
n=1

⋃∞
k=nEk.

Clearly, ω ∈ E if and only if ω ∈ Ek for infinitely many k ≥ 1.

Lemma 5.1.1 (Borel-Cantelli) (i) If
∑∞

n=1 P(En) < ∞, then P(E) = 0. (ii) If {En} are
independent, then P(E) = 0 or = 1 according as

∑∞
n=1 P(En) <∞ or = ∞.

Proof. Under the assumption of (i), we have

P(E) = P
( ∞⋂
n=1

∞⋃
k=n

Ek

)
= lim

n→∞
P

( ∞⋃
k=n

Ek

)
≤ lim

n→∞

∞∑
k=n

P(Ek) = 0.

If the events {En} are independent, their complements {Ecn} are also independent. Then for
any N ≥ n ≥ 1 we have

P
( ∞⋂
k=n

Eck

)
≤ P

( N⋂
k=n

Eck

)
=

N∏
k=n

[1−P(Ek)]

≤
N∏
k=n

e−P(Ek) = exp
{
−

N∑
k=n

P(Ek)
}
.

Letting N →∞ we obtain

P
( ∞⋂
k=n

Ecn

)
≤ exp

{
−

∞∑
k=n

P(Ek)
}

= 0.

It follows that

P(Ec) = P
( ∞⋃
n=1

∞⋂
k=n

Eck

)
≤

∞∑
n=1

P
( ∞⋂
k=n

Eck

)
= 0,

and consequently P(E) = 1. �

49
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5.2 Almost sure convergence

Definition 5.2.1 Let X, Xn, n = 1, 2, · · · be random variables defined on the probability
space (Ω,F ,P). We say Xn → X almost surely if there is N ∈ F such that P(N) = 0 and
Xn(ω) → X(ω) for all ω ∈ N c := Ω \N . In this case, we write Xn

a.s→ X or limn→∞Xn
a.s= X.

Definition 5.2.2 We say the sequence of random variables {Xn} is almost surely Cauchy if
there is N ∈ F such that P(N) = 0 and {Xn(ω)} is a Cauchy sequence for every ω ∈ N c.

Proposition 5.2.1 (i) A sequence {Xn} is a.s. Cauchy if and only if Xn
a.s.→ some X; (ii) If

Xn
a.s.→ X and Xn

a.s.→ Y , then Y
a.s.= X.

Proof. (Homework.) �

Proposition 5.2.2 Let {Xn} be a sequence of random variables. Then: (i) Xn
a.s→ X if and

only if for each ε > 0 we have

lim
n→∞

P
( ∞⋃
m=n

{|Xm −X| ≥ ε}
)

= 0;

(ii) {Xn} is a.s. Cauchy if and only if for each ε > 0 we have

lim
n→∞

P
( ∞⋃
m=n

{|Xm −Xn| ≥ ε}
)

= 0.

Proof. (i) Let D = {ω ∈ Ω : Xn(ω) → X(ω) does not hold}. Then ω ∈ D if and if only there is
some k ≥ 1 such that for any n ≥ 1 there exist some m ≥ n such that |Xm(ω)−X(ω)| ≥ 1/k.
In other words,

D =
∞⋃
k=1

∞⋂
n=1

∞⋃
m=n

{ω ∈ Ω : |Xm(ω)−X(ω)| ≥ 1/k}.

Then Xn
a.s→ X if and only if P(D) = 0 or, equivalently,

P
( ∞⋂
n=1

∞⋃
m=n

{|Xm(ω)−X(ω)| ≥ 1/k}
)

= 0

for every k ≥ 1. By the upper continuity of the probability measure, the above equality holds if
and only if

lim
n→∞

P
( ∞⋃
m=n

{|Xm(ω)−X(ω)| ≥ 1/k}
)

= 0

for every k ≥ 1. Then we have the assertion (i).

(ii) Recall that a non-random sequence {an} is Cauchy if and only if for each k ≥ 1 there is
some n ≥ 1 such that |am−an| < 1/k for every m ≥ n. Let D = {ω ∈ Ω : the sequence {Xn(ω)}
is not Cauchy}. The proof is similar to that of (i). �
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Corollary 5.2.1 (i) If
∑∞

n=1 P{|Xn − X| ≥ ε} < ∞ for every ε > 0, then Xn
a.s→ X; (ii) If∑∞

n=1 E[|Xn −X|2] <∞, then Xn
a.s→ X.

Proof. Under the assumption of (i) we have

P
( ∞⋃
k=n

{|Xk −X| ≥ ε}
)
≤

∞∑
k=n

P{|Xk −X| ≥ ε} → 0.

Then the result follows from Proposition 5.2.2. Under the condition of (ii),

∞∑
n=1

P{|Xn −X| ≥ ε} ≤
∞∑
n=1

ε−2E[|Xn −X|2] <∞.

Then the a.s. convergence follows by (i). �

5.3 Convergence in probability

Definition 5.3.1 Let {Xn} be a sequence of random variables defined on (Ω,F ,P). We say
Xn converges to X in probability if P{|Xn −X| ≥ ε} → 0 as n → ∞ for every ε > 0. In this
case, we write Xn

P→ X.

Proposition 5.3.1 The sequence {Xn} converges to zero in probability if and only if

E
[

|Xn|r

1 + |Xn|r

]
→ 0 (5.3.1)

for some r > 0.

Proof. Observe that Yn := |Xn|r/(1 + |Xn|r) ≤ |Xn|r. If Xn
P→ 0, we have |Xn|r

P→ 0 and
hence Yn

P→ 0. Then (5.3.1) follows by the dominated convergence theorem. (Homework:
Prove the dominated convergence theorem for a sequence of random variables that converges in
probability.) Conversely, suppose that (5.3.1) holds. For δ > 0 and ε > 0, let N = N(δ, ε) be
such that

E
[

|Xn|r

1 + |Xn|r

]
<

εδr

1 + δr

for n ≥ N . By Chebyshev’s inequality we have

P{|Xn| ≥ δ} = P
{

|Xn|r

1 + |Xn|r
≥ δr

1 + δr

}
≤ 1 + δr

δr
E

[
|Xn|r

1 + |Xn|r

]
< ε

for n ≥ N . That proves Xn
P→ 0. �

Proposition 5.3.2 If Xn
a.s.→ X, then Xn

P→ X.
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Proof. By Proposition 5.2.2, if Xn
a.s.→ X, for each ε > 0 we have

lim
n→∞

P
( ∞⋃
m=n

{|Xm −X| ≥ ε}
)

= 0.

Then limn→∞P{|Xn −X| ≥ ε} = 0. �

Definition 5.3.2 We say {Xn} is Cauchy in probability if P{|Xn−Xm| ≥ ε} → 0 as m,n→∞
for each ε > 0.

Proposition 5.3.3 (i) If Xn
P→ X, there is a subsequence {Xnk

} such that Xnk

a.s.→ X; (ii) If

{Xn} is Cauchy in probability, there is a subsequence {Xnk
} such that Xnk

a.s.→ some X.

Proof. (i) Since Xn
P→ X, for each k ≥ 1 there is an integer nk such that

P{|Xnk
−X| ≥ 1/k} ≤ 1/2k.

Let ε > 0 and choose an integer m > 1/ε. We have

∞∑
k=1

P{|Xnk
−X| ≥ ε} ≤

∞∑
k=m

P{|Xnk
−X| ≥ 1/m}+

m−1∑
k=1

P{|Xnk
−X| ≥ ε}

≤
∞∑
k=m

P{|Xnk
−X| ≥ 1/k}+

m−1∑
k=1

P{|Xnk
−X| ≥ ε}

≤
∞∑
k=m

1
2k

+
m−1∑
k=1

P{|Xnk
−X| ≥ ε}

=
1

2m−1
+
m−1∑
k=1

P{|Xnk
−X| ≥ ε} <∞.

Then Xnk

a.s.→ X by Corollary 5.2.1.

(ii) Since {Xn} is Cauchy in probability, for each k ≥ 1 we can choose mk so that

P{|Xm −Xn| ≥ 1/2k} < 1/2k

for all m,n ≥ mk. Define {nk} inductively by setting n1 = m1 and nk+1 = max{nk + 1,mk+1}
for k ≥ 1. Clearly, nk →∞. Let

Fm =
∞⋃
k=m

{|Xnk
−Xnk+1

| ≥ 1/2k}.

Then {Fm} is a decreasing sequence and

P(Fm) ≤
∞∑
k=m

P{|Xnk
−Xnk+1

| ≥ 1/2k} ≤
∞∑
k=m

1
2k

=
1

2m−1
.
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Let N =
⋂∞
m=1 Fm. We have P(N) = limm→∞P(Fm) = 0. For any

ω ∈ F cm =
∞⋂
k=m

{|Xnk
−Xnk+1

| < 1/2k}

we have |Xnk
− Xnk+1

| < 1/2k for k ≥ m, so {Xnk
(ω)} is a Cauchy sequence. Consequently,

for each ω ∈ N c =
⋃∞
m=1 F

c
m the sequence {Xnk

(ω)} is Cauchy. It follows that Xnk
(ω) → some

X(ω) for every ω ∈ N c. Setting X(ω) = 0 for ω ∈ N , we have Xnk

a.s.→ X. �

Proposition 5.3.4 The sequence of random variables {Xn} is Cauchy in probability if and

only if Xn
P→ some X.

Proof. Suppose that Xn
P→ X. Then for any ε > 0 and η > 0, there is N = N(ε, η) such that

P{|Xn −X| ≥ ε/2} < η/2

for n ≥ N . When m,n ≥ N , we have

P{|Xm −Xn| ≥ ε} ≤ P({|Xm −X| ≥ ε/2} ∪ {|Xn −X| ≥ ε/2}) ≤ η/2 + η/2 = η.

Thus {Xn} is Cauchy in probability. Conversely, suppose that {Xn} is Cauchy in probability.
By Proposition 5.3.3, there is a subsequence {Xnk

} such that Xnk

a.s.→ some X. Consequently,

we have Xnk

P→ X. For δ > 0 and ε > 0, there exists N ≥ 1 such that P{|Xn−Xm| ≥ ε/2} < δ
for m ≥ n ≥ N . For any n ≥ N we choose nk ≥ n so that

P{|Xn −X| ≥ ε} ≤ P{|Xn −Xnk
| ≥ ε/2}+ P{|Xnk

−X| ≥ ε/2}
< δ + P{|Xnk

−X| ≥ ε/2}.

Then we may let k →∞ to see that P{|Xn −X| ≥ ε} < δ. �

Remark 5.3.1 (i) It is not hard to construct a sequence {Xn} such that Xn
P→ X, but Xn

a.s.→ X

does not hold. (ii) If Xn
P→ X and Xn

P→ Y , then X a.s.= Y . (Homework.)

5.4 Convergence in mean

Let (Ω,F ,P) be a probability space and L1 = L1(Ω,F ,P) be the set of all random variables
X on (Ω,F ,P) such that E[|X|] <∞.

Definition 5.4.1 Let X,Xn ∈ L1. We say {Xn} converges to X in mean if E[|Xn−X|] → 0 as

n→∞. In this case, we write Xn
L1→ X. We say {Xn} is Cauchy in mean if E[|Xm −Xn|] → 0

as m,n→∞.

Proposition 5.4.1 (i) If Xn
L1→ X, then Xn

P→ X; (ii) If {Xn} is Cauchy in mean, then it is
Cauchy in probability.
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Proof. Both results follow immediately from Markov’s inequality. �

Proposition 5.4.2 The sequence {Xn} ⊆ L1 is Cauchy in mean if and only if Xn
L1→ some X.

Proof. Suppose Xn
L1→ X. For ε > 0, there is N = N(ε) such that E[|Xn−X|] < ε/2 for n ≥ N .

It follows that

E[|Xm −Xn|] ≤ E[|Xm −X|] + E[|X −Xm|] ≤ ε/2 + ε/2 = ε

for m ≥ n ≥ N . That shows that {Xn} is Cauchy in mean. Conversely, suppose {Xn} is
Cauchy in mean. By Proposition 5.4.1, {Xn} is Cauchy in probability. By Proposition 5.3.3,
there exists a subsequence {Xnk

} such that Xnk

a.s.→ X. For ε > 0, let N = N(ε) be such that
E[|Xm −Xn|] < ε for m ≥ n ≥ N . In particular, we have E[|Xnk

−Xn|] < ε for nk ≥ n ≥ N .
By Fatou’s lemma,

E[|X −Xn|] = E
[
lim inf
k→∞

|Xnk
−Xn|

]
≤ lim inf

k→∞
E[|Xnk

−Xn|] ≤ ε.

It follows that Xn
L1→ X. �

Lemma 5.4.1 Let X ∈ L1. Then to each ε > 0 there corresponds δ = δ(ε) > 0 such that∫
E
|X|dP < ε

for every E ∈ F with P(E) < δ.

Proof. Since E[|X|] <∞, we may apply the monotone convergence theorem to see

lim
n→∞

∫
{|X|>n0}

|X|dP = lim
n→∞

∫
Ω

1{|X|>n0}|X|dP = 0.

Then for any ε > 0, there exists n0 = n0(ε) ≥ 1 such that
∫
{|X|>n0} |X|dP < ε/2. Let δ = ε/2n0.

For E ∈ F with P(E) < δ we have∫
E
|X|dP ≤

∫
E∩{|X|≤n0}

|X|dP +
∫
{|X|>n0}

|X|dP < n0 · ε/2n0 + ε/2 = ε,

as desired. �

Proposition 5.4.3 Suppose that {Xn} ⊆ L1. Then {Xn} is Cauchy in mean if and only if it
is Cauchy in probability and for each ε > 0, there exists δ = δ(ε) > 0 such that

sup
n≥1

∫
E
|Xn|dP < ε (5.4.1)

for each E ∈ F satisfying P(E) < δ.
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Proof. Suppose that {Xn} is Cauchy in mean. By Proposition 5.4.1, the sequence is Cauchy in
probability. Moreover, for ε > 0 there exists n0 = n0(ε) ≥ 1 such that E|Xn −Xn0 | < ε/2 for
n ≥ n0. By Lemma 5.4.1, there exists δ = δ(ε) > 0 such that∫

E
|Xn|dP < ε/2

when P(E) < δ and n ≤ n0. If P(E) < δ and n > n0, we have∫
E
|Xn|dP ≤

∫
E
|Xn −Xn0 |dP +

∫
E
|Xn0 |dP

≤ E[|Xn −Xn0 |] +
∫
E
|Xn0 |dP ≤ ε/2 + ε/2 = ε.

That proves (5.4.1). Conversely, suppose that {Xn} is Cauchy in probability and (5.4.1) holds
for ε > 0 and δ > 0. Let N = N(δ) ≥ 1 be such that P{|Xn − Xm| ≥ ε} < δ for m,n ≥ N .
Then we have

sup
k≥1

∫
{|Xn−Xm|≥ε}

|Xk|dP < ε.

It follows that, for m,n ≥ N ,

E[|Xn −Xm|] =
∫
{|Xn−Xm|<ε}

|Xn −Xm|dP +
∫
{|Xn−Xm|≥ε}

|Xn −Xm|dP

≤ ε+
∫
{|Xn−Xm|≥ε}

|Xn|dP +
∫
{|Xn−Xm|≥ε}

|Xm|dP

≤ ε+ ε+ ε = 3ε.

Thus {Xn} is Cauchy in mean. �
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Chapter 6

Laws of Large Numbers

6.1 Tail events and tail functions

Let {Xn} be a sequence of independent random variables on (Ω,F ,P). An interesting problem
in probability is the following: what is the probability that the series

∑∞
i=1Xi converges? A

remarkable result that we shall prove is that this probability must be either 0 or 1. The property
is shared by many other events associated with independent variables. Results of these type are
called zero-one laws.

Definition 6.1.1 For any infinite sequence {Xn} of random variables,

T :=
∞⋂
n=1

σ({Xn, Xn+1, · · · }),

is a σ-algebra, which is called the tail σ-algebra of {Xn}. Any event A ∈ T is called a tail event.
A function f : Ω → R is called a tail function if it is T -measurable, that is, f−1(B) ∈ T for
every B ∈ B(R).

Proposition 6.1.1 Let {Xn} be a sequence of independent random variables. Then for any
n ≥ 1 the classes σ({X1, · · · , Xn}) and σ({Xn+1, Xn+2, · · · }) are independent.

Proof. Let n ≥ 1 and A ∈ σ({X1, · · · , Xn}) be fixed and let D be the class of sets C ∈
σ({Xn+1, Xn+2, · · · }) such that P(A∩C) = P(A)P(C). It is easy to show that D is a λ-class. Ac-
cording to the definition of the independence, for any m ≥ 1 the random variables {X1, · · · , Xn,
Xn+1, · · · , Xn+m} are independent. Then the classes {X1, · · · , Xn} and {Xn+1, · · · , Xn+m} are
independent. It follows that P(A ∩ B) = P(A)P(B) for every B ∈ σ({Xn+1, · · · , Xn+m}). In
other words, we have D ⊇ C :=

⋃
m≥1 σ({Xn+1, · · · , Xn+m}). Since D is clearly a π-class, we

get D ⊇ σ(C ) = σ({Xn+1, Xn+2, · · · }) by the monotone class theorem. That yields P(A∩C) =
P(A)P(C) for all C ∈ σ({Xn+1, Xn+2, · · · }). Then σ({X1, · · · , Xn}) and σ({Xn+1, Xn+2, · · · })
are independent. �

Theorem 6.1.1 (Kolmogorov) Let {Xn} be a sequence of independent random variables. Then
P(A) = 0 or 1 for any A ∈ T .

57
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Proof. By Proposition 6.1.1, for E ∈ σ({X1, · · · , Xn}) and A ∈ T ⊆ σ({Xn+1, Xn+2, · · · })
we have P(E ∩ A) = P(E)P(A). By a monotone class argument, one shows that P(E ∩ A) =
P(E)P(A) for E ∈ σ({X1, X2, · · · }) and A ∈ T . In particular, taking E = A we get P(A) =
P(A)2 and hence P(A) = 0 or 1. �

Corollary 6.1.1 Let {Xn} be a sequence of independent random variables. Then any tail
function of {Xn} is a.s. constant.

Proof. Let ξ be a tail function of {Xn}. By Theorem 6.1.1, for any a ≤ b ∈ R we have
P{a ≤ ξ ≤ b]} = 0 or = 1. Then to each k ≥ 1 there corresponds an unique nk such that
P{nk/2k ≤ ξ ≤ (nk + 1)/2k} = 1. Clearly, [nk+1/2k+1, (nk+1 + 1)/2k+1] ⊂ [nk/2k, (nk + 1)/2k]
for every k ≥ 1. Let α ∈ R be the unique point contained in all the intervals [nk/2k, (nk+1)/2k]
for k ≥ 1. Then we must have a.s. ξ = a. �

Corollary 6.1.2 Let {Xn} be a sequence of independent random variables. Then we have

(i) {Xn} either a.s. converges to a finite limit or a.s. diverges.

(ii)
∑n

i=1Xi either a.s. converges to a finite limit or a.s. diverges.

(iii) if bn →∞, then b−1
n

∑n
i=1Xi either a.s. converges to a finite limit or a.s. diverges.

Moreover, if the sequence as (i) or (iii) a.s. converges, the limit is a.s. constant.

Proof. For any m ≥ 1 the event⋂
i,j≥n

{ω : |Xi(ω)−Xj(ω)| < 1/m}

decreases in n ≥ 1. Then we have⋃
n≥1

⋂
i,j≥n

{ω : |Xi(ω)−Xj(ω)| < 1/m} =
⋃
n≥k

⋂
i,j≥n

{ω : |Xi(ω)−Xj(ω)| < 1/m}

for every k ≥ 1. Consequently, the above event is belong to the tail σ-algebra T , then so is

{ω : Xn(ω) converges} =
⋂
m≥1

⋃
n≥1

⋂
i,j≥n

{ω : |Xi(ω)−Xj(ω)| < 1/m}.

By Theorem 6.1.1 we have P{Xn converges} = 0 or = 1. If this probability is one, let X(ω) =
limn→∞Xn(ω) when the limit exists and let X(ω) = 0 when Xn(ω) diverges. Clearly, X is a
tail function. Then Corollary 6.1.1 implies that X is a.s. constant. That proves (i). The proofs
of (ii) and (iii) are similar. (Homework.) �

Definition 6.1.2 We say two sequences of random variables {Xn} and {Yn} are tail equivalent
if they differ a.s. only by a finite number of term, that is, for a.e. ω ∈ Ω there corresponds some
N(ω) such that Xn(ω) = Yn(ω) for all n ≥ N(ω). The two sequences {Xn} and {Yn} are said
to be convergence equivalent if P({Xn converges and Yn diverges}) = P({Xn diverges and Yn
converges}) = 0.
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Proposition 6.1.2 Let {Xn} and {Yn} be two sequences of random variables such that

∞∑
n=1

P{Xn 6= Yn} <∞. (6.1.1)

Then we have

(i) {Xn} and {Yn} are tail equivalent;

(ii)
∑∞

n=1Xn and
∑∞

n=1 Yn are convergence equivalent;

(iii) for any bn ↑ ∞, the sequences b−1
n

∑n
i=1Xi and b−1

n

∑n
i=1 Yi are convergence equivalent

and their limits a.s. coincide.

Proof. By (6.1.1) and Borel-Cantalli lemma,

P
( ∞⋂
n=1

∞⋃
k=1

{Xk 6= Yk}
)

= 0,

or, equivalently,

P
( ∞⋃
n=1

∞⋂
k=n

{Xk = Yk}
)

= 1.

Thus {Xn} and {Yn} are tail equivalent, giving (i). The assertions (ii) and (iii) are immediate.
�

6.2 Weak law of large numbers

Let {Xn} be a sequence of random variables defined on (Ω,F , P ). In this section, we study weak
laws of large numbers, which deal with condition of convergence in probability of the partial
sums

Sn :=
n∑
k=1

Xk, n = 1, 2, · · · .

Definition 6.2.1 If there are sequences {An} and {Bn} with 0 < Bn → ∞ such that (Sn −
An)/Bn

P→ 0 as n→∞, we say {Xn} satisfies a weak law of large numbers.

Theorem 6.2.1 (Chebyshev) Let {Xn} be a sequence of independent random variables. Sup-
pose that there is a constant γ > 0 such that Var(Xn) ≤ γ for all n ≥ 1. Then we have

(Sn −E[Sn])/n
P→ 0.

Proof. By Chebyshev’s inequality, for any ε > 0 we have

P
{ 1
n
|Sn −E[Sn]| ≥ ε

}
≤ 1
n2

n∑
j=1

Var(Xj) ≤
1
n
γ.

The right hand side goes to zero as n→∞. It follows that (Sn −E[Sn])/n
P→ 0. �
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Corollary 6.2.1 If {Xn} are i.i.d. random variables with E[X2
n] <∞, then

1
n

n∑
j=1

Xj
P→ µ := E[X1].

Theorem 6.2.2 Let {Xn} be i.i.d random variables with common mean µ = E[Xn]. Then

Sn/n
P→ µ as n→∞.

Proof. The following argument is a typical application of the truncation method. Let δ > 0 and
n ≥ 1 be fixed. For 0 ≤ k ≤ n, set

X
(n)
k =

{
Xk if |Xk| < nδ,
0 otherwise.

Then {X(n)
k : 1 ≤ k ≤ n} are i.i.d. random variables. Write β = E[|X1|] and define En = {ω :

|X1(ω)| < nδ}. By the dominated convergence theorem,

µ∗n := E[X(n)
1 ] = E[X11En ] → µ.

Moreover, we have

Var(X(n)
1 ) ≤ E[(X(n)

1 )2] =
∫
En

X2
1dP ≤ nδ

∫
En

|X1|dP ≤ nδβ.

Writing S∗n =
∑n

k=1X
(n)
k , we have E[S∗n/n] = µ∗n and Var(S∗n/n) = Var(X(n)

1 )/n ≤ δβ. Choose
N = N(ε) ≥ 1 such that |µ∗n−µ| < ε for all n ≥ N . Then we can see by Chebyshev’s inequality
that

P
{∣∣∣S∗n

n
− µ

∣∣∣ ≥ 2ε
}
≤ P

{∣∣∣S∗n
n
− µ∗n

∣∣∣ + |µ∗n − µ| ≥ ε
}
≤ P

{∣∣∣S∗n
n
− µ∗n

∣∣∣ ≥ ε
}
≤ βδ

ε2
.

For 1 ≤ k ≤ n, we have

P{Xk 6= X
(n)
k } = P{|Xk| ≥ δn} = P{|X1| ≥ δn} ≤ 1

nδ

∫
Ec

n

|X1|dP

and consequently

P{Sn 6= S∗n} ≤ P
( n⋃
k=1

{Xk 6= X
(n)
k }

)
≤

n∑
k=1

P{Xk 6= X
(n)
k } ≤ 1

δ

∫
Ec

n

|X1|dP.

It then follows that

P
{∣∣∣Sn

n
− µ

∣∣∣ ≥ 2ε
}
≤ P

({∣∣∣S∗n
n
− µ

∣∣∣ ≥ 2ε
}
∪ {Sn 6= S∗n}

)
≤ βδ

ε2
+

1
δ

∫
Ec

n

|X1|dP. (6.2.1)

By the dominated convergence theorem,

lim
n→∞

∫
Ec

n

|X1|dP = lim
n→∞

∫
Ω
|X1|1Ec

n
dP = 0.

Then (6.2.1) implies that

lim sup
n→∞

P
{∣∣∣Sn

n
− µ

∣∣∣ ≥ 2ε
}
≤ βδ

ε2
.

Since δ > 0 is arbitrary, we must have

lim
n→∞

P
{∣∣∣Sn

n
− µ

∣∣∣ ≥ 2ε
}

= 0,

which yields the desired convergence. �
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6.3 Kolmogorov’s inequalities

Proposition 6.3.1 Suppose that {X1, · · · , Xn} is a finite sequence of independent random
variables such that E[Xk] = 0 and σ2

k = Var(Xk) <∞ for 1 ≤ k ≤ n. Let Sk =
∑k

i=1Xi. Then,
for every ε > 0,

P
{

max
1≤k≤n

|Sk| ≥ ε
}

= P
( n⋃
k=1

{|Sk| ≥ ε}
)
≤ 1
ε2

n∑
k=1

σ2
k.

Proof. Let E = {max1≤k≤n |Sk| ≥ ε} and E1 = {|S1| ≥ ε}. For 2 ≤ k ≤ n let

Ek = {|Sk| ≥ ε} ∩
k−1⋂
j=1

{|Sj | < ε}.

Then {E1, · · · , En} are disjoint and E =
⋃n
k=1Ek. By the independence of the sequence,

n∑
k=1

σ2
k = Var(Sn) =

∫
Ω
S2
ndP ≥

∫
E
S2
ndP =

n∑
k=1

∫
Ek

S2
ndP. (6.3.1)

For any 1 ≤ k ≤ n we have∫
Ek

S2
ndP =

∫
Ek

(
Sk +

n∑
j=k+1

Xj

)2
dP

=
∫
Ek

S2
kdP +

n∑
j=k+1

∫
Ek

X2
j dP + 2

n∑
j=k+1

∫
Ek

SkXjdP

+2
∑

k+1≤i<j≤n

∫
Ek

XiXjdP, (6.3.2)

where ∫
Ek

SkXjdP = E[1Ek
SkXj ] = E[1Ek

Sk]E[Xj ] = 0

and ∫
Ek

XiXjdP = E[1Ek
XiXj ] = E[1Ek

Xi]E[Xj ] = 0.

From (6.3.1) and (6.3.2) it follows that

n∑
k=1

σ2
k ≥

n∑
k=1

∫
Ek

S2
kdP ≥ ε2

n∑
k=1

P(Ek) = ε2P(E),

giving the desired inequality. �

Proposition 6.3.2 Let {X1, · · · , Xn} be a set of centered and independent random variables.
Suppose there is a constant γ > 0 such that P{|Xk| ≤ γ} = 1 for all 1 ≤ k ≤ n. Let Sk =∑k

i=1Xi. Then for every ε > 0,

P
{

max
1≤k≤n

|Sk| ≥ ε
}

= P
( n⋃
k=1

{|Sk| ≥ ε}
)
≥ 1− (ε+ γ)2

γ2 + Var(Sn)
.
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Proof. Let E and Ek be defined as in the proof of Proposition 6.3.1. Let F0 = Ω and Fk =⋂k
j=1{|Sj | < ε} for k ≥ 1. Clearly, Fk−1 = Ek ∪ Fk and Ek ∩ Fk = ∅ for 1 ≤ k ≤ n. Note also

that

Ik :=
∫
Fk

S2
kdP−

∫
Fk−1

S2
k−1dP

=
∫
Fk−1

S2
kdP−

∫
Ek

S2
kdP−

∫
Fk−1

S2
k−1dP

=
∫
Fk−1

[(Sk−1 +Xk)2 − S2
k−1]dP−

∫
Ek

S2
kdP

=
∫
Fk−1

(X2
k + 2XkSk−1)dP−

∫
Ek

S2
kdP, (6.3.3)

where ∫
Fk−1

X2
kdP = E[1Fk−1

X2
k ] = P(Fk−1)E[X2

k ] ≥ P(Fn)E[X2
k ]

and ∫
Fk−1

XkSk−1dP = E[1Fk−1
Sk−1Xk] = E[1Fk−1

Sk−1]E[Xk] = 0.

For any ω ∈ Ek we have

|Sk(ω)| ≤ |Sk−1(ω)|+ |Xk(ω)| ≤ ε+ γ,

so that ∫
Ek

S2
kdP ≤ (ε+ γ)2P(Ek).

From (6.3.3) it follows that

Ik ≥ P(Fn)E[X2
k ]− (ε+ γ)2P(Ek)

for 1 ≤ k ≤ n. Since E =
⋃n
k=1Ek = F cn, we can take the summation in both sides to get∫

Fn

S2
ndP ≥ P(Fn)

n∑
k=1

E[X2
k ]− (ε+ γ)2P(E)

= P(Fn)Var(Sn)− (ε+ γ)2(1−P(Fn)).

On the other hand, we have ∫
Fn

S2
ndP ≤ ε2P(Fn).

It then follows that

ε2P(Fn) ≥ P(Fn)Var(Sn)− (ε+ γ)2(1−P(Fn))

and so
(ε+ γ)2 ≥ [Var(Sn) + (ε+ γ)2 − ε2]P(Fn) ≥ [Var(Sn) + γ2]P(Fn).

We may rewrite this into

(ε+ γ)2 ≥ [Var(Sn) + γ2](1−P(E)),

from which the desired inequality follows. �
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6.4 Random series

Proposition 6.4.1 Let {Xn} be a sequence of independent random variables. If

∞∑
n=1

Var(Xn) <∞,

then
∞∑
n=1

(Xn −E[Xn])

a.s. converges.

Proof. Set σ2
n = Var(Xn) and Sn =

∑n
j=1Xj . By Proposition 6.3.1 applied to the sequence

Xn+1 −E[Xn+1], Xn+2 −E[Xn+2], · · ·

we have

P
( m⋃
k=1

{∣∣∣∣ n+k∑
j=n+1

(Xj −E[Xj ])
∣∣∣∣ ≥ ε

})
≤ 1
ε2

n+m∑
j=n+1

σ2
j ≤

1
ε2

∞∑
j=n+1

σ2
j .

By the lower continuity of the probability measure, we may let m→∞ to get

P
( ∞⋃
k=1

{∣∣∣∣ n+k∑
j=n+1

(Xj −E[Xj ])
∣∣∣∣ ≥ ε

})
≤ 1
ε2

∞∑
j=n+1

σ2
j .

It follows that

lim
n→∞

P
( ∞⋃
k=1

{∣∣∣∣ n+k∑
j=n+1

(Xj −E[Xj ])
∣∣∣∣ ≥ ε

})
= 0.

By Proposition 5.2.2 we see that the sequence {Sn−ESn} is a.s. Cauchy and hence a.s. converges.
�

Proposition 6.4.2 Let {Xn} be a sequence of independent random variables such that |Xn| ≤ γ
a.s. for some constant γ ≥ 0. If

∞∑
n=1

Var(Xn) = ∞, (6.4.1)

then the series

∞∑
n=1

(Xn −E[Xn]) (6.4.2)

a.s. converges.

Proof. Note that
∣∣Xn −E[Xn]

∣∣ ≤ 2γ. By Proposition 6.3.2,

P
{

sup
k≥1

∣∣∣ n+k∑
j=n+1

(Xj −E[Xj ])
∣∣∣ ≥ ε

}
≥ 1− (ε+ 2γ)2

4γ2 +
∑n+k

j=n+1 σ
2
j

.
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If (6.4.1) holds, we have

P
{

sup
k≥1

∣∣ n+k∑
j=n+1

(Xj −E[Xj ])
∣∣ ≥ ε

}
= 1,

which clearly implies the a.s. divergence of (6.4.2). (Homework: Give a detailed proof of the
last step.) �

Corollary 6.4.1 Let {Xn} be a sequence of independent random variables such that |Xn| ≤ γ
a.s. for some constant γ ≥ 0. Then the series

∞∑
n=1

(Xn −E[Xn])

converges a.s. or diverges a.s. according as

∞∑
n=1

Var(Xn) <∞ or = ∞.

Proposition 6.4.3 Let {Xn} be a sequence of independent random variables such that |Xn| ≤ γ
a.s. for some constant γ ≥ 0. Then

∑∞
n=1Xn converges a.s. if and only if the following condition

hold:

(i)
∑∞

n=1 E[Xn] converges;

(ii)
∑∞

n=1 Var(Xn) <∞.

Proof. By Proposition 6.4.2, conditions (i) and (ii) imply the a.s. converges of the series∑∞
n=1Xn. Then it suffices to show that the converse assertion. Suppose that

∑∞
n=1Xn a.s.

converges. On an extension of the original probability space, we may construct a sequence of
random variables {Yn} which is i.i.d. with {Xn}. Let Zn = Xn − Yn. Then {Zn} is a se-
quence of independent random variables. Moreover, we have |Zn| ≤ 2γ a.s. with E[Zn] = 0 and
Var(Zn) = 2Var(Xn). Since

∑∞
n=1Xn a.s. converges, so does

∑∞
n=1 Yn. It follows that

∞∑
n=1

Zn =
∞∑
n=1

(Xn − Yn)

also a.s. converges. From Proposition 6.4.2 it follows that
∑∞

n=1 Var(Zn) < ∞, and hence∑∞
n=1 Var(Xn) <∞. By Proposition 6.4.1,

∑∞
n=1(Xn −E[Xn]) converges a.s. and hence

∞∑
n=1

E[Xn] =
∞∑
n=1

Xn −
∞∑
n=1

(Xn −E[Xn])

converges. �

Theorem 6.4.1 (Three-Series Criterion) Let {Xn} be a sequence of independent random vari-
ables. Then

∑∞
n=1Xn converges a.s. if and only if for some constant c > 0 the following three

series converge:
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(i)
∑∞

n=1 P{|Xn| ≥ c};

(ii)
∑∞

n=1 E[Xc
n];

(iii)
∑∞

n=1 Var(Xc
n),

where Xc
n = 1{|Xn|<c}Xn. Moreover, if (i), (ii) and (iii) converge for some c > 0, they converge

for all c > 0.

Proof. By Borel-Cantelli Lemma, the series (i) converges if and only if

P
( ∞⋂
n=1

∞⋃
k=n

{|Xk| ≥ c}
)

= 0 (6.4.3)

or, equivalently,

P
( ∞⋃
n=1

∞⋂
k=n

{Xk = Xc
k}

)
= 1. (6.4.4)

Suppose
∑∞

n=1Xn a.s. converges. Then Xn
a.s.→ 0, and hence we have (6.4.3) for each c > 0. It

follows that (i) converges. By (6.4.4), the a.s. convergence of
∑∞

n=1Xn implies that of
∑∞

n=1X
c
n.

By Proposition 6.4.3, the series (ii) and (iii) are both convergent. Conversely, suppose (i), (ii)
and (iii) converge for some c > 0. By Proposition 6.4.3, we know that

∑∞
n=1X

c
n a.s. converges.

In view of (6.4.4), the series
∑∞

n=1Xn a.s. converges. �

6.5 Strong law of large numbers

Lemma 6.5.1 (Toeplitz) If {an} be a sequence such that an → some a as n→∞, we have

1
n

n∑
k=1

ak → a (n→∞).

Proof. Well-known. �

Lemma 6.5.2 (Kronecker) If
∑∞

n=1 an converges, then

1
n

n∑
k=1

kak → 0 (n→∞).

Proof. Let s0 = 0 and sn =
∑n

k=1 ak. Suppose that sn → s. Clearly,

1
n

n∑
k=1

kak =
1
n

n∑
k=1

k(sk − sk−1)

=
1
n

n∑
k=1

[ksk − (k − 1)sk−1]−
1
n

n∑
k=1

sk−1

= sn −
1
n

n−1∑
k=1

sk−1 → s− s = 0.
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That gives the result. �

Proposition 6.5.1 Let {Xn} be a sequence of independent random variables with σ2
n :=

Var(Xn) <∞ for each n ≥ 1. If
∑∞

n=1 σ
2
n/n

2 <∞, then

1
n

n∑
k=1

(Xk −E[Xk])
a.s.→ 0 (n→∞).

Proof. Let Yn = (Xn − E[Xn])/n. Then E[Yn] = 0 and Var(Yn) = σ2
n/n

2. It follows that∑∞
n=1 Var(Yn) <∞. From Proposition 6.4.1 it follow that

∑∞
n=1 Yn converges a.s. Then

1
n

n∑
k=1

(Xk −E[Xk]) =
1
n

n∑
k=1

kYk
a.s.→ 0 (n→∞)

by Kronecker’s Lemma. �

Definition 6.5.1 Let {Xn} be a sequence of independent random variables and let Sn =∑n
k=1Xk . If there are sequences {An} and {Bn} with 0 < Bn →∞ such that

1
Bn

(Sn −An)
a.s.→ 0 (n→∞),

we say that {Xn} satisfies a strong law of large numbers.

Theorem 6.5.1 (Kolmogorov) Let {Xn} be a sequence of i.i.d. random variables and let Sn =∑n
k=1Xk. Then the sequence {Sn/n} converges a.s. to a finite limit α if and only if E[|Xn|] <∞.

In this case, we have α = E[Xn].

Lemma 6.5.3 For any random variable X, we have

∞∑
n=1

P{|X| ≥ n} ≤ E[|X|] ≤
∞∑
n=0

P{|X| ≥ n}.

Proof. For the first inequality we have

E[|X|] ≥
∞∑
k=1

kP{k ≤ |X| < k + 1} =
∞∑
k=1

k∑
n=1

P{k ≤ |X| < k + 1}

=
∞∑
n=1

∞∑
k=n

P{k ≤ |X| < k + 1} =
∞∑
n=1

P{|X| ≥ n}.

The second inequality follows similarly. �

Proof of Theorem 6.5.1. Suppose that E[|X1|] < ∞. Let En = {|X1| ≥ n} for n ≥ 0. Then
En ↓ ∅ and En =

⋃∞
k=nEk \Ek+1, which is a union of disjoint events. By Lemma 6.5.3 we have∑∞

n=1 P(En) <∞. For n ≥ 1 , let X∗
n = 1{|Xn|<n}Xn. It follows that

Var(X∗
n) ≤

∫
{|Xn|<n}

X2
ndP ≤

n∑
k=1

k2P(Ek−1 \ Ek),
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and hence
∞∑
n=1

Var(X∗
n)

n2
≤

∞∑
n=1

n∑
k=1

k2

n2
P(Ek−1 \ Ek) =

∞∑
k=1

k2P(Ek−1 \ Ek)
∞∑
n=k

1
n2
,

where
∞∑
n=k

1
n2

≤ 1
k2

+
∫ ∞

k

1
x2
dx =

1
k2

+
1
k
≤ 2
k
.

Then we have
∞∑
n=1

Var(X∗
n)

n2
≤ 2

∞∑
k=1

kP(Ek−1 \ Ek) ≤ 2(1 + E[|X1|]) <∞.

Set S∗n =
∑n

k=1X
∗
k . By Proposition 6.5.1 we conclude that (S∗n−E[S∗n])/n

a.s.→ 0. For each n ≥ 1,
we have

E[X∗
n] = E[1{|Xn|<n}Xn] = E[1{|X1|<n}X1].

Then the dominated convergence theorem implies that E[X∗
n] → E[X1] as n→∞. By Toeplitz’

Lemma,
1
n
E[S∗n] =

1
n

n∑
k=1

E[X∗
k ] → E[X1] (n→∞).

On the other hand, since
∞∑
n=1

P{Xn 6= X∗
n} =

∞∑
n=1

P(En) ≤ E[|X1|] <∞,

by Proposition 6.1.2 we have (Sn − S∗n)/n
a.s.→ 0 and hence Sn/n

a.s.→ E[X1]. Conversely, suppose
that {Sn/n} converges to a finite limit α as n→∞. We have

Xn

n
=
Sn − Sn−1

n
=
Sn
n
− n− 1

n

Sn−1

n− 1
,

so that Xn/n
a.s.→ 0 (n→∞). It follows that, for ε > 0,

P
( ∞⋂
n=1

∞⋃
k=n

{|Xk/k| ≥ ε}
)

= 0,

By Borel-Cantelli Lemma,
∞∑
n=1

P{|Xn/n| ≥ ε} =
∞∑
n=1

P{|Xn| ≥ nε} <∞.

In particular, we have
∞∑
n=1

P{|Xn| ≥ n} =
∞∑
n=1

P(En) ≤ ∞

and hence

E[X1] ≤
∞∑
n=0

P(En) ≤ ∞.

From the first part of the proof it follows that α = E[X1]. �
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Chapter 7

Convergence of Distributions

7.1 Convergence of distribution functions

Definition 7.1.1 Let F and Fn, n = 1, 2, · · · be distribution functions on R and let CF denote
the set of continuity points of F . We say Fn converges weakly to F if Fn(x) → F (x) as n→∞
for every x ∈ CF . In this case, we write Fn

w→ F .

Clearly, if Fn
w→ F and Fn

w→ G, then F ≡ G.

Proposition 7.1.1 Suppose that Fn
w→ F . Then Fn(±∞) → F (±∞) if and only if Fn(+∞)−

Fn(−∞) → F (+∞)− F (−∞).

Proof. We only need to prove the “if” part of the proposition. Since Fn
w→ F , for any x ∈ CF

we have
lim sup
n→∞

Fn(∞) ≥ lim inf
n→∞

Fn(∞) ≥ lim
n→∞

Fn(x) = F (x).

By letting x→∞ in CF we obtain

lim sup
n→∞

Fn(∞) ≥ lim inf
n→∞

Fn(∞) ≥ F (∞). (7.1.1)

Similarly, we can see that

lim inf
n→∞

Fn(−∞) ≤ lim sup
n→∞

Fn(−∞) ≤ F (−∞). (7.1.2)

If there is a strict inequality in (7.1.1), we can choose a subsequence {nk} ⊆ {n} such that
limk→∞ Fnk

(∞) > F (∞). In view of (7.1.2), we can find {mk} ⊆ {nk} such that limk→∞ Fnk
(−∞) ≤

F (−∞). It then follows that

lim
k→∞

[Fmk
(∞)− Fmk

(−∞)] > F (∞)− F (−∞),

which is in contradiction to the assumption. There is a similar contradiction if there is a strict
inequality in (7.1.2). Then we have the desired result. �

69



70 CHAPTER 7. CONVERGENCE OF DISTRIBUTIONS

Definition 7.1.2 Let F and Fn, n = 1, 2, · · · be distribution functions on R and suppose that
F (±∞) are both finite. We say Fn converges completely to F and write Fn

c→ F provided
Fn

w→ F and Fn(±∞) → F (±∞) as n→∞.

Definition 7.1.3 Suppose that Xn and X are random variables with distribution functions Fn
and F , respectively. If Fn

c→ F , we say Xn converges in law to X and write Xn
L→ X.

Theorem 7.1.1 (Kolmogorov) If Xn
P→ X, then Xn

L→ X.

Proof. For any x < y ∈ R we have

P{X ≤ x} ≤ P{Xn ≤ y}+ P{X ≤ x,Xn > y}
≤ P{Xn ≤ y}+ P{|X −Xn| > y − x}.

Let F and Fn denote respectively the distribution of X and Xn. Since Xn
P→ X, we obtain

F (x) ≤ lim infn→∞ Fn(y) and hence

F (y−) ≤ lim inf
n→∞

Fn(y). (7.1.3)

By considering y < z and interchanging Xn and X in the above arguments, we obtain

P{Xn ≤ y} ≤ P{X ≤ z}+ P{|Xn −X| > z − y},

implying lim supn→∞ Fn(y) ≤ F (z) and so

lim sup
n→∞

Fn(y) ≤ F (y+) = F (y). (7.1.4)

From (7.1.3) and (7.1.4) we have F (y) = limn→∞ Fn(y) for all y ∈ CF . Since F and Fn are both
probability distribution functions, we get Fn

c→ F . �

Corollary 7.1.1 Let c ∈ R be a constant. Then Xn
L→ c if and only if Xn

P→ c.

Proof. (Homework.) �

Theorem 7.1.2 (Helly) Suppose that {Fn} is a uniformly bounded sequence of distribution
functions. Then there is a subsequence {Fnk

} ⊆ {Fn} which converges weakly to a bounded
distribution function F .

Proof. Let D = {x1, x2, · · · } ⊆ R be a countable set which is everywhere dense in R. For each
xi ∈ D, the sequence {Fn(xi) : n ≥ 1} is bounded. Then we may choose subsequences

{Fn} ⊇ {F (1)
n } ⊇ {F (2)

n } ⊇ {F (3)
n } ⊇ · · ·

such that F (i)
n (xi) → some G(xi) as n → ∞. Let Gn = F

(n)
n . We shall prove Gn

w→ some F
so the theorem will follow. It is easily seen that Gn(xi) = F

(n)
n (xi) → G(xi) for every i ≥ 1 as

n→∞. For x ∈ R \D, set
G(x) = inf

x<z∈D
G(z).
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ThenG is a bounded non-decreasing function on R. For any x ∈ R, there are {yk, zk : k ≥ 1} ⊆ D
such that yk ↑ x and zk ↓ x. We have

G(yk) = lim
n→∞

Gn(yk) ≤ lim inf
n→∞

Gn(x) ≤ lim sup
n→∞

Gn(x) ≤ lim
n→∞

Gn(zk) = G(zk).

Letting k →∞ we see that limn→∞Gn(x) = G(x) for all x ∈ CG. Now we define F (x) = G(x+)
for x ∈ R. Clearly, F is a bounded distribution function and Fn

w→ F . �

7.2 Convergence of integrals

Theorem 7.2.1 Let F and Fn be distribution functions on R such that Fn
w→ F . If g is a

continuous functions on [a, b] with a, b ∈ CF , then

lim
n→∞

∫
(a,b]

gdFn =
∫

(a,b]
gdF.

Proof. For each k ≥ 1, let πk = {a = xk,0 < xk,1 < · · · < xk,mk
= b} be a sub-division of [a, b].

We choose πk in the way that xk,i ∈ CF for all 0 ≤ i ≤ mk and k ≥ 1 and

∆k := max
1≤i≤mk

(xk,i − xk,i−1) → 0 (k →∞).

For each k ≥ 1, define the simple function

gk(x) =
mk∑
i=1

g(xk,i)1(xk,i−1,xk,i](x).

Since g is uniformly continuous on [a, b], we have

Mk := sup
a≤x≤b

|gk(x)− g(x)| → 0 (k →∞). (7.2.1)

By the dominated convergence theorem,∫
(a,b]

gkdFn →
∫

(a,b]
gdFn and

∫
(a,b]

gkdF →
∫

(a,b]
gdF (k →∞).

Observe that ∣∣∣∣ ∫
(a,b]

gdFn −
∫

(a,b]
gdF

∣∣∣∣ ≤
∫

(a,b]
|g − gk|dFn +

∫
(a,b]

|g − gk|dF

+
∣∣∣∣ ∫

(a,b]
gkdFn −

∫
(a,b]

gkdF

∣∣∣∣
≤ Mk[Fn(b)− Fn(a)] +Mk[F (b)− F (a)]

+
∣∣∣∣ ∫

(a,b]
gkdFn −

∫
(a,b]

gkdF

∣∣∣∣. (7.2.2)

Since {xk,i} ⊆ CF , we have

lim
n→∞

∫
(a,b]

gkdFn = lim
n→∞

mk∑
i=1

g(xk,i)[Fn(xk,i)− Fn(xk,i−1)]

=
mk∑
i=1

g(xk,i)[F (xk,i)− F (xk,i−1)] =
∫

(a,b]
gkdF.
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Then we get from (7.2.2) that

lim sup
n→∞

∣∣∣∣ ∫
(a,b]

gdFn −
∫

(a,b]
gdF

∣∣∣∣ ≤ 2Mk[F (b)− F (a)].

In view of (7.2.1) we may let k →∞ in the above to see that

lim sup
n→∞

∣∣∣∣ ∫ b

a
gdFn −

∫ b

a
gdF

∣∣∣∣ = 0.

That gives the desired result. �

Theorem 7.2.2 Let F and Fn be bounded distribution functions on R , and let g be a bounded
continuous functions on R. If Fn

c→ F , then

lim
n→∞

∫
R
gdFn =

∫
R
gdF.

Proof. Let M = supx |g(x)|. For any a, b ∈ CF we have∣∣∣∣ ∫
R
gdFn −

∫
R
gdF

∣∣∣∣ ≤
∫

(b,∞)
|g|dFn +

∫
(−∞,a]

|g|dFn +
∫

(b,∞)
|g|dF

+
∫

(−∞,a]
|g|dF +

∣∣∣∣ ∫
(a,b]

gdFn −
∫

(a,b]
gdF

∣∣∣∣
≤ M [Fn(∞)− Fn(b)] +M [Fn(a)− Fn(−∞)]

+M [F (∞)− F (b)] +M [F (a)− F (−∞)]

+
∣∣∣∣ ∫

(a,b]
gdFn −

∫
(a,b]

gdF

∣∣∣∣.
It follows that

lim sup
n→∞

∣∣∣∣ ∫ ∞

−∞
gdFn −

∫ ∞

−∞
gdF

∣∣∣∣ ≤ 2M [F (∞)− F (b)] + 2M [F (a)− F (−∞)].

Letting a→ −∞ and b→∞ we obtain the desired result. �

7.3 Weak convergence on metric spaces

Let (E, ρ) be a metric space with the Borel σ-algebra denoted by B(E).

Definition 7.3.1 Let C(E) denotes the space of bounded continuous functions on E. Suppose
that µn and µ are finite Borel measures on (E,B(E)). We say µn converges weakly to µ and
write µn ⇒ µ provided ∫

E
fdµn →

∫
E
fdµ (7.3.1)

for all f ∈ C(E).
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Proposition 7.3.1 Let µn and µ be finite Borel measures on E such that µ(E) > 0. Then
µn ⇒ µ if and only if µn(E) → µ(E) and µn(E)−1µn ⇒ µ(E)−1µ.

Proof. (Homework.) �

Thus the discussion of weak convergence of finite measures can often be reduced to that of
probability measures. The following theorem presents a number of equivalent conditions for the
weak convergence of probability measures.

Theorem 7.3.1 Let µn and µ be probability measures on (E,B(E)). Then the following
statements are equivalent:

(i) µn ⇒ µ;

(ii) (7.3.1) holds for all uniformly continuous f ∈ C(E);

(iii) µ(U) ≤ lim infn→∞ µn(U) for all open sets U ⊆ E;

(iv) µ(C) ≥ lim supn→∞ µn(C) for all closed sets C ⊆ E;

(v) µn(B) → µ(B) for every continuity set B of µ, that is, µ(∂B) = 0.

Proof. The implications “(i) ⇒ (ii)” and “(iii) ⇔ (iv)” are obvious.

“(ii) ⇒ (iii)” Suppose that (7.3.1) holds for all uniformly continuous f ∈ C(E). Let U ⊆ E
be an open set and let h(x) = 1∧ρ(x, U c) and hk(x) = h(x)1/k. Then hk is uniformly continuous
on E and hk ↑ 1U as k →∞. Note that

lim inf
n→∞

µn(U) ≥ lim
n→∞

∫
E
hkdµn =

∫
E
hkdµ.

Then we get (iii) by letting k →∞ in the above inequality and applying the monotone conver-
gence theorem.

“(iv) ⇒ (v)” Suppose that (iv) holds and B ∈ B(E) is a continuity set of µ. By the
equivalence of (iii) and (iv) we have

µ(B̄) ≥ lim sup
n→∞

µn(B̄) ≥ lim sup
n→∞

µn(B)

and
µ(B◦) ≤ lim inf

n→∞
µn(B◦) ≤ lim inf

n→∞
µn(B).

Since µ(∂B) = µ(B̄ \ B◦) = 0, we have µ(B̄) = µ(B◦) = µ(B). It follows that µ(B) =
limn→∞ µn(B).

“(v) ⇒ (i)” Suppose that (v) holds. It suffices to show (7.3.1) for a non-negative function
f ∈ C(E). Let a = supx∈E f(x). By Corollary 3.2.2, we have∫

E
fdµn =

∫
[0,a]

µn{f ≥ t}dt and
∫
E
fdµ =

∫
[0,a]

µ{f ≥ t}dt. (7.3.2)

It is easy to show that ∂{f ≥ t} ⊆ {f = t}. Then {f ≥ t} is a continuity set of µ if s 7→ µ{f ≥ s}
is continuous at s = t. Since the non-increasing function s 7→ µ{f ≥ s} has at most countably
many discontinuity points, we conclude that µn{f ≥ t} → µ{f ≥ t} as n → ∞ for a.e. t ≥ 0.
Thus (7.3.1) follows from (7.3.2) and dominated convergence. �
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Corollary 7.3.1 Let F and Fn, n = 1, 2, · · · be probability distribution functions on R. Then
Fn

w→ F if and only if ∫
R
fdFn →

∫
R
fdF

for all f ∈ C(R).

Proof. (Homework.)



Chapter 8

Characteristic Functions

8.1 Definition of and basic properties

Definition 8.1.1 Given a probability distribution function F on R we define its characteristic
function by

ϕ(t) =
∫

R
eitxdF (x) =

∫
R

cos(tx)dF (x) + i

∫
R

sin(tx)dF (x), t ∈ R. (8.1.1)

We also call ϕ the characteristic function of the probability measure on (R,B(R)) determined
by F .

Proposition 8.1.1 The characteristic function ϕ is uniformly continuous on R and has the
following properties: (i) ϕ(0) = 1; (ii) |ϕ(t)| ≤ 1; (iii) ϕ(−t) = ϕ̄(t), where ϕ̄ is the complex
conjugate of ϕ.

Proof. For t ∈ R and h ∈ R we have

|ϕ(t+ h)− ϕ(t)| =
∣∣∣ ∫ ∞

−∞
(ei(t+h)x − eitx)dF (x)

∣∣∣ ≤ ∫ ∞

−∞
|eihx − 1|dF (x)

=
∫ ∞

−∞
| cos(hx)− 1 + i sin(hx)|dF (x)

=
∫ ∞

−∞

√
2− 2 cos(hx) dF (x)

= 2
∫ ∞

−∞

∣∣∣ sin
(hx

2

)∣∣∣dF (x),

where the right side is independent of t ∈ R. Using dominated convergence we see that
supt∈R |ϕ(t + h) − ϕ(t)| → 0 as h → 0, giving the uniform continuity of ϕ on R. The prop-
erties (i), (ii) and (iii) follow immediately from the definition. �

Theorem 8.1.1 Let F be a probability distribution with finite moments up to order n ≥ 1.
Then the corresponding characteristic function ϕ has continuous derivatives up the order n and

75
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ϕ(k)(0) = ikαk, where

αk =
∫ ∞

−∞
xkdF (x), k = 1, · · · , n. (8.1.2)

Moreover, ϕ admits the expansion

ϕ(t) = 1 +
n∑
k=1

(it)k

k!
αk + o(tn) (t→ 0). (8.1.3)

Conversely, suppose that the characteristic function ϕ has an expression of the form (8.1.3) for
an integer n ≥ 1. Then F has finite moments up to order n if n is even, and up to order n− 1
if n is odd.

Proof. Suppose that F has finite moments∫ ∞

−∞
|x|kdF (x) <∞, k = 1, · · · , n.

Observe that

ϕ(t+ h)− ϕ(t)
h

=
∫ ∞

−∞
eitx

eihx − 1
h

dF (x)

and |eihx − 1| ≤ |hx|. By dominated convergence we obtain

dϕ(t)
dt

= lim
h→0

∫ ∞

−∞
eitx

eihx − 1
h

dF (x) = i

∫ ∞

−∞
eitxxdF (x).

Thus the first derivative of ϕ exists and ϕ(1)(0) = iα1. Proceeding inductively we conclude that
ϕ has derivatives up to order n and

ϕ(k)(t) = ik
∫ ∞

−∞
eitxxkdF (x), k = 1, · · · , n.

Then ϕ(k)(0) = ikαk. By dominated convergence we see that ϕ(k)(t) is continuous in t ∈ R. By
Taylor’s expansion, for some 0 < θ < 1 we have

ϕ(k)(t) = 1 +
n−1∑
k=1

ϕ(k)(0)
tk

k!
+ ϕ(n)(θt)

tn

n!

= 1 +
n∑
k=1

ϕ(k)(0)
tk

k!
+Rn(t)

with

Rn(t) = [ϕ(n)(θt)− ϕ(n)(0)]
tn

n!
= o(tn).

That proves the first part of the theorem. Conversely, suppose that ϕ has an expansion of the
form (8.1.3) where n = 2m is even. Then ϕ has finite derivative of order 2m at t = 0. If we
define the difference operator ∆h by ∆hf(t) = f(t+ h)− f(t− h), it is easy to check that

∆n
hϕ(t) =

∫ ∞

−∞

(
eihx − e−ihx

)n
e−itxdF (x).
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It then follows that

ϕ(2m)(0) = lim
h→0

∫ ∞

−∞

(
eihx − e−ihx

2h

)2m

dF (x)

= (−1)m lim
h→0

∫ ∞

−∞

(
sin(hx)
h

)2m

dF (x).

By Fatou’s lemma,∫ ∞

−∞
x2mdF (x) ≤ lim

h→0

∫ ∞

−∞

(
sin(hx)
h

)2m

dF (x) = (−1)mϕ(2m)(0) <∞.

That proves the existence of the moment of order 2m. If ϕ has an expansion of the form (8.1.3)
where n = 2m+1 is odd, we conclude by the same procedure that F has finite moment of order
2m = n− 1. �

Corollary 8.1.1 The characteristic function ϕ has continuous derivatives of all orders if and
only if F has finite moments of all orders.

Corollary 8.1.2 If ϕ is a characteristic function and ϕ(t) = 1 + o(t2+δ) for δ > 0 as t → 0.
Then ϕ corresponds to the degenerate distribution at zero.

Proof. Since ϕ(t) = 1 + o(t2), by Theorem 8.1.1 the first and the second moments of the
distribution of ϕ are both zero. Thus we have the result. �

We remark that if {ϕk} is a sequence of characteristic functions and {αk} is a sequence of
non-negative numbers such that

∑∞
k=1 αk = 1, then

∑∞
k=1 αkϕk is also a characteristic function.

8.2 Inversion Theorems

In this section, we prove two results which show the importance of characteristic functions in the
study of distributions. The first of these enables us to compute the distribution function from
its characteristic function. The second result gives a sufficient condition for the distribution
function to have a density.

Lemma 8.2.1 For any α ∈ R we have

lim
T→∞

∫ T

0

sin(αx)
x

dx =
π

2
sign(α),

where sign(α) = 1, −1 or 0 according as α > 0, < 0 or = 0.

Proof. By Fubini’s Theorem we have∫ T

0

sinx
x

dx =
∫ T

0
dx

∫ ∞

0
e−ux sinxdu =

∫ ∞

0
du

∫ T

0
e−ux sinxdx.
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By integration by parts it is not hard to show that∫ T

0
e−ux sinxdx =

1
1 + u2

− e−uT

1 + u2
(u sinT + cosT ).

It follows that ∫ T

0

sinx
x

dx = arctanu
∣∣∣u=∞
u=0

−
∫ ∞

0

e−uT

1 + u2
(u sinT + cosT )du

=
π

2
−

∫ ∞

0

e−t

T 2 + t2
(u sinT + T cosT )dt.

By dominated convergence one sees that the send term on the right hand side goes to zero as
T →∞. Then the desired result follows by a simple change of the integration variable. �

Theorem 8.2.1 (Inversion Theorem) Let F be a probability distribution function and ϕ its
characteristic function. Then the relation

F (a+ h)− F (a− h) = lim
T→∞

1
π

∫ T

−T

sin(ht)
t

e−itaϕ(t)dt (8.2.1)

holds for a ∈ R and h > 0 whenever the points a± h ∈ CF .

Proof. By Lemma 8.2.1 we have

θ(h, T ) :=
2
π

∫ T

0

sin(ht)
t

dt→ sign(h)

as T →∞. By Fubini’s Theorem we have

IT (a, h) :=
1
π

∫ T

−T

sin(ht)
t

e−itaϕ(t)dt

=
1
π

∫ T

−T
dt

∫ ∞

−∞

sin(ht)
t

eit(x−a)dF (x)

=
1
π

∫ ∞

−∞
dF (x)

∫ T

−T

sin(ht)
t

eit(x−a)dt

=
2
π

∫ ∞

−∞
dF (x)

∫ T

0

sin(ht)
t

cos[(x− a)t]dt

=
∫ ∞

−∞
g(x, T )dF (x),

where

g(x, T ) =
2
π

∫ T

0

sin(ht)
t

cos[(x− a)t]dt

=
1
π

∫ T

0

sin[(x− a+ h)t]
t

dt− 1
π

∫ T

0

sin[(x− a− h)t]
t

dt

=
1
2
θ(x− a+ h, T )− 1

2
θ(x− a− h, T ).
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Note that both θ(·, ·) and g(·, ·) are bounded functions on R× R+ and

lim
T→∞

g(x, T ) =


0 if x < a− h,
1/2 if x = a− h,
1 if a− h < x < a+ h,
1/2 if x = a+ h,
0 if x > a+ h.

Since a± h ∈CF , we can use dominated convergence to obtain

lim
T→∞

IT (a, h) =
∫ a+h

a−h
dF (x) = F (a+ h)− F (a− h).

That completes the proof. �

Corollary 8.2.1 For any α, β ∈ CF such that α < β we have

F (α)− F (β) = lim
T→∞

1
2π

∫ T

−T

e−itα − e−itβ

it
ϕ(t)dt. (8.2.2)

Proof. Letting a = (β + α)/2 and h = (β − α)/2 in (8.2.1) we obtain

F (β)− F (α) = F (a+ h)− F (a− h) = lim
T→∞

1
π

∫ T

−T

sin[(β − α)t/2]
t

e−it(β+α)/2ϕ(t)dt.

By Euler Formula we have

sin[(β − α)t/2]e−it(β+α)/2

= sin[(β − α)t/2] cos[t(β + α)/2]− i sin[(β − α)t/2] sin[t(β + α)/2]

=
1
2
[sin(βt)− sin(αt)] +

i

2
[cos(βt)− i cos(αt)]

=
e−itα − e−itβ

2i
.

The proof is completed. �

Corollary 8.2.2 Let F1 and F2 be two probability distribution functions with characteristic
functions ϕ1 and ϕ2, respectively. If ϕ1(t) = ϕ2(t) for every t ∈ R, then F1 ≡ F2.

Proof. Let a, b ∈ CF1 ∩ CF2 be such that a < b. Then (2) yields

F1(b)− F1(a) = F2(b)− F2(a).

Letting a→ −∞ we obtain F1(b) = F2(b), so that F1 = F2 on CF1 ∩CF2 and hence F1 ≡ F2. �

Corollary 8.2.3 A characteristic function ϕ is real and even if and only if the corresponding
probability distribution function F is symmetric, that is, F (x−) = 1− F (−x) for all x ∈ R.
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Proof. If ϕ is real, we have ϕ(t) = ϕ(−t) = ϕ̄(t). By the uniqueness we see that ϕ and ϕ̄ has
the same distribution function F . Then F is symmetric. Conversely, if F is symmetric, we have
ϕ(t) = [ϕ(t) + ϕ̄(t)]/2. Thus

ϕ(t) =
∫ ∞

−∞
cos(tx)dF (x),

which is real and even. �

Theorem 8.2.2 (Fourier Inversion Theorem) Suppose that the characteristic function ϕ is abso-
lutely integrable on R. Then the corresponding distribution function F is absolutely continuous.
Moreover, the density function f = F ′ is bounded and uniformly continuous on R and it is given
by

f(x) =
1
2π

∫ ∞

−∞
e−itxϕ(t)dt, x ∈ R. (8.2.3)

Proof. Under the assumption, the integrand on the right-hand side of (8.2.1) is dominated by
an absolutely integrable function. Then we can write

F (x+ h)− F (x− h) =
1
π

∫ ∞

−∞

sin(ht)
t

e−itxϕ(t)dt

whenever x±h ∈ CF . Taking the limits of both sides as h→ 0+, we obtain F (x)−F (x−0) = 0.
It follows that F is continuous on R. Using a similar argument on

F (x+ h)− F (x− h)
2h

=
1
2π

∫ ∞

−∞

sin(ht)
ht

e−itxϕ(t)dt,

we conclude that F is differentiable and

f(x) := F ′(x) =
1
2π

∫ ∞

−∞
lim
h→0+

sin(ht)
ht

e−itxϕ(t)dt =
1
2π

∫ ∞

−∞
e−itxϕ(t)dt.

Finally, we have

|f(x+ h)− f(x)| ≤ 1
2π

∫ ∞

−∞

∣∣e−it(x+h) − e−itx
∣∣|ϕ(t)|dt

=
1
2π

∫ ∞

−∞

∣∣eith/2 − e−ith/2
∣∣|ϕ(t)|dt

=
1
π

∫ ∞

−∞

∣∣ sin(th/2)
∣∣|ϕ(t)|dt.

Then the uniform continuity of f follows by dominated convergence. �

8.3 Convolution of distributions

Let µ1 and µ1 be two probability measures on (R,B(R)). We can define a probability measure
µ on (R,B(R)) by∫

R
f(y)µ(dy) =

∫
R
µ1(dx1)

∫
R
f(x1 + x2)µ2(dx2), f ∈ C(R). (8.3.1)

It is not hard to show that µ is the image of the product probability measure µ1×µ2 under the
mapping (x1, x2) 7→ x1 + x2. (Homework.)
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Definition 8.3.1 The probability measure µ defined by (8.3.1) is called the convolution of µ1

and µ2 and denoted by µ1 ∗ µ2. We also write F = F1 ∗ F2, where F , F1 and F2 denote the
distribution functions of µ, µ1 and µ2, respectively.

Theorem 8.3.1 Let µ, µ1 and µ2 be three probability measures with characteristic functions
ϕ, ϕ1 and ϕ2, respectively. Then µ = µ1 ∗ µ2 if and only if ϕ = ϕ1ϕ2.

Proof. Suppose first that µ = µ1 ∗ µ2. Then we have (8.3.1). Clearly, this equality also holds
for a bounded continuous complex function f . In particular, we have

ϕ(t) =
∫

R
eitxµ(dx) =

∫
R
µ1(dx1)

∫
R
eit(x1+x2)µ2(dx2) = ϕ1(t)ϕ2(t)

for all t ∈ R. Conversely, suppose that ϕ = ϕ1ϕ2. Let ν = µ1 ∗µ2, and let θ be the characteristic
function of ν. Then from what we have shown above it follows that θ = ϕ1ϕ2 = ϕ. By the
uniqueness of the characteristic function we have ν = µ. �

By applying Theorem 8.3.1 successively we see that, if ϕ is a characteristic function, so is
ϕk for each integer k ≥ 0. Then for any λ ≥ 0, the function

eλ(ϕ−1) = e−λ
∞∑
k=0

λk

k!
ϕk (8.3.2)

is also a characteristic function.

Proposition 8.3.1 If F = F1 ∗ F2, then

F (x) =
∫ ∞

−∞
F1(x− y)dF2(y), x ∈ R. (8.3.3)

Proof. Suppose that F is defined by (8.3.3). Let [a, b] be an arbitrary closed bounded interval
in R, and let

a = xn,0 < xn,1 < · · · < xn,kn = b

be a sequence of subdivisions of [a, b] such that

∆n := max
1≤k≤kn

(xn,k − xn,k−1) → 0

as n→∞. From Proposition 3.2.5 it follows that∫ b

a
eitxdF (x) = lim

n→∞

kn∑
k=1

eitxn,k [F (xn,k)− F (xn,k−1)]

= lim
n→∞

∫ ∞

−∞

kn∑
k=1

eit(xn,k−y)[F1(xn,k − y)− F1(xn,k−1 − y)]eitydF2(y)

=
∫ ∞

−∞

[ ∫ b−y

a−y
eitxdF1(x)

]
eitydF2(y).

Let ϕ, ϕ1 and ϕ2 denote the characteristic functions of F , F1 and F2, respectively. Then we can
take the limits of both sides of the above equality as a→ −∞ and b→∞ to obtain ϕ = ϕ1ϕ2.
Then the result follows from Theorem 8.3.1 and the uniqueness of the characteristic function.
�
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Proposition 8.3.2 Let p > 0 and let µ and ν be probability measures on R. Then∫
R
|x|pµ ∗ ν(dx) <∞ (8.3.4)

holds if and only if ∫
R
|x|pµ(dx) +

∫
R
|x|pν(dx) <∞. (8.3.5)

Proof. Suppose that (8.3.5) holds. Let cp = 1 for 0 < p ≤ 1 and cp = 2p−1 for p > 1. From
Fubini’s theorem it follows that∫

R
|x|pµ ∗ ν(dx) =

∫
R
µ(dx)

∫
R
|x+ y|pν(dy)

≤ cp

∫
R
µ(dx)

∫
R
(|x|p + |y|p)ν(dy)

= cp

[ ∫
R
|x|pµ(dx) +

∫
R
|y|pν(dx)

]
<∞.

Conversely, if (8.3.4) holds, we have∫
R
µ(dx)

∫
R
|x+ y|pν(dy) =

∫
R
|x|pµ ∗ ν(dx) <∞.

It follows that ∫
R
|x+ y|pν(dy) <∞

for µ-a.e. x ∈ R. Taking any x ∈ R for which the above is true we find∫
R
|y|pν(dy) ≤ cp

∫
R
(|x+ y|p + |x|p)ν(dy)

= cp

∫
R
|x+ y|pν(dy) + cp|x|p <∞.

By symmetry we see that ∫
R
|x|pµ(dx) <∞.

That proves the desired result. �

8.4 Continuity Theorem

In this section, we prove Lévy’s continuity theorem, which gives a necessary and sufficient
condition for the complete convergence of a sequence of probability distribution functions.

Lemma 8.4.1 For any α ∈ R we have∫ ∞

0

1− cosx
x2

dx =
π

2
.
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Proof. By integration by parts,∫ T

0

1− cosx
x2

dx = −1− cosx
x

∣∣∣∣T
0

+
∫ T

0

sinx
x

dx.

Then the desired result is reduced to Lemma 8.2.1. �

Lemma 8.4.2 Let F be a probability distribution function with characteristic function ϕ. Then
we have ∫ h

0
F (y) dy −

∫ 0

−h
F (y)dy =

1
π

∫ ∞

−∞

1− cos(ht)
t2

ϕ(t)dt (8.4.1)

for every h > 0.

Proof. Let a > 0 and let G be the uniform distribution on [−a, a] with characteristic function
θ(t) = sin(at)/at. The convolution H = F ∗G is given by

H(x) =
∫ ∞

−∞
F (x− y)G(dy) =

1
2a

∫ a

−a
F (x− y)dy =

1
2a

∫ x+a

x−a
F (z)dz, (8.4.2)

which is continuous on R. Let ψ be the characteristic function of H. From Theorem 8.3.1 it
follows that

ψ(t) = ϕ(t)θ(t) = ϕ(t)
sin(at)
at

.

Applying the inversion theorem to H and ψ we obtain

H(x+ a)−H(x− a) = lim
T→∞

1
π

∫ T

−T

sin2(at)
at2

e−itxϕ(t)dt

=
1

2πa

∫ ∞

−∞

1− cos(2at)
t2

e−itxϕ(t)dt.

In particular, we have

H(h/2)−H(−h/2) =
1
πh

∫ ∞

−∞

1− cos(ht)
t2

ϕ(t)dt.

On the other hand, from (8.4.2) we obtain

H(h/2)−H(−h/2) =
1
h

∫ h

0
F (z)dz − 1

h

∫ 0

−h
F (z)dz,

Then the desired equality follows. �

Theorem 8.4.1 (Lévy) Let {Fn} be a sequence of probability distribution functions with char-
acteristic functions {ϕn}. Then {Fn} converges completely to a probability distribution function
F if and only if ϕn → some ϕ on R as n → ∞ and ϕ is continuous at t = 0. In this case, the
limit function ϕ is the characteristic function of F .
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Proof. Suppose that Fn
c→ F . From Theorem 7.2.2 it follows that ϕn(t) → ϕ(t) for all t ∈ R as

n→∞, where ϕ is the characteristic function of F . Conversely, suppose that ϕn → ϕ on R and
ϕ is continuous at t = 0. Since {Fn} is a sequence of probability distribution functions, Helly’s
theorem implies the existence of a subsequence {Fnk

} which converges weakly to a bounded
distribution function F . We show that F is a probability distribution function. From Lemma
8.4.2 we obtain ∫ h

0
Fnk

(y)dy −
∫ 0

−h
Fnk

(y)dy =
1
π

∫ ∞

−∞

1− cos(ht)
t2

ϕnk
(t)dt

for every h > 0. By dominated convergence we can let k →∞ in the above equality to obtain∫ h

0
F (y)dy −

∫ 0

−h
F (y)dy =

1
π

∫ ∞

−∞

1− cos(ht)
t2

ϕ(t)dt.

Dividing both sides by h, we have

1
h

[ ∫ h

0
F (y)dy −

∫ 0

−h
F (y)dy

]
=

1
π

∫ ∞

−∞

1− cos t
t2

ϕ
( t
h

)
dt. (8.4.3)

Since ϕ is continuous at t = 0, we have

lim
h→∞

ϕ(t/h) = ϕ(0) = lim
n→∞

ϕn(0) = 1.

Letting h→∞ in (8.4.3), we obtain

F (+∞)− F (−∞) =
1
π

∫ ∞

−∞

1− cos t
t2

dt = 1.

Then F is a probability distribution function. From the first part of the proof we conclude
that ϕ is the characteristic function corresponding to F . Now suppose that {Fn} contains
another subsequence which converges to a limit, say F ∗. Proceeding as above, we see that F ∗

is a probability distribution function and ϕ is the corresponding characteristic function. By
the uniqueness theorem it follows that F = F ∗, which implies that every weakly convergent
subsequence of {Fn} has the same limit F . This shows that Fn

c→ F and ϕ is the characteristic
function of F . �

Theorem 8.4.2 Let {Fn} be a sequence of probability distribution functions with characteristic
functions {ϕn}. Then {Fn} converges completely to a probability distribution function F if and
only if ϕn → some ϕ uniformly on each bounded interval. In this case, the limit function ϕ is
the characteristic function of F .

Proof. See Laha and Rohatgi (1979, p.156-158). �

8.5 Criteria for characteristic functions

In this section we derive some important necessary and sufficient conditions for a complex-valued
function on R to be a characteristic function. For this purpose we first introduce the concept of
a positive definite function on R , which is due to Bochner.
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Definition 8.5.1 Let ϕ be a complex-valued function defined on R. Then ϕ is said to be
positive definite on R if the inequality

n∑
k=1

n∑
l=1

ωkω̄lϕ(tk − tl) ≥ 0 (8.5.1)

holds for all finite sets {t1, · · · , tn} ⊂ R and {ω1, · · · , ωn} ⊂ C.

We note the following elementary property of a positive definite function.

Proposition 8.5.1 If ϕ is a positive definite function on R, we have: (a) ϕ(0) ≥ 0; (b) ϕ(−t) =
ϕ̄(t); (c) |ϕ(t)| ≤ ϕ(0).

Proof. (a) This follows by setting n = 1, t1 = 0 and ω1 = 1 in (8.5.1).

(b) Setting n = 2, t1 = 0, t2 = t, ω1 = ω and ω2 = 1 in (8.5.1) we see

(1 + |ω|2)ϕ(0) + ωϕ(−t) + ω̄ϕ(t) ≥ 0.

Then we use (a) to see that ωϕ(−t)+ω̄ϕ(t) is real. Now set ω = 1 and ω = i =
√
−1 successively

to see that ϕ(−t) + ϕ(t) = a and ϕ(t) − ϕ(−t) = ib for real numbers a and b. It follows that
2ϕ(t) = a+ ib and 2ϕ(−t) = a− ib, yielding (b).

(c) We first consider the case where ϕ(0) = 0. Setting n = 2, t1 = 0, t2 = t, ω1 = ϕ(t) and
ω2 = −1 in (8.5.1) and using (b) we get

0 ≤ (|ϕ(t)|+ 1)ϕ(0)− ϕ(t)ϕ(−t)− ϕ̄(t)ϕ(t) = −2|ϕ(t)|2.

Then ϕ(t) = 0 for all t ∈ R. When ϕ(0) > 0, we set n = 2, t1 = 0, t2 = t, ω1 = ϕ(t)/ϕ(0) and
ω2 = −1 to get

0 ≤
(
|ϕ(t)|2

|ϕ(0)|2
+ 1

)
ϕ(0)− ϕ(t)

ϕ(0)
ϕ(−t)− ϕ̄(t)

ϕ(0)
ϕ(t) = ϕ(0)− |ϕ(t)|2

ϕ(0)
,

which yields (c). �

By Proposition 8.5.1, if a positive definite function ϕ satisfies ϕ(0) = 0, then ϕ(t) = 0 for all
t ∈ R. We say a positive definite function ϕ is is normalized if ϕ(0) = 1. Note that a positive
definite function need not be continuous. As an example, we can consider the function defined
by ϕ(0) = 1 and ϕ(t) = 0 for t 6= 0. We shall see, however, that if a positive definite function is
continuous at the origin, it is a characteristic function and hence uniformly continuous.

Lemma 8.5.1 Let {θ(s) : s = 0,±1,±2, ...} be a sequence of complex numbers such that
θ(0) = 1 and

n∑
k=0

n∑
l=0

ωkω̄lθ(k − l) ≥ 0 (8.5.2)

for every finite set {ω0, ω1, ..., ωn} ⊂ C. Then there exists a probability distribution function G
concentrated on [−π, π] such that

θ(s) =
∫

[−π,π]
eisxdG(x), s = 0,±1, 2, · · · . (8.5.3)
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Proof. From (8.5.2) we obtain

gn(x) :=
1
n

n−1∑
k=0

n−1∑
l=0

e−i(k−l)xθ(k − l) ≥ 0, n ≥ 1, x ∈ R. (8.5.4)

Observe that the integer e−irxθ(r) occurs in N − |r| terms of the sum in (8.5.4) for −N + 1 ≤
r ≤ N − 1. Hence we can rewrite (8.5.4) as

gn(x) =
n∑

r=−n

(
1− |r|

n

)
e−irxθ(r) ≥ 0. (8.5.5)

Multiplying both sides of (8.5.5) by eisx for an integer s ∈ [−n, n] and integrating with respect
to the Lebesgue measure on [−π, π] we obtain∫ π

−π
eisxgn(x)dx =

n∑
r=−n

(
1− |r|

n

)
θ(r)

∫ π

−π
ei(s−r)xdx = 2π

(
1− |s|

n

)
θ(s).

Since θ(0) = 1, the formula

Gn(x) = 1[π,∞)(x) + 1[−π,π)(x)
1
2π

∫ x

−π
gn(y)dy

defines a distribution function Gn which determines a probability measure concentrated on
[−π, π]. It follows that(

1− |s|
n

)
θ(s) =

∫
[−π,π]

eisxdGn(x), −n ≤ s ≤ n. (8.5.6)

By Helly’s theorem, it is easy to see that {Gn}contains a subsequence {Gnk
} that converges

weakly to a probability distribution G concentrated on [−π, π]. From (8.5.6) and the Helly-Bray
theorem we get

θ(s) =
∫

[−π,π]
eisxdG(x), s = 0,±1, · · · .

This completes the proof. �

Theorem 8.5.1 (Bochner) Let ϕ be a complex-valued function defined on R. Then ϕ is a
continuous, normalized and positive definite function on R if and only if ϕ is the characteristic
function of a probability distribution function.

Proof. Suppose that ϕ is the characteristic function of a probability distribution function F .
Clearly, ϕ is continuous on R and ϕ(0) = 1. For {t1, · · · , tn} ⊂ R and {ω1, · · · , ωn} ⊂ C we have

n∑
k=1

n∑
l=1

ωkω̄lϕ(tk − tl) =
n∑
k=1

n∑
l=1

ωkω̄l

∫
R
ei(tk−tl)xdF (x)

=
∫

R

∣∣∣ n∑
k=1

ωke
itkx

∣∣∣2dF (x) ≥ 0,
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which proves (8.5.1). Conversely, let ϕ be a continuous, normalized and positive definite function
on R. We note that for each integer n ≥ 1 the sequence {ϕ(s/n) : s = 0,±1,±2, · · · } satisfies
the condition of Lemma 8.5.1. It follows that there exists a probability distribution function Gn
concentrated on [−π, π] such that

ϕ(s/n) =
∫

[−π,π]
eisxdGn(x), s = 0,±1,±2, · · · (8.5.7)

Set Fn(x) = Gn(x/n). Then Fn is a probability distribution function concentrated on [−nπ, nπ].
Let ϕn be the characteristic function of Fn. We have

ϕn(t) =
∫

[−nπ,nπ]
eitxdFn(x) =

∫
[−π,π]

eitnydGn(y). (8.5.8)

It follows from (8.5.7) and (8.5.8) that

ϕ(s/n) = ϕn(s/n), s = 0,±1,±2, · · · (8.5.9)

Let t ∈ R and n ≥ 1 be fixed. Then there exists an integer k = k(t, n) such that 0 ≤ θn(t) :=
t− k/n ≤ 1/n. We also have∣∣∣ϕn(t)− ϕn

(k
n

)∣∣∣ =
∣∣∣ϕn(θn(t) +

k

n

)
− ϕn

(k
n

)∣∣∣
≤

∫
[−nπ,nπ]

|eiθn(t)x − 1|dFn(x)

≤
[ ∫

[−nπ,nπ]
|eiθn(t)x − 1|2dFn(x)

]1/2

=
[
2

∫
[−nπ,nπ]

[1− cos(θn(t)x)]dFn(x)
]1/2

.

Note that 1− cos(θx) ≤ 1− cos(x/n) for 0 ≤ θ < 1/n and −nπ ≤ x ≤ nπ. It follows that∣∣∣ϕn(t)− ϕn

(k
n

)∣∣∣ ≤
[
2

∫
[−nπ,nπ]

[
1− cos

(x
n

)]
dFn(x)

]1/2

=
{

2
[
1− Re ϕn

( 1
n

)]}1/2

=
{

2
[
1− Re ϕ

( 1
n

)]}1/2
,

where we used (8.5.9) for the last equality. Since ϕ is continuous on R and ϕ(0) = 1, we conclude
that

lim
n→∞

∣∣∣ϕn(t)− ϕn

(k
n

)∣∣∣ = 0.

Now we note that

ϕn(t) =
[
ϕn(t)− ϕn

(k
n

)]
+ ϕn

(k
n

)
=

[
ϕn(t)− ϕn

(k
n

)]
+ ϕ

(k
n

)
→ ϕ(t)

as n→∞. Then the continuity theorem implies that ϕ is a probability characteristic function.
�

By Bochner’s theorem, if ϕ is a characteristic function, ϕ̄, |ϕ|2 and Re ϕ are also characteristic
functions.
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Theorem 8.5.2 (Cramer) Let ϕ be a bounded, continuous and complex-valued function on R.
Then ϕ is a probability characteristic function if and only if ϕ(0) = 1 and

ψ(x, T ) =
∫ T

0

∫ T

0
ϕ(s− t)eix(s−t)dsdt ≥ 0 (8.5.10)

for every T > 0 and x ∈ R.

Proof. Let ϕ be the characteristic function of a probability distribution function F . Then
ϕ(0) = 1 and by Fubini’s theorem,

ψ(x, T ) =
∫ T

0

∫ T

0

[ ∫
R
ei(s−t)ydF (y)

]
ei(s−t)xdsdt

=
∫

R

[ ∫ T

0
eis(x+y)ds

][ ∫ T

0
e−it(x+y)dt

]
dF (y).

Writing z = x+ y we have∫ T

0
eiszds =

∫ T

0
[cos(sz) + i sin(sz)]ds =

1
z
[sin(sz)− i cos(sz)]

∣∣∣s=T
s=0

=
1
z
{sin(Tz) + i[1− cos(Tz)]}.

It follows that∫ T

0
eiszds

∫ T

0
e−itzdt =

2
z2
{sin2(Tz) + [1− cos(Tz)]2} =

2
z2

[1− cos(Tz)].

Thus we have

ψ(x, T ) = 2
∫

R

1− cos[T (x+ y)]
(x+ y)2

dF (y) ≥ 0.

This proves (8.5.10). Conversely, suppose that ϕ is a bounded, continuous and complex-valued
function such that ϕ(0) = 1 and (8.5.10) holds. We have

f(x, T ) :=
1

2πT
ψ(x, T ) =

1
2πT

∫ T

0

∫ T

0
ϕ(s− t)ei(s−t)xdsdt ≥ 0.

Writing u = s− t and v = t we get by some simple computation that

f(x, T ) =
1

2πT

∫ 0

−T
du

∫ T

−u
ϕ(u)eiuxdv +

1
2πT

∫ T

0
du

∫ T−u

0
ϕ(u)eiuxdv

=
1
2π

∫ ∞

−∞
ϕT (u)eiuxdu,

where
ϕT (u) = 1{|u|≤T}

(
1− |u|/T

)
ϕ(u).

For every W > 0 set

J(t;T,W ) =
∫ W

−W

(
1− |x|

W

)
f(x, T )eitxdx. (8.5.11)
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By interchanging the order of the integration and using integration by parts it is not hard to
show that

J(t;T,W ) =
1
2π

∫ W

−W

(
1− |x|

W

)[∫ ∞

−∞
ϕT (u)ei(u+t)xdu

]
dx

=
1
π

∫ ∞

−∞

1− cos[(t+ u)W ]
(t+ u)2W

ϕT (u)du.

Now writing v = (t+ u)W we obtain

J(t;T,W ) =
1
π

∫ ∞

−∞

1− cos v
v2

ϕT

( v

W
− t

)
dv.

Then the dominated convergence theorem implies

lim
W→∞

J(t;T,W ) =
1
π

∫ ∞

−∞

1− cos v
v2

lim
W→∞

ϕT (
v

W
− t)dv

=
2
π

∫ ∞

0

1− cos v
v2

ϕT (−t)dv = ϕT (−t),

where we have used Lemma 8.4.1 for the last equality. Since f(x, T ) ≥ 0, we see from (8.5.11)
that J(t;T,W )/J(0;T,W ) is a probability characteristic function for every W > 0. Since
ϕT (0) = 1, by the continuity theorem we conclude that ϕT (−t) and hence ϕT (t) is a prob-
ability characteristic function. Clearly, ϕ(t) = limT→∞ ϕT (t), so that ϕ is also a probability
characteristic function. �

8.6 Criteria for absolute continuity

In this section, we give an additional set of useful sufficient conditions for a function to be the
characteristic function of an absolutely continuous distribution; see also Theorem 8.2.2.

Theorem 8.6.1 (Pólya) Suppose that ϕ is a real-valued continuous function on R satisfying
the following condition: (i) ϕ(0) = 1; (ii) ϕ(−t) = ϕ(t); (iii) ϕ is convex on (0,∞); (iv)
limt→∞ ϕ(t) = 0. Then ϕ is the characteristic function of an absolutely continuous probability
distribution function.

Lemma 8.6.1 Under the assumption of Theorem 8.6.1, the function ϕ is a.e. differentiable
and the derivative has a version ϕ′ that is non-positive and non-decreasing on (0,∞) and
limt→∞ ϕ′(t) = 0.

Proof. By Lemma 3.4.1, the function ϕ has a right-hand derivative ψ on (0,∞). Suppose that
ψ(t0) > 0 for some t0 > 0. Then ψ(t) > 0 for all t ≥ t0. Consequently ϕ is strictly increasing
for t ≥ t0. For t2 ≥ t2 ≥ t0 we have by the convexity of ϕ that

ϕ
( t1 + t2

2

)
≤ 1

2
[ϕ(t1) + ϕ(t2)].

Letting t2 →∞ and using property (iv) we see that ϕ(t1) ≥ 0 for all t1 ≥ t0, which contradicts
(iv) since ϕ is strictly increasing for t ≥ t0. It follows that ψ(t) ≤ 0 for every t > 0. Then ϕ is
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non-increasing on (0,∞), so it differentiable a.e. on (0,∞). Clearly, the derivative has a version
ϕ′ that is non-positive and non-decreasing. Let α = limt→∞ ϕ′(t). Suppose that α < 0. From
ϕ′(t) ≤ α for all t > 0 we obtain

ϕ(t) = ϕ(0) +
∫ t

0
ϕ′(s)ds ≤ 1 + αt.

Letting t→∞, we see this inequality contradicts (iv). That proves limt→∞ ϕ′(t) = 0. �

Lemma 8.6.2 (Pringsheim’s Lemma) Let ϕ be a non-increasing function on (0,∞) which is
integrable over every finite interval (0, a). Suppose further that limt→∞ ϕ(t) = 0. Then for every
t > 0 we have the inversion formula

1
2
[ϕ(t+ 0) + ϕ(t− 0)] =

2
π

∫ ∞

0
cos(tu)

[ ∫ ∞

0
ϕ(y) cos(uy)dy

]
du.

Proof. See e.g. Titchmarsh (1937, p.16). �

Proof of Theorem 8.6.1. Let ϕ′ be given by Lemma 8.6.1. For T > 0 we can use integrating by
parts to see that ∫ T

0
cos(tx)ϕ(t)dt = ϕ(T )

sin(Tx)
x

− 1
x

∫ T

0
sin(tx)ϕ′(t)dt.

Since ϕ′(t) ≤ 0, the properties (i) and (iv) imply that −ϕ′(t)dt determines a probability measure
on [0,∞). Then the function

f(x) :=
1
2π

∫ ∞

−∞
e−itxϕ(t)dt =

1
π

∫ ∞

0
cos(tx)ϕ(t)dt

is well-defined. By Pringsheim’s Lemma, we obtain

ϕ(t) = 2
∫ ∞

0
cos(tx)f(x)dx =

∫ ∞

−∞
eitxf(x)dx.

We shall prove that f is a probability density function. From (i) we get∫ ∞

−∞
f(x)dx = ϕ(0) = 1.

For x > 0 we can integrate by parts to obtain

f(x) =
1
πx

∫ ∞

0
sin(tx)[−ϕ′(t)]dt =

1
πx2

∫ ∞

0
sinu

[
− ϕ′

(u
x

)]
du

=
1
πx2

∞∑
k=0

∫ (k+1)π

kπ
sinu

[
− ϕ′

(u
x

)]
du

=
1
πx2

∫ π

0
sinu

{ ∞∑
k=0

(−1)k
[
− ϕ′

(u+ kπ

x

)]}
du.

By Lemma 8.6.1, the function −ϕ′ is non-negative and non-increasing on (0,∞). It follows that
f(x) ≥ 0 for x > 0. Since f is even, we also have f(x) ≥ 0 for x < 0. We have proved that ϕ is
the characteristic function of the probability density function f . �
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Example 8.6.1 It is not hard to show that the conditions of Theorem 8.6.1 are satisfied by the
following functions:

(i) ϕ(t) =
{

1− |t| for 0 < |t| ≤ 1/2,
1/4|t| for |t| > 1/2.

(ii) ϕ(t) =
{

1− |t| for |t| ≤ 1,
0 for |t| > 1.

Note that the two distinct characteristic functions coincide over a finite interval.
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Chapter 9

Signed-Measures and
Decompositions

9.1 Hahn and Jordan decompositions

Definition 9.1.1 Let (Ω,F ) be a measurable space. A mapping ψ : F → R̄ is called a signed
measure if ψ(∅) = 0 and for any countable sequence of disjoint sets An ⊆ F we have

ψ
( ∞⋃
n=1

An

)
=

∞∑
n=1

ψ(An). (9.1.1)

We say D ∈ F is a positive set of ψ if ψ(A) ≥ 0 for all A ∈ F satisfying A ⊆ D. Similarly, we
call G ∈ F a negative set if ψ(A) ≤ 0 for all A ∈ F satisfying A ⊆ G.

Proposition 9.1.1 Suppose that ψ is a signed measure on (Ω,F ) and ψ(A) < 0 for A ∈ F .
Then there is a negative set G ∈ F such that G ⊆ A and ψ(G) ≤ ψ(A).

Proof. Let α0 = sup{ψ(B) : B ∈ F and B ⊆ A}. Then we have α0 ≥ ψ(∅) = 0. If α0 = 0, we
can take G = A so that ψ(G) = ψ(A). Otherwise, we have α0 > 0. For each integer k > 1/α0

we have 1/k < α0 so there exists B ∈ F such that B ⊆ A and ψ(B) ≥ 1/k. Let k1 be the
smallest positive integer such that there is A1 ∈ F with A1 ⊆ A and ψ(A1) ≥ 1/k1. It follows
that

ψ(A \A1) = ψ(A)− ψ(A1) ≤ ψ(A)− 1/k1 < ψ(A) < 0.

Let α1 = sup{ψ(B) : B ∈ F and B ⊆ A \ A1}. If α1 = 0, we can take G = A \ A1 and the
procedure finishes here. In this case, we have ψ(G) < ψ(A). Otherwise, we have α1 > 0. Then
the argument just applied to A is applicable to A \ A1. We may continue the procedure. If it
finishes at a finite time, we can take G = A \

⋃n
i=1Ai for some n ≥ 1. Otherwise, we get an

infinite sequence of positive integers {kn} and an infinite sequence of disjoint sets {An} ⊆ F
with An ⊆ A0. Setting G = A \

⋃∞
n=1An we get

0 > ψ(A) = ψ(G) +
∞∑
n=1

ψ(An) ≥ ψ(G) +
∞∑
n=1

1
kn
,

93
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so that 1/kn → 0 as n → ∞. Clearly, for each B ∈ F satisfying B ⊆ G we have ψ(B) ≤ 0.
Then G ∈ F is a negative set of ψ and ψ(G) < ψ(A). �

Theorem 9.1.1 (Hahn) Let ψ be a signed measure on (Ω,F ). Then there exists D ∈ F such
that ψ(A

⋂
D) ≥ 0 and ψ(A

⋂
Dc) ≤ 0 for all A ∈ F .

Proof. From the additivity of ψ it follows that ether −∞ ≤ ψ(A) < ∞ for all A ∈ F , or
−∞ < ψ(A) ≤ ∞ for all A ∈ F . Without loss of generality, we assume ψ(A) > −∞ for all
A ∈ F . Let G denote the class of negative sets of ψ. Clearly, G is closed under countable unions.
Let β = inf{ψ(B) : B ∈ G }. We choose a sequence {Gn} ⊆ G such that limn→∞ ψ(Gn) = β and
let G =

⋃∞
n=1Gn and D = Gc. Clearly, G ∈ G and

β ≤ ψ(G) = ψ(Gn) + ψ(G \Gn) ≤ ψ(Gn)

for each n ≥ 1. It follows that 0 ≥ β = ψ(G) > −∞. To complete the proof it suffices to show
ψ(A) ≥ 0 for all A ∈ F satisfying A ⊆ D. If this is not true, there exists some A0 ∈ F such
that A0 ⊆ D and ψ(A0) < 0. By Proposition 9.1.1, there exists G0 ∈ G satisfying G0 ⊆ A0 and
ψ(G0) ≤ ψ(A0) < 0. Then G0 ∪G ∈ G and

ψ(G0 ∪G) = ψ(G0) + ψ(G) < β,

which contradicts the definition of β. �

The decomposition Ω = D ∪Dc given in Theorem 9.1.1 is called a Hahn decomposition of Ω
with respect to ψ.

Example 9.1.1 Let f be a measurable function on the measure space (Ω,F , µ) such that∫
Ω fdµ exists. Then

ψ(A) :=
∫
A
fdµ, A ∈ F , (9.1.2)

defines a signed measure ψ. In this case, {f ≥ 0} ∪ {f < 0} and {f > 0} ∪ {f ≤ 0} are both
Hahn decompositions of Ω.

The last example shows that the Hahn decomposition is usually not unique. However, we
have the following

Proposition 9.1.2 Suppose Ω = D1 ∪Dc
1 = D2 ∪Dc

2 are two Hahn decompositions of Ω with
respect to ψ. Then we have

ψ(A ∩D1) = ψ(A ∩D2) and ψ(A ∩Dc
1) = ψ(A ∩Dc

2) (9.1.3)

for all A ∈ F .

Proof. Observe that A ∩ (D1 \D2) = A ∩D1 ∩Dc
2 ⊆ D1, so that ψ(A ∩ (D1 \D2)) ≥ 0. From

A ∩ (D1 \D2) ⊆ Dc
2 we have ψ(A ∩ (D1 \D2)) ≤ 0. It follows that ψ(A ∩ (D1 \D2)) = 0. By

symmetry we get ψ(A ∩ (D2 \D1)) = 0. Consequently,

ψ(A ∩D1) = ψ((A ∩D1) ∪ (A ∩ (D2 \D1)) = ψ(A ∩ (D1 ∪D2)).

Similarly we get ψ(A ∩D2) = ψ(A ∩ (D1 ∪D2)) and so ψ(A ∩D1) = ψ(A ∩D2). The second
equality in (9.1.3) follows by symmetry. �
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Theorem 9.1.2 (Jordan) Let Ω = D∪Dc be a Hahn decomposition with respect to the signed
measure ψ. Then

ψ+(A) = ψ(A ∩D) and ψ−(A) = −ψ(A ∩Dc), A ∈ F ,

define two measures ψ+ and ψ− on (Ω,F ). Moreover, ψ+ and ψ− are independent of the
particular choice of the Hahn decomposition, at least one of them is finite and ψ = ψ+ − ψ−.

The representation ψ = ψ+ − ψ− is called the Jordan decomposition of ψ. The measure
|ψ| := ψ+ + ψ− is called the total variation of ψ. Let f be a measurable function on (Ω,F ). If
both ∫

Ω
fdψ+ and

∫
Ω
fdψ−

exist and ∫
Ω
fdψ+ −

∫
Ω
fdψ−

is well-defined, we set ∫
Ω
fdψ =

∫
Ω
fdψ+ −

∫
Ω
fdψ−

and call it the integral of f with respect to the signed measure ψ.

9.2 Radon-Nikodym derivatives

Definition 9.2.1 Let ψ and γ be signed measures on (Ω,F ). We say ψ is absolutely continuous
with respect to γ and write ψ � γ if ψ(A) = 0 for all A ∈ F with |γ|(A) = 0. If ψ � γ and
γ � ψ, we say ψ and γ are equivalent and write ψ ∼ γ.

Example 9.2.1 Let g and h be two measurable functions on (Ω,F , µ) such that
∫
Ω gdµ and∫

Ω hdµ exist. Let ψg and ψh be two signed measures defined by

ψg(A) =
∫
A
gdµ and ψh(A) =

∫
A
hdµ, A ∈ F .

If µ({g 6= 0} \ {h 6= 0}) = 0, then ψg � ψh. (Homework: Prove this result.)

Theorem 9.2.1 Let ψ and γ be signed measures on (Ω,F ). Then the following properties are
equivalent: (i) ψ � γ; (ii) ψ± � γ; (iii) ψ± � |γ|; (iv) |ψ| � |γ|.

Proof. “(i) ⇒ (ii)” Let Ω = D ∪Dc be the Hahn decomposition with respect to ψ. If A ∈ F
and |γ|(A) = 0, we have |γ|(A ∩ D) = |γ|(A ∩ Dc) = 0. Then (i) implies that ψ(A ∩ D) =
ψ(A ∩Dc) = 0, that is, ψ+(A) = ψ−(A) = 0. This shows that ψ+ � γ and ψ− � γ, proving
(ii). From the definition of the absolute continuity we know “(ii) ⇒ (iii)”. The implications
“(iii) ⇒ (iv)” and “(iv) ⇒ (i)” follow from the relations |ψ|(A) = ψ+(A) + ψ−(A) and

0 ≤ |ψ(A)| = |ψ+(A)− ψ−(A)| ≤ ψ+(A) + ψ−(A) = |ψ|(A)

for every A ∈ F . �
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Theorem 9.2.2 Let ψ and γ be finite measures on (Ω,F ) such that ψ � γ. Then for each
ε > 0, there is δ > 0 such that γ(A) < δ implies ψ(A) < ε for all A ∈ F .

Proof. Suppose that for some ε0 > 0 it is possible to find {Bn} ⊆ F such that γ(Bn) < 1/2n

and ψ(Bn) ≥ ε0. Let B =
⋂∞
n=1

⋃∞
k=nBk. Then we have

γ(B) ≤
∞∑
k=n

γ(Bk) → 0 (n→∞)

and hence γ(B) = 0. On the other hand, we have

ψ(B) = lim
n→∞

ψ
( ∞⋃
k=n

Bk

)
≥ lim sup

n→∞
ψ(Bn) ≥ ε0.

Since those contradict the relation ψ � γ, we have proved the desired result. �

Theorem 9.2.3 Suppose ψ and γ are finite measures on (Ω,F ) with ψ � γ and ψ 6= 0. Then
there exist a constant ε > 0 and a positive set A ∈ F for ψ − εγ such that γ(A) > 0.

Proof. Let Ω = Dn ∪Dc
n be a Hahn decomposition with respect to the signed measure ψ− γ/n.

Then Dn is a positive set for ψ − γ/n. Set D0 =
⋃∞
n=1Dn and Dc

0 =
⋂∞
n=1D

c
n. Since Dc

0 ⊆ Dc
n,

we have ψ(Dc
0)−γ(Dc

0)/n ≤ 0 and consequently 0 ≤ ψ(Dc
0) ≤ γ(Dc

0)/n. Then ψ(Dc
0) = 0. Since

ψ 6= 0, we must have ψ(D0) > 0 and so γ(D0) > 0 by the absolute continuity ψ � γ. Therefore,
there is some n ≥ 1 such that γ(Dn) > 0. Now the result follows with ε = 1/n and A = Dn. �

Theorem 9.2.4 (Radon-Nikodym) Let γ and ψ be σ-finite signed measures on (Ω,F ) such
that ψ � γ. Then there is a real-valued measurable function f on (Ω,F ) such that

ψ(A) =
∫
A
fdγ, A ∈ F . (9.2.1)

Moreover, the function f is γ-a.e. unique.

Proof. Step 1) We first assume that both γ and ψ are finite measures. Let U be the class of
non-negative measurable functions f on (Ω,F ) satisfying∫

A
fdγ ≤ ψ(A), A ∈ F .

Then we have
α := sup

{∫
Ω
fdγ : f ∈ U

}
≤ ψ(Ω) <∞.

Choose {fn} ⊆ U such that

lim
n→∞

∫
Ω
fndγ = α.

Let gn = max1≤k≤n fk and

En,k = {f1 < gn} ∩ · · · ∩ {fk−1 < gn} ∩ {fk = gn}.
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Since Ω =
⋃n
k=1En,k, for any A ∈ F we have∫
A
gndγ =

n∑
k=1

∫
A∩En,k

gndγ =
n∑
k=1

∫
A∩En,k

fkdγ ≤
n∑
k=1

ψ(A ∩ En,k) = ψ(A).

Let f0 = supn≥1 fn = limn→∞ gn. By the monotone convergence theorem,∫
A
f0dγ = lim

n→∞

∫
A
gndγ ≤ ψ(A), A ∈ F

and consequently f0 ∈ U . Moreover, we have
∫
Ω f0dγ = α < ∞, so γ-a.e. f0 < ∞. Setting

f = f0I{f0<∞} we have γ-a.e. f = f0 and so f ∈ U . Now define the measure ψ0 on (Ω,F ) by

ψ0(A) = ψ(A)−
∫
A
fdγ = ψ(A)−

∫
A
f0dγ, A ∈ F .

Clearly, ψ0 � ψ � γ. We shall prove ψ0 = 0, which yields the representation (9.2.1). If this is
not true, by Theorem 9.2.3 there exist ε > 0 and a positive set A ∈ F for ψ0 − εγ such that
γ(A) > 0. Thus

εγ(A ∩B) ≤ ψ0(A ∩B) = ψ(A ∩B)−
∫
A∩B

fdγ

for each B ∈ F . It follows that∫
B

(f + ε1A)dγ =
∫
B
fdγ + εγ(A ∩B) =

∫
B\A

fdγ +
∫
A∩B

fdγ + εγ(A ∩B)

≤
∫
B\A

fdγ + ψ(A ∩B) ≤ ψ(B \A) + ψ(A ∩B) = ψ(B)

and consequently g := f + ε1A ∈ U . Since∫
Ω
gdγ =

∫
Ω
fdγ + εγ(A) = α+ εγ(A) > α,

that contradicts the definition of f .

Step 2) Suppose that γ and ψ are both σ-finite measures. Then there is a sequence of disjoint
sets {Ωn} ⊂ F such that Ω =

⋃∞
n=1 Ωn and γ(Ωn) + ψ(Ωn) <∞ for each n ≥ 1. For any n ≥ 1

we can define finite measures γn and ψn by γn(A) = γ(A ∩ Ωn) and ψn(A) = ψ(A ∩ Ωn) for
A ∈ F . Clearly, we have ψn � γn. By the last step, there is a sequence of non-negative
measurable functions {fn} such that ψn(A) =

∫
A fdγn for all A ∈ F . It follows that

ψ(A) =
∞∑
n=1

ψ(A ∩ Ωn) =
∞∑
n=1

ψn(A ∩ Ωn) =
∞∑
n=1

∫
A∩Ωn

fndγn

=
∞∑
n=1

∫
A∩Ωn

fndγ =
∞∑
n=1

∫
A

1Ωnfndγ =
∫
A

∞∑
n=1

1Ωnfndγ.

Then we get (9.2.1) by setting f =
∑∞

n=1 1Ωnfn.

Step 3) Suppose that γ and ψ are both σ-finite signed measures. Let γ = γ+ − γ− and
ψ = ψ+ − ψ− be the Jordan decompositions for γ and ψ, respectively. Then we have ψ± � |γ|
by Theorem 9.2.1. By the last step, there are non-negative measurable functions f± such that
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ψ±(A) =
∫
A f±d|γ| for all A ∈ F . Let Ω = D ∪ Dc be a Hahn decomposition for γ. For any

A ∈ F we have

ψ(A) =
∫
A
f+d|γ| −

∫
A
f−d|γ|

=
∫
A∩D

f+dγ
+ +

∫
A∩Dc

f+dγ
− −

∫
A∩D

f−dγ
+ −

∫
A∩Dc

f−dγ
−

=
∫
A∩D

f+dγ −
∫
A∩Dc

f+dγ −
∫
A∩D

f−dγ +
∫
A∩Dc

f−dγ

=
∫
A

[
(f+ − f−)1D + (f− − f+)1Dc

]
dγ.

Then (9.2.1) follows with f = (f+ − f−)1D + (f− − f+)1Dc .

Step 4) Suppose that f2 and f2 are two measurable functions satisfying (9.2.1). Let Ω =
D ∪Dc be a Hahn decomposition for γ. It follows that∫

{f2>f1}
(f2 − f1)dγ+ =

∫
{f2>f1}∩D

(f2 − f1)dγ = 0,

which implies γ+({f2 > f1}) = 0. By symmetry we have γ+({f1 > f2}) = 0 and hence
γ+({f2 6= f1}) = 0. A similar arguments shows that γ−({f2 6= f1}) = 0. Consequently, we have
|γ|({f2 6= f1}) = 0. That proves that |γ|-a.e. uniqueness of the function f satisfying (9.2.1). �

Definition 9.2.2 If the signed measures ψ and γ are related by (9.2.1), we call f a Radon-
Nikodym derivative of ψ with respect to γ and write

f =
dψ

dγ
or dψ = fdγ.

Of course, the Radon-Nikodym derivative is only |γ|-a.e. unique.

Theorem 9.2.5 If ψ, γ and µ are σ-finite signed measures on (Ω,F ) such that ψ � γ and
γ � µ, then ψ � µ and µ-a.e.

dψ

dµ
=
dψ

dγ

dγ

dµ
. (9.2.2)

Proof. The assertion ψ � µ is obvious. Thanks to the Hahn decompositions, in showing the
relation (9.2.2) we may and do assume µ, γ and ψ are all measures. Accordingly, we have

f :=
dψ

dγ
≥ 0 and g :=

dγ

dµ
≥ 0.

Let {fn} be a sequence of simple functions such that 0 ≤ fn ↑ f . For each A ∈ F , we have

lim
n→∞

∫
A
fndγ =

∫
A
fdγ and lim

n→∞

∫
A
fngdµ =

∫
A
fgdµ. (9.2.3)

On the other hand, for B ∈ F we have∫
A

1Bdγ = γ(A ∩B) =
∫
A∩B

gdµ =
∫
A

1Bgdµ,
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which implies that ∫
A
fndγ =

∫
A
fngdµ.

From (9.2.3) we get

ψ(A) =
∫
A
fdγ =

∫
A
fgdµ,

proving (9.2.2). �

Corollary 9.2.1 Let ψ and γ be σ-finite signed measures on (Ω,F ) such that ψ � γ. If f is
a measurable function on (Ω,F ) for which

∫
Ω fdψ exists, then∫

Ω
fdψ =

∫
Ω
f
dψ

dγ
dγ.

Proof. (Homework.) �

9.3 Lebesgue decomposition

We say two signed measures ψ and γ on (Ω,F ) are singular to each other and write γ ⊥ ψ, if
there exists E ∈ F such that |γ|(E) = |ψ|(Ec) = 0. Consequently, γ ⊥ ψ if and only if |γ| ⊥ |ψ|.

Theorem 9.3.1 (Lebesgue) For any σ-finite signed measures γ and ψ on (Ω,F ), there are
two uniquely determined σ-finite signed measures ψ0 and ψ1 such that ψ0 ⊥ γ, ψ1 � γ and
ψ0 + ψ1 = ψ.

Proof. As usual, we may assume both γ and ψ are finite measures. Since ψ � γ + ψ, by
Radon-Nikodym theorem, there is a measurable function f0 such that

ψ(A) =
∫
A
f0d(γ + ψ) =

∫
A
f0dγ +

∫
A
f0dψ, A ∈ F .

It is easy to see that (γ + ψ)-a.e. 0 ≤ f0 ≤ 1 and so ψ-a.e. 0 ≤ f0 ≤ 1. Let f = f01{0≤f≤1} and
write E = {f = 1} and F = Ec = {0 ≤ f < 1}. We define the finite measures ψ0 and ψ1 by
ψ0(A) = ψ(A ∩ E) and ψ1(A) = ψ(A ∩ F ) for A ∈ F . Then ψ = ψ0 + ψ1. Note that

ψ(E) =
∫
E
fdγ +

∫
E
fdψ = γ(E) + ψ(E).

and so γ(E) = 0. It is then clear that ψ0⊥γ. If γ(A) = 0, then∫
A∩F

dψ = ψ(A ∩ F ) =
∫
A∩F

fdψ +
∫
A∩F

fdγ =
∫
A∩F

fdψ

It follows that ∫
A∩F

(1− f)dψ = 0.

But 1 − f > 0 on F , so we must have ψ(A ∩ F ) = 0, that is, ψ1(A) = 0. That proves ψ1 � γ.
Suppose that we also have ψ = ψ̄0 + ψ̄1 with ψ̄0 ⊥ γ and ψ̄1 � γ. Then ψ0 − ψ̄0 = ψ̄1 − ψ1. If
we denote this measure by η, then η ⊥ γ and η � γ. It follows obviously that η = 0, implying
ψ0 = ψ̄0 and ψ1 = ψ̄1. �
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Chapter 10

Conditional Expectations

10.1 Definition and examples

Let (Ω,F ,P) be a probability space and G a sub-σ-algebra of F . If X is a random variable
such that E[|X|] <∞, then

ψ(G) =
∫
G
XdP, G ∈ G ,

defines a finite signed measure ψ which is absolutely continuous with respect to the restriction
of P on G . By Radon-Nikodym theorem, there is an a.s. unique G -measurable random variable
ξ : Ω → R such that ∫

G
ξdP =

∫
G
XdP, G ∈ G . (10.1.1)

We call ξ the conditional expectation of X given G , and denote it by E[X|G ]. For any A ∈ F , we
call E[1A|G ] the conditional probability of A given G , and denote it by P[A|G ]. If Y is another
random variable, we simply write E[X|Y ] instead of E[X|σ(Y )].

Proposition 10.1.1 Let X be a random variable such that E[|X|] <∞. Then we have

(i) E[X|G ] ≥ 0 a.s. if X ≥ 0 a.s.;

(ii) E[aX|G ] = aE[X|G ] for any a ∈ R;

(iii) E{E[X|G ]} = E[X];

(iv) E[X|G ] = X a.s. if X is G -measurable;

(v) E[X|G ] = E[X] a.s. if X is independent of G ;

(vi) E[X|G ] = E[X] a.s. if G = {∅,Ω}.

Proof. These are immediate consequences of the definition. �

101
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Proposition 10.1.2 Let a and b be real constants and X and Y be random variables. Suppose
that E[|X|+ |Y |] <∞. Then we have a.s.

E[aX + bY |G ] = aE[X|G ] + bE[Y |G ].

Proof. Clearly, aE[X|G ] + bE[Y |G ] is G -measurable. By Corollary 3.2.3 we have∫
G
(aE[X|G ] + bE[Y |G ])dP = a

∫
G

E[X|G ]dP + b

∫
G

E[Y |G ]dP

= a

∫
G
XdP + b

∫
G
Y dP =

∫
G
(aX + bY )dP.

That proves the desired result. �

Theorem 10.1.1 Let X and Y be random variables such that E[|Y |+ |XY |] <∞ exist. If X
is G -measurable, we have

E[XY |G ] = XE[Y |G ].

Proof. Since X is G -measurable, so is XE[Y |G ]. Then it suffices to prove∫
G
XE[Y |G ]dP =

∫
G
XY dP, G ∈ G . (10.1.2)

If X = 1H for some H ∈ G , we have G ∩H ∈ G and hence∫
G
XE[Y |G ]dP =

∫
G∩H

E[Y |G ]dP =
∫
G∩H

Y dP =
∫
G
XY dP.

By taking the linear combinations we see that (10.1.2) holds if X is a G -measurable simple
function. If X and Y are both non-negative random variables, we may take a sequence of simple
functions {Xn} such that 0 ≤ Xn ↑ X. By applying the monotone convergence theorem, we still
get (10.1.2). Finally, for a general X and Y we have∫

G
XY dP =

∫
G
X+Y +dP−

∫
G
X−Y +dP−

∫
G
X+Y −dP +

∫
G
X−Y −dP

=
∫
G
X+E[Y +|G ]dP−

∫
G
X−E[Y +|G ]dP−

∫
G
X+E[Y −|G ]dP

+
∫
G
X−E[Y −|G ]dP

=
∫
G
(X+ −X−)E

[
(Y + − Y −)|G

]
dP

=
∫
G
XE[Y |G ]dP

by Proposition 10.1.2, which proves the result. �

Theorem 10.1.2 Let X be a random variable such that E[|X|] < ∞, and let H and G be
σ-algebras such that H ⊆ G ⊆ F . Then we have

E[X|H ] = E{E[X|G ]|H }. (10.1.3)
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Proof. Let H ∈ H . By the definition of the conditional expectation,∫
H
XdP =

∫
H

E[X|H ]dP.

Since H ⊆ G , we have H ∈ G and hence∫
H
XdP =

∫
H

E[X|G ]dP.

It then follows that ∫
H

E[X|H ]dP =
∫
H

E[X|G ]dP.

Certainly, E[X|H ] is H -measurable, so (10.1.3) follows. �

Example 10.1.1 Suppose that (Ω,F ,P) is a probability space. Let G = σ({Ui : i ∈ I}) for a
finite or countable partition {Ui : i ∈ I} ⊆ F of Ω with P(Ui) > 0 for each i ∈ I. Then for any
A ∈ F we have

P(A|G )(ω) = P(A|Ui) :=
P(A ∩ Ui)

P(Ui)
, ω ∈ Ui. (10.1.4)

This gives an interpretation for the random variable P(A|G )(ω). The σ-algebra G can be
interpreted as the information obtained by observing a random system with different states
{Ui : i ∈ I} which has some influence on the event A. In this situation, (10.1.4) simply means
that the probability of A varies according to the different status of the system. To show (10.1.4),
define

η(ω) = P(A|Ui), ω ∈ Ui.

From Example 1.1.2 we know that η is a G -measurable random variable. By Example 1.1.1,
each G ∈ G can be represented as G =

⋃
j∈J Uj for a (finite or countable) set J ⊆ I. It follows

that ∫
G

1AdP =
∑
j∈J

P(A ∩ Uj) =
∑
j∈J

P(Uj)P(A|Uj)

=
∫

S
j∈J Uj

ηdP =
∫
G
ηdP.

Then η = E[1A|G ] = P(A|G ) by the definition of conditional probability.

Example 10.1.2 Consider a probability space (Ω,F ,P). Let G = σ({Ui : i ∈ I}) for a
countable partition {Ui : i ∈ I} ⊆ F of Ω with P(Ui) > 0 for each i ∈ I. Clearly, for each i ∈ I,

Pi(A) := P(A|Ui), A ∈ F (10.1.5)

defines a probability measure on (Ω,F ). Suppose thatX is a random variable such that E[|X|] <
∞. Then we have

E[X|G ](ω) =
∫

Ω
XdPi, ω ∈ Ui, (10.1.6)
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which gives a representation for the conditional expectation. Indeed, by Example 1.1.2,

ξ(ω) =
∫

Ω
XdPi, ω ∈ Ui

defines a G -measurable random variable ξ. By (10.1.5), we have

Pi(A) =
P(A ∩ Ui)

P(Ui)
, A ∈ F

and hence ∫
Ω
X(ω)dPi(ω) = P(Ui)−1

∫
Ui

X(ω)P(dω).

If G ∈ G has the representation G =
⋃
j∈J Uj for J ⊆ I, then∫

G
XdP =

∑
j∈J

∫
Uj

XdP =
∑
j∈J

P(Uj)
∫

Ω
XdPj

=
∫

S
j∈J Uj

ξdP =
∫
G
ξdP.

By the definition of conditional expectation we get ξ = E[X|G ].

10.2 Some properties

Let (Ω,F ,P) be a probability space and let G ⊆ F be a σ-algebra.

Theorem 10.2.1 (Conditional Monotone Convergence Theorem) IfXn andX are non-negative
random variables such that E[|X|] <∞ and Xn ↑ X a.s., then E[Xn|G ] ↑ E[X|G ] a.s.

Proof. Clearly, E[Xn|G ] ↑ some G -measurable random variable Y ≤ E[X|G ] a.s. For any G ∈ G ,
the monotone convergence theorem implies∫

G
Y dP =↑ lim

n→∞

∫
G

E[Xn|G ]dP =↑ lim
n→∞

∫
G
XndP =

∫
G
XdP.

Then we have a.s. Y = E[X|G ]. �

Corollary 10.2.1 For any sequence of disjoint events {An} ⊆ F , we have a.s.

P
( ∞⋃
n=1

An

∣∣∣G )
=

∞∑
n=1

P(An|G ).

Proof. (Homework.) �
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Theorem 10.2.2 (Conditional Fatou’s Lemma) Let {Xn} be a sequence of non-negative ran-
dom variables such that X := lim infn→∞Xn <∞ a.s. and E[|Xn|+ |X|] <∞ for every n ≥ 1.
Then we have a.s.

E[X|G ] ≤ lim inf
n→∞

E[Xn|G ].

Proof. (Homework.) �

Theorem 10.2.3 (Conditional Dominated Convergence) Let Xn and X be random variables
such that Xn → X a.s. Suppose there is a non-negative random variable Y such that E[|Y |] <∞
and |Xn| ≤ Y a.s. for each n ≥ 1. Then E[Xn|G ] → E[X|G ] a.s.

Proof. (Homework.) �

Theorem 10.2.4 Let X1 and X2 be two random variables such that X1 is G -measurable and
X2 is independent of G . For a given bounded Borel function H(·, ·) on R2 define

h(x1) = E[H(x1, X2)], x1 ∈ R.

Then h(·) is a Borel function on R and a.s.

E[H(X1, X2)|G ] = h(X1).

Proof. Clearly, X1 and X2 are independent of each other. Let Q2 denote the probability measure
on (R,B(R)) induced by X2. Then

h(x1) =
∫
E2

H(x1, x2)Q2(dx2)

By Theorem 4.2.2 we see that h(·) is a Borel function on R. Let Y be a bounded G -measurable
random variable and let Q denote the probability measure on (R2,B(R2)) induced by (X1, Y ).
By the independence of (X1, Y ) and X2, we have

E[H(X1, X2)Y ] =
∫

R2

Q(dx1, dy)
∫

R
H(x1, x2)yQ2(dx2)

=
∫

R2

h(x1)yQ(dx1, dy) = E[h(X1)Y ],

which implies the desired result. �

Theorem 10.2.5 (Jessen’s inequality) Let φ be a convex function on R and X a random vari-
able such that E[|X|+ |φ(X)|] <∞ exist. Then for any σ-algebra G ⊆ F we have a.s.

φ(E[X|G ]) ≤ E[φ(X)|G ].

Proof. (Homework.) �
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Corollary 10.2.2 If p ≥ 1 and E[X] exits, then a.s.

|E[X|G ]|p ≤ E[|X||G ]p ≤ E[|X|p|G ].

Proof. (Homework.) �

Proposition 10.2.1 Suppose that X and Y are random variables such that E[X2 + Y 2] <∞.
If Y is G -measurable, then

E[(X − Y )2] = E[(X −E[X|G ])2] + E[(Y −E[X|G ])2].

Proof. Observe that

(X − Y )2 = (X −E[X|G ])2 + (Y −E[X|G ])2 − 2(X −E[X|G ])(Y −E[X|G ]). (10.2.1)

Under the assumption, each term in the above equation is integrable, so we may take the
conditional expectations given G . Since Y −E[X|G ] is G -measurable, we have

E
{
(X −E[X|G ])(Y −E[X|G ])|G

}
= (Y −E[X|G ])E[(X −E[X|G ])|G ] = 0.

Then the last term on the right hand side of (10.2.1) has expectation zero. That shows the
desired result. �

Corollary 10.2.3 If E[X2] <∞, then

Var(X) ≥ Var(E[X|G ]) (10.2.2)

with equality if and only if X
a.s.= Z for a G -measurable random variable Z.

Proof. Setting Y = E[X] in Proposition 10.2.1 we obtain

Var(X) = E[(X −E[X|G ])2] + Var(E[X|G ]).

Then we have (10.2.2) with equality if and only if X a.s.= E[X|G ], which holds if and only if
X = Z for a G -measurable random variable Z. �

10.3 Regular conditional probabilities

Let (Ω,F ,P) be a probability space and G a sub-σ-algebra of F . Recall that the conditional
probability P(A|G ) of an event A ∈ F given G is defined by

P(A|G ) = E[1A|G ].

We emphasis that P(A|G ) is only uniquely determined almost surely. It is easy to show that
a.s.

0 ≤ P(A|G ) ≤ 1 and P(Ω|G ) = 1.
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By Corollary 10.2.1, for any sequence of disjoint events {An} ⊆ F we have a.s.

P
( ∞⋃
n=1

An

∣∣∣G )
=

∞∑
n=1

P(An|G ). (10.3.1)

However, these properties do not always imply that for a.e. ω ∈ Ω, the set function A 7→
P(A|G )(ω) is a probability measure on (Ω,F ). The problem is that the exceptional null set for
(10.3.1) depends on the sequence {An}, and there are usually uncountably many these sequences
in the σ-algebra F . We shall give some sufficient conditions that allow us to choose the random
variables P(A|G ) suitably so that A 7→ P(A|G ) is a.s. a probability measure on F .

Definition 10.3.1 A function Q : Ω × F → [0, 1] is called a regular conditional probability
given G if

(i) for each ω ∈ Ω, the set function A 7→ Q(ω,A) is a probability measure on (Ω,F );

(ii) for each fixed A ∈ F , the function ω 7→ Q(ω,A) is G -measurable;

(iii) for each A ∈ F , we have a.s.
P(A|G ) = Q(·, A).

Proposition 10.3.1 Suppose there is a regular conditional probability Q(·, ·) on (Ω,F ) given
G . Let X be a random variable such that E[|X|] <∞. Then we have a.s.

E[X|G ](ω) =
∫

Ω
X(ω′)Q(ω, dω′).

Proof. If X = 1A for some A ∈ F , for a.e. ω ∈ Ω we have

E[1A|G ](ω) = P(A|G )(ω) = Q(ω,A) =
∫

Ω
1A(ω′)Q(ω, dω′).

The proof for the general case can be carried out by approximating arguments. �

Definition 10.3.2 A function QX : Ω×B(R) → [0, 1] is called a regular conditional distribution
of the random variable X given G if

(i) for each fixed ω ∈ Ω, the set function B 7→ QX(ω,B) is a probability measure on B(R);

(ii) for each fixed B ∈ B(R), the function ω 7→ QX(ω,B) is G -measurable;

(iii) for every B ∈ B(R), we have a.s.

P(X−1(B)|G ) = QX(ω,B).

In particular, if a regular conditional probability function Q(·, ·) on (Ω,F ) given G exists,
we can define a regular conditional distribution of X by setting

QX(ω,B) = Q(ω,X−1(B)), ω ∈ Ω, B ∈ B(R).



108 CHAPTER 10. CONDITIONAL EXPECTATIONS

Definition 10.3.3 A function FX : Ω × R → [0, 1] is called a regular conditional distribution
function of X given G if

(i) for each fixed ω ∈ Ω, the function x 7→ F (ω, x) is a probability distribution function on R;

(ii) for each fixed x ∈ R, the function ω 7→ F (ω, x) is G -measurable;

(iii) for each x ∈ R, we have a.s.

FX(·, x) = P({X ≤ x}|G ).

Proposition 10.3.2 A regular conditional distribution of X given G exits if and only if there
is a regular conditional distribution function of X given G .

Proof. If QX(·, ·) is a regular conditional distribution of X given G , we may define a regular con-
ditional distribution function FX by setting FX(ω, x) = QX(ω, (−∞, x]). Conversely, suppose
there is a regular conditional distribution function FX of X given G . Then for each ω ∈ Ω, the
probability distribution function FX(ω, ·) determines uniquely a probability measure QX(ω, ·)
on B(R). Let C denote the class of sets B ∈ B(R) such that ω 7→ QX(ω,B) is G -measurable,
and P(X−1(B)|G ) = QX(ω,B) a.s. Then C ⊇ A := {finite unions of left open and right closed
intervals}. Clearly, C is a monotone class and A is an algebra. By the monotone class theorem
we have C ⊇ σ(A ) = B(R). Consequently, QX is a regular conditional distribution of X given
G . �

Theorem 10.3.1 A regular conditional distribution of X given G always exists.

Proof. By Proposition 10.3.2, it suffices to prove the existence of a regular conditional distribu-
tion function FX of X given G . Let Q = {r1, r2, · · · } be an enumeration of all rational numbers.
For each r ∈ Q, we fix a random variable η(r) such that η(r) a.s.= P(X ≤ r|G ). For m,n ≥ 1, let

Am,n = {ω ∈ Ω : η(rm)(ω) > η(rn)(ω)}

and let A =
⋃
rm<rn

Am,n. Since rm < rn implies a.s. η(rm) ≤ η(rn), we have P(A) = 0. Next
we set

Bn = {ω ∈ Ω : lim sup
k→∞

η(rn + 1/k)(ω) 6= η(rn)(ω)}

and B =
⋃∞
n=1Bn. From the conditional monotone convergence theorem we have a.s.

lim
k→∞

η(rn + 1/k) = lim
k→∞

P({X ≤ rn + 1/k}|G ) = P({X ≤ rn}|G ) = η(rn).

It follows that P(Bn) = 0 for each n ≥ 1, and so P(B) = 0. Similarly, letting

E = {ω ∈ Ω : lim sup
n→∞

η(n)(ω) 6= 1 or lim sup
n→∞

η(−n)(ω) 6= 0},

we have P(E) = 0. Thus for each ω ∈ Ac ∩ Bc ∩ Ec, the function η(r)(ω) of r ∈ Q is non-
decreasing, right continuous, limr→∞ η(r)(ω) = 1 and limr→−∞ η(r)(ω) = 0. Let G be an
arbitrary probability distribution function on R and let

FX(ω, x) =
{

limQ3r↓x η(r)(ω) for ω ∈ Ac ∩Bc ∩ Ec
G(x) for ω ∈ A ∪B ∪ E.
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Then for any x ∈ R we have a.s.

FX(ω, x) = lim
Q3r↓x

η(r)(ω) = lim
Q3r↓x

P({X ≤ r}|G ) = P({X ≤ x}|G )

by the conditional monotone convergence theorem. That is, FX is a regular conditional distri-
bution function of X given G . �

Corollary 10.3.1 Let QX be a regular conditional probability distribution of X given G . If φ
is a Borel function on R such that E[φ(X)] exists, then a.s

E[φ(X)|G ](ω) =
∫

R
φ(x)QX(ω, dx).

Proof. If φ = 1B for some B ∈ B(R), this is just (iii) of Definition 10.3.2. The general case
follows by an approximating argument. �

Theorem 10.3.2 Suppose that there is a Borel set F ⊆ R such that (Ω,F ) is isomorphic to
(F,B(F )). Then for any sub-σ-algebra G of F , a regular conditional probability function on
(Ω,F ) given G exists.

Proof. Let X : Ω → F be the isomorphism. By Theorem 10.3.1, a regular conditional
distribution QX of the random variable X given G exists. For ω ∈ Ω and A ∈ F , let
Q(ω,A) = QX(ω,X(A)). Since X is an isomorphism, Q(ω, ·) is a probability measure on F .
Clearly, ω 7→ Q(ω,A) is F -measurable. Moreover, we have a.s.

P(A|G )(ω) = P(X−1(X(A))|G )(ω) = QX(ω,X(A)) = Q(ω,A).

Then Q(·, ·) is a regular conditional probability on (Ω,F ) given G . �

Corollary 10.3.2 Let Ω be a Borel subset of some complete separable metric space with F =
B(Ω). Then for any sub-σ-algebra G of F , a regular conditional probability function Q on
(Ω,F ) given G exists.

Proof. Under the assumption, Ω is isomorphic to a closed subset of the unit interval [0, 1]
furnished with the Borel σ-algebra; see e.g. Parthasarathy (1967, p.14). Then the result follows
by Theorem 10.3.2. �
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Chapter 11

Infinitely Divisible Distributions

11.1 Definition and properties

Recall that the characteristic function φµ of a finite measure µ on (R,B(R)) is defined by

φµ(t) =
∫

R
eitxµ(dx), u ∈ R, (11.1.1)

which determined µ uniquely. In particular, if µ is supported by R+, it is also uniquely deter-
mined by its Laplace transformation Lµ defined by

Lµ(t) =
∫

R+

e−txµ(dx), t ∈ R+, (11.1.2)

Recall also that given two probability measures µ and ν on (R,B(R)), we can define a probability
measure γ on (R,B(R)) by∫

R
f(z)γ(dz) =

∫
R×R

f(x+ y)µ× ν(dx, dy), f ∈ C(R), (11.1.3)

which is called the convolution of µ and ν and denoted by µ ∗ ν. Moreover, (11.1.3) holds if and
only if

φγ(t) = φµ(t)φν(t), t ∈ R. (11.1.4)

Similarly, we can define the n-fold convolution µ1 × µ2 × · · · × µn. A probability measure µ on
(R,B(R)) is called infinitely divisible if for each integer n ≥ 2 there is a probability measure µn
on (R,B(R)) such that µ = µ∗nn := µn ∗ µn ∗ · · · ∗ µn.

The characteristic function φµ of a probability measure µ on (R,B(R)) is said to be infinitely
divisible if so is µ. Clearly, the characteristic function φ is infinitely divisible if and only if for each
integer n ≥ 1 there is a probability µn with characteristic function φn such that φ(u) = φn(u)n

for all u ∈ R.

Example 11.1.1 Let µ be the normal distribution N(µ, σ2), where µ ∈ R and σ > 0. We have

φµ(t) = exp
{
iµt− σ2t2/2

}
.

Let µn be the normal distribution N(µ/n, σ2/n). Then φµ(u) = φµn(u)n and so µ = µ∗nn . Thus
µ is infinitely divisible.

111
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Example 11.1.2 Let µ be Poisson distribution with parameter λ > 0. Then

φµ(t) = exp
{
λ(eit − 1)

}
.

It follows that µ = µ∗nn , where µn is the Poisson distribution with parameter λ/n. Thus µ is
infinitely divisible.

Example 11.1.3 Let µ be the Gamma distribution Γ(α, β) for α > 0 and β > 0. We have

φµ(t) =
∫ ∞

0
eitx

βα

Γ(α)
xα−1e−βxdx

=
1

Γ(α)

∫ ∞

0
eity/βyα−1e−ydy

=
1

Γ(α)

∫ ∞

0
yα−1e−y(1−it/β)dy

=
1

Γ(α)(1− it/β)α

∫ ∞

0
zα−1e−zdz

=
(
1− it

β

)−α
.

Then µ = µ∗nn with µn = Γ(α/n, β) and so µ is infinitely divisible.

Proposition 11.1.1 If both µ and ν are infinitely divisible, so is µ ∗ ν.

Proof. If µ = µ∗nn and ν = ν∗nn , then µ ∗ ν = (µn ∗ νn)∗n. �

Corollary 11.1.1 If φ is an infinitely divisible characteristic function, so is |φ|.

Proof. If φ is an infinitely divisible characteristic function, so is φ̄(t) = φ(−t). Then the
non-negative real-valued function φφ̄ is a infinitely divisible characteristic function. Now the
conclusion follows as we notice |φ| = [φφ̄]1/2. �

Proposition 11.1.2 If φ is an infinitely divisible characteristic function, then φ(t) 6= 0 for all
t ∈ R.

Proof. Suppose φ = (φn)n for n ≥ 1, where φn is a characteristic function. Then both ψ := |φ|
and ψn := |φn| are non-negative real-valued characteristic functions. Since ψ = (ψn)n, we must
have ψn = ψ1/n. Thus 0 ≤ ψ ≤ 1 implies θ(t) := limn→∞ ψn(t) = 0 or 1 according as ψ(t) = 0
or 1. Recall that ψ(0) = 1. Then there is a neighborhood U of the origin so that ψ(t) > 0 for
all t ∈ U . It follows that θ(t) = 1 for all t ∈ U . Now the continuity theorem implies that θ is
a characteristic function. The continuity of θ thus implies that θ(t) = 1 for all t ∈ R. Then we
must have ψ(t) > 0 and hence φ(t) 6= 0 for all t ∈ R. �

Proposition 11.1.3 If f is a continuous and non-vanishing complex function on R with f(0) =
1, there is a unique (single-valued) continuous function λ on R with λ(0) = 0 and f(t) = eλ(t)

for all t ∈ R.
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Proof. Let T > 0 be fixed and let ρT = inf |f(t)|. Since f is a continuous and non-vanishing
on [−T, T ], there is δT ∈ (0, ρT ) such that for any −T ≤ r ≤ t ≤ T satisfying |t − r| ≤ δT
we have |f(t) − f(r)| ≤ ρT /2 ≤ 1/2. For any integer m ≥ 1, define the sequence {tj : j =
0,±1,±2, · · · ,±m} by tj = jT/m. Note that

L(z) :=
∞∑
j=1

(−1)j−1

j
(z − 1)j

is the unique determination (principle value) of log z on D := {z : |z − 1| < 1} vanishing at
z = 1. For any t ∈ [t−1, t1] we have |f(t) − 1| = |f(t) − f(t0)| ≤ 1/2 and so λ(t) := L(f(t)) is
well-defined and exp{λ(t)} = f(t). Clearly, λ(t) is continuous in t ∈ [t−1, t1] and λ(0) = 0. If
1 ≤ k ≤ m− 1 and t ∈ [tk, tk+1], then∣∣∣∣ f(t)

f(tk)
− 1

∣∣∣∣ =
|f(t)− f(tk)|

|f(tk)|
≤ ρT

2ρT
=

1
2
.

Thus the definition of λ can be extended from [t−k, tk] to [tk, tk+1] by λ(t) = λ(tk)+L(f(t)/f(tk)).
Analogously, we may extend the definition to [t−k−1, t−k]. Now the function λ is defined and
continuous on [−T, T ], and for each 1 ≤ k ≤ m− 1 and t ∈ [tk, tk+1],

eλ(t) = exp
{
L

(
f(t)
f(tk)

)
+ λ(tk)

}
= exp

{
L

(
f(t)
f(tk)

)
+

k−1∑
j=0

L

(
f(tj+1)
f(tj)

)}
= f(t).

A similar statement holds in [t−k−1, t−k]. Next, given λ on [−T, T ] it can be extended by the
prior method to [−T−1, T+1] and hence by induction to (−∞,∞). Finally, if two such functions
λ1 and λ2 exist, we have eλ1(t) = eλ2(t) and hence λ1(t) − λ1(t) = 2πik(t) for an integer k(t).
Since k(t) is continuous with k(0) = 0, it is necessary that k(t) ≡ 0. That is, λ is unique. �

Definition 11.1.1 The function λ defined in Proposition 11.1.3 is called the distinguished loga-
rithm of f and is denoted by Log f . The function exp{αλ} is called the distinguished αth power
of f and is denoted by fα.

Note that Log (fg) = Log f + Log g and Log (fα) = αLog f .

Corollary 11.1.2 A characteristic function φ is infinitely divisible if and only if it does not
vanish on R and φ1/n is a characteristic function for each integer n ≥ 1.

Proposition 11.1.4 Let φk and φ be characteristic functions. If each φk is infinitely divisible
and φk → φ, then φ is infinitely divisible.

Proof. Let ψk = |φk|2 and ψ = |φ|2. Then both ψk and ψ are characteristic functions and each
ψk is infinitely divisible. By Corollary 11.1.2, ψ1/n

k is a characteristic function for each n ≥ 1.
Since limk→∞ ψ

1/n
k = ψ1/n and the limit is a continuous function, it is a characteristic function.

Consequently, the characteristic function ψ is infinitely divisible. By Proposition 11.1.2, ψ
does not vanish, so neither does φ. Then φ1/n is a well-defined continuous function. Since
φ1/n = limk→∞ φ

1/n
k , it is a characteristic function. That yields the infinite divisibility of φ. �
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11.2 Poisson type distribution

Let α, β ∈ R and λ ≥ 0 be fixed constants. A probability measure µ on (R,B(R)) is said to be
of Poisson type if

µ({β + nα}) =
λn

n!
e−λ, n = 0, 1, 2, · · · (11.2.1)

(In the case α = 0, we take µ({β}) = 1).) If µ is given by (11.2.1), the corresponding character-
istic function is given by

φµ(t) =
∞∑
n=0

e−λ
λn

n!
ei(β+nα)t

= eiβt−λ
∞∑
n=0

λneinαt

n!

= exp {iβt+ λ(eiαt − 1)} (11.2.2)

In view of (11.2.2), a Poisson type distribution is infinitely divisible.

Proposition 11.2.1 Let β ∈ R+ and let L be a σ-finite Borel measure on (0,∞) such that∫
(0,∞)

ξ

1 + ξ
L(dξ) <∞.

Then there is an infinitely divisible probability measure µ on R+ with characteristic function
φ = eψ, where

ψ(t) = iβt+
∫

(0,∞)
(eitξ − 1)L(dξ).

Proof. The assertion is immediate if L is trivial. Then we assume

γ :=
∫

(0,∞)

ξ

1 + ξ
L(dξ) > 0.

in the proof. Let h(t, 0) = it and

h(t, ξ) =
(
eitξ − 1

)1 + ξ

ξ
, t ∈ R, ξ > 0.

Then h is bounded and uniformly continuous on [−T, T ] × R+ for each T > 0. We fix T > 0
and let C = CT > 0 be a constant such that |h(t, ξ)| ≤ C when |t| ≤ T . For each integer n ≥ 1,
choose a sequence {0 = ηn,0 < ηn,1 < · · · < ηn,kn = Mn} so that∫

(Mn,∞)

ξ

1 + ξ
L(dξ) <

1
2nC

and
sup{|h(t, ξ)− h(t, ηn,j)| : ηn,j−1 ≤ ξ ≤ ηn,j , 1 ≤ j ≤ kn} ≤

1
2nγ
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when |t| ≤ T . Let

G(dξ) =
ξ

1 + ξ
L(dξ) and λn,j =

1 + ηn,j
ηn,j

G(ηn,j−1, ηn,j ].

When |t| ≤ T , we have ∣∣∣∣ ∫
(0,∞)

(eitξ − 1)L(dξ)−
kn∑
j=1

λn,j
(
eitηn,j − 1

)∣∣∣∣
≤

∣∣∣∣ ∫
(0,∞)

h(t, ξ)G(dξ)−
kn∑
j=1

h(t, ηn,j)G(ηn,j−1, ηn,j ]
∣∣∣∣

≤ C ·G(Mn,∞) +
kn∑
j=1

1
2nγ

G(ηn,j−1, ηn,j ] <
1
n
. (11.2.3)

It is easy to see that

φn(t) = exp
{
iβt+

kn∑
j=1

λn,j
(
eitηn,j − 1

)}
is the characteristic function of an infinitely divisible probability measure µn. On the other hand,
from (11.2.3) we have limn→∞ φn(t) = φ(t) with uniform convergence on [−T, T ]. It follows that
φ is the characteristic function of an infinitely divisible probability measure µ on R. Clearly, we
have µn(R+) = 1 for each n ≥ 1 and so µ(R+) = 1. �

Proposition 11.2.2 Let µ and ψ be given as in Proposition 11.2.1 and let

Lµ(t) =
∫

R+

e−tξµ(dξ), t ≥ 0. (11.2.4)

Then we have Lµ(t) = exp{−θ(t)} with

θ(t) = βt+
∫

(0,∞)
(1− e−tξ)L(dξ). (11.2.5)

Proof. The result follows from the calculations in the proof of Proposition 11.2.1 with it replaced
by −t. �

Proposition 11.2.3 Let µ and ψ be given as in Proposition 11.2.1. Then∫
R+

ξµ(dξ) <∞ (11.2.6)

holds if and only if ∫
(0,∞)

ξL(dξ) <∞. (11.2.7)
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Proof. Suppose (11.2.6) holds. From (11.2.4) we have

Lµ(t)− Lµ(t+ s)
s

=
∫

R+

1− e−sξ

s
e−tξµ(dξ).

By dominated convergence we see from the above equality that Lµ(u) is continuously differen-
tiable in u ≥ 0 and

− d

dt
Lµ(t) =

∫
R+

ξe−tξµ(dξ).

Then θ(t) is continuously differentiable in t ≥ 0. From (11.2.5) it follows that

θ(t+ s)− θ(t)
s

= β +
∫

R+

1− e−sξ

s
e−tξL(dξ).

By Fatou’s lemma we find that

d

dt
θ(t) ≥ β +

∫
R+

ξe−tξL(dξ).

In particular, we have

β +
∫

R+

ξL(dξ) ≤ d

dt
θ(0) <∞.

The converse assertion follows by similar arguments. �

Proposition 11.2.4 Let β ∈ R and let L be a σ-finite measure on R \ {0} such that∫
R\{0}

|ξ|
1 + |ξ|

L(dξ) <∞.

Then there is an infinitely divisible probability measure µ on R with characteristic function
φ = eψ, where

ψ(t) = iβt+
∫

R\{0}
(eitξ − 1)L(dξ).

Moreover, both β and L are uniquely determined by µ.

Proof. For t ∈ R let

ψ1(t) =
∫

(0,∞)
(eitξ − 1)L(dξ)

and
ψ2(t) =

∫
(−∞,0)

(e−itξ − 1)L(dξ).

By Proposition 11.2.1, there are infinitely divisible probability measures ν1 and ν2 on R+ with
characteristic functions φ1(t) = eψ1(t) and φ2(t) = eψ2(t). Let γ2 be the probability measure ν2

induced from ν2 by the mapping x 7→ −x. Then γ2 is an infinitely divisible probability measure
supported by R− with characteristic function φ2(−t) = eψ2(−t). We see easily that φ = eψ is the
characteristic function of the infinitely divisible probability measure µ := ν1 ∗ γ2 ∗ δβ . To prove
the uniqueness of α and L, we introduce the function

V (t) := 2ψ(t)−
∫ t+1

t−1
ψ(s)ds.
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By elementary calculations,

V (t) = 2
∫

R\{0}
eitξG(dξ),

where
G(dξ) = 2

(
1− sin ξ

ξ

)
L(dξ).

That is, V (t) is the characteristic function of the finite measure G. Then both G and L are
uniquely determined by ψ and hence by φ. The uniqueness of β follows immediately. �

Corollary 11.2.1 Let µ and ψ be given as in Proposition 11.2.4. Then we have

(i) µ(−∞, 0) = 0 if and only if β ≥ 0 and L(−∞, 0) = 0;

(ii) µ(0,∞) = 0 if and only if β ≤ 0 and L(0,∞) = 0.

Proof. (Homework.) �

Proposition 11.2.5 Let µ and L be related as in Proposition 11.2.4. Then∫
R
|ξ|µ(dξ) <∞ (11.2.8)

holds if and only if ∫
R\{0}

|ξ|L(dξ) <∞. (11.2.9)

Proof. We use the notation of the proof of Proposition 11.2.4. Suppose (11.2.8) holds. By
Proposition 8.3.2, we have ∫

R
|ξ|ν1(dξ) +

∫
R
|ξ|γ2(dξ) <∞,

and so ∫
R+

ξν1(dξ) +
∫

R+

ξν2(dξ) <∞.

From Proposition 11.2.3 it follows that∫
(0,∞)

ξL(dξ) +
∫

(−∞,0)
(−ξ)L(dξ) <∞.

Then we have (11.2.9). The converse assertion follows similarly. �

11.3 Lévy-Khintchine representation

Let us define a complex continuous function K(·, ·) on R× R by K(t, 0) = −u2/2 and

K(t, ξ) =
(
eitξ − 1− itξ

1 + ξ2

)1 + ξ2

ξ2
, t ∈ R, ξ ∈ R \ {0}.
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For any β ∈ R and any finite measure G on (R,B(R)), set

ψ(t, β,G) = iβt+
∫

R
K(t, ξ)G(dξ), t ∈ R. (11.3.1)

Then ψ(t, β,G) is a continuous function of t ∈ R with ψ(0, β,G) = 0. It follows that ψ = Log eψ.
Clearly, ψ has representation (11.3.1) if and only if it has representation

ψ(t) = iβt− αt2 +
∫

R\{0}

(
eitξ − 1− itξ

1 + ξ2

)
L(dξ), (11.3.2)

where β ∈ R, α ≥ 0 and L is a σ-finite measure on R \ {0} such that∫
R\{0}

ξ2

1 + ξ2
L(dξ) <∞.

Theorem 11.3.1 If ψ is given by (11.3.1) or (11.3.2), then φ = eψ is an infinitely divisible
characteristic function. Moreover, φ uniquely determines the two sets of parameters (β,G) and
(β, α, L).

Proof. For each integer n ≥ 1, let

ψn(t) = iβt+
∫
{|ξ|>1/n}

(
eitξ − 1− itξ

1 + ξ2

)
L(dξ).

We see by Proposition 11.2.4 that eψn(t) is an infinitely divisible characteristic function. Then
φn(t) := exp{ψn(t)−αt2} is an infinitely divisible characteristic function. By dominated conver-
gence we have limn→∞ φn(t) = φ(t) and the limit function is continuous in t ∈ R. Then φ is an
infinitely divisible characteristic function. The uniqueness of (ρ,G) follows by arguments similar
to those in the proof of Proposition 11.2.4. The uniqueness of (ρ, α, L) is then immediate. �

Theorem 11.3.2 Let β and βn ∈ R and let G and Gn be finite measure on R. If βn → β and
Gn

w→ G, then ψ(t, βn, Gn) → ψ(t, β,G) for every t ∈ R.

Proof. Since for each fixed t ∈ R, the function ξ 7→ K(t, ξ) is bounded and continuous, the
result is immediate. �

Theorem 11.3.3 Suppose {βn} ⊆ R and {Gn} are finite measure on R. If ψ(·, βn, Gn) con-
verges to a continuous function g(·) on R, then βn → some β ∈ R and Gn

w→ some finite measure
G. Moreover, we have g(t) = ψ(t, β,G) for all t ∈ R.

Proof. It is easy to check that

Vn(t) := 2ψ(t, βn, Gn)−
∫ t+1

t−1
ψ(s, βn, Gn)ds =

∫
R
eitξHn(dξ),

where

Hn(dξ) = 2
(
1− sin ξ

ξ

)1 + ξ2

ξ2
Gn(dξ).
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Under the assumptions, we have

Vn(t) → V (t) := 2g(t)−
∫ t+1

t−1
g(s)ds,

where the limit function V is continuous on R. By the continuity theorem, V is the characteristic
function of some finite measure H on R and Hn

w→ H. It is easy to find constants c1 > c0 > 0
such that

c0 < 2
(
1− sin ξ

ξ

)1 + ξ2

ξ2
< c1

for all ξ ∈ R. Then we have Gn
w→ G, where

G(dξ) =
1
2

(
1− sin ξ

ξ

)−1 ξ2

1 + ξ2
H(dξ).

It follows that

lim
n→∞

ψ(t, 0, Gn) = lim
n→∞

∫
R
K(t, ξ)Gn(dξ) =

∫
R
K(t, ξ)G(dξ).

By the assumption, the limit limn→∞ ψ(1, βn, Gn) exists, then so does the limit

β := lim
n→∞

βn = lim
n→∞

i[ψ(1, 0, Gn)− ψ(1, βn, Gn)].

Consequently,

lim
n→∞

ψ(t, βn, Gn) = lim
n→∞

[iβnt+ ψ(t, 0, Gn)] = iβt+
∫

R
K(t, ξ)G(dξ).

That proves the desired result. �

Theorem 11.3.4 (Lévy-Khintchine representation) A characteristic function φ is infinitely di-
visible if and only if ψ = Logφ has representation (11.3.1).

Proof. By Theorem 11.3.1, if φ is given by (11.3.1), it is an infinitely divisible characteristic
function. Conversely, suppose φ is an infinitely divisible characteristic function. It is easily seen
that

φ1/n(t) = exp
{ 1
n

Logφ(t)
}

= 1 +
1
n

Logφ(t) + o
( 1
n

)
.

Consequently,

Logφ(t) = lim
n→∞

n[φ1/n(t)− 1] = lim
n→∞

n

∫
R
(eitξ − 1)µn(dξ),

where µn denote the probability measure corresponding to φ1/n. Setting

βn =
∫

R

nξ

1 + ξ2
µn(dξ) and Gn(dξ) =

nξ2

1 + ξ2
µn(dξ),

we obtain
Logφ(t) = lim

n→∞

[
iβnt+

∫
R
K(t, ξ)Gn(dξ)

]
.

Then Theorem 11.3.3 implies that φ has representation (11.3.1). �
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11.4 Kolmogorov representation

Proposition 11.4.1 Let µ be a probability measure on R with characteristic function φ. Then∫
R
ξ2nµ(dξ) <∞ (11.4.1)

holds for an integer n ≥ 1 if and only if φ is continuously differentiable to the (2n)th degree. In
this case, we have

φ(k)(t) = ik
∫

R
ξkeitξµ(dξ), u ∈ R, (11.4.2)

for 0 ≤ k ≤ 2n.

Proof. Suppose that (11.4.1) holds for some n ≥ 1. Observe that

φ(t+ s)− φ(t)
s

=
∫

R

eisξ − 1
s

eitξµ(dξ),

and the integrand on the right hand side is bounded above by |ξ|. By dominated convergence
we see that

φ′(t) = lim
t→0

φ(t+ s)− φ(t)
s

= i

∫
R+

ξeitξµ(dξ).

exists and continuous in t ∈ R. Proceeding inductively we find that φ is continuously differen-
tiable to the (2n)th degree with derivatives given by (11.4.2).

Conversely, suppose φ is continuously differentiable to the (2n)th degree for some n ≥ 1. It
is easy to show that

θ(t) := 2φ(0)− φ(2t)− φ(−2t) = 4
∫

R
sin2(tξ)µ(dξ).

Then the left hand side is real and non-negative. Now the monotone convergence theorem
implies that ∫

R
ξ2µ(dξ) = lim

t→0

∫
R

sin2(tξ)
t2

µ(dξ) = lim
t→0

θ(t)
4t2

= −φ′′(0) <∞.

Then the first part of the proof shows that φ is twice continuously differentiable with φ′ and φ′′

given by (11.4.2) with n = 1 and 2, respectively. Proceeding inductively we obtain (11.4.1). �

Theorem 11.4.1 A function φ is the characteristic function of infinitely divisible probability
measure µ with finite variance if and only if ψ = Logφ has the representation

ψ(t) = iγt− αt2 +
∫

R\{0}

(
eitξ − 1− itξ

)
L(dξ), (11.4.3)

where γ ∈ R, α ≥ 0 and L is a σ-finite measure on R \ {0} such that∫
R\{0}

ξ2L(dξ) <∞. (11.4.4)
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Proof. Suppose that ψ has representation (11.4.3) with L satisfying (11.4.4). Clearly, we have
(11.3.2) with

β = γ +
∫

R\{0}

( ξ

1 + ξ2
− ξ

)
L(dξ) = γ −

∫
R\{0}

ξ3

1 + ξ2
L(dξ). (11.4.5)

From Theorem 11.3.4 we know that φ = eψ is the characteristic function of an infinitely divisible
probability measure µ. By dominated convergence it is not hard to show that ψ φ is twice
continuously differentiable. Then φ is also twice continuously differentiable. It follows that µ
has finite variance. Conversely, suppose φ is the characteristic function of an infinitely divisible
probability measure µ with finite variance. By Theorem 11.3.4 we know that ψ = Logφ has
representation (11.3.2). It follows that

θ(t) := 2ψ(0)− ψ(2t)− ψ(−2t) = 8αt2 + 4
∫

R\{0}
sin2(tξ)L(dξ).

Then the value on the left hand side is real and positive. Since φ and hence ψ is twice continu-
ously differentiable, by monotone convergence we have∫

R
ξ2L(dξ) = lim

t→0

∫
R

sin2(tξ)
t2

L(dξ) = lim
t→0

θ(t)
4t2

− 8α ≤ ψ′′(0)− 8α <∞.

Now (11.4.3) follows from (11.3.2) with

γ = β +
∫

R\{0}

(
ξ − ξ

1 + ξ2

)
L(dξ) = β +

∫
R\{0}

ξ3

1 + ξ2
L(dξ). (11.4.6)

That proves the desired result. �

Theorem 11.4.2 A function φ is the characteristic function of an infinitely divisible probability
measure µ satisfying ∫

R
|ξ|µ(dξ) <∞ (11.4.7)

if and only if ψ = Logφ has the representation (11.4.3), where γ ∈ R, α ≥ 0 and L is a σ-finite
measure on R \ {0} such that ∫

R\{0}
|ξ| ∧ |ξ|2L(dξ) <∞. (11.4.8)

Proof. Suppose that φ is the characteristic function of an infinitely divisible probability measure
µ. From Theorem 11.3.4 we know that ψ = Logφ has representation (11.3.2). Under condition
(11.4.8), we have (11.4.3) with γ given by (11.4.6). Then it remains to prove (11.4.7) is equivalent
to (11.4.8). Let µ0 and µ1 denote respectively the infinitely divisible probability measures
corresponding to

ψ0(u) := iβu+ iu

∫
{0<|ξ|≤1}

ξ3

1 + ξ2
L(dξ) + iu

∫
{|ξ|>1}

ξ

1 + ξ2
L(dξ)

−αu2 +
∫
{0<|ξ|≤1}

(
eiuξ − 1− iuξ

)
L(dξ)
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and

ψ1(u) =
∫
{|ξ|>1}

(eiuξ − 1)L(dξ).

It is easily seen that ψ = ψ0 + ψ1 and so µ = µ0 ∗ µ1. By Theorem 11.4.1 we have∫
R
|ξ|2µ0(dξ) <∞.

Then Proposition 11.1.3 implies that (11.4.7) is equivalent to∫
R
|ξ|µ1(dξ) <∞.

By Proposition 11.2.5 the above holds if and only if∫
{|ξ|>1}

|ξ|L(dξ) <∞.

which holds if and only if (11.4.8) is true. �

11.5 Infinitesimal random variables

In applications, we often need to consider classes of random variables such as

{Xn,j : 1 ≤ j ≤ kn;n ≥ 1}, (11.5.1)

where kn →∞ as n→∞. We say the random variables are rowwise independent if the random
variables Xn,1, Xn,2, · · · , Xn,kn are independent for each n ≥ 1. The random variables in (11.5.1)
are said to be infinitesimal if

lim
n→∞

max
1≤j≤kn

P{|Xn,j | ≥ ε} = 0 (11.5.2)

for every ε > 0.

Theorem 11.5.1 If the random variables in (11.5.1) are infinitesimal and rowwise independent
and

kn∑
j=1

Xn,j −An (11.5.3)

converges in distribution for some sequence {An} ⊆ R, then the limiting distribution of (11.5.3)
is infinitely divisible. Conversely, for each infinitely divisible distribution µ on (R,B(R)), there
is a family of infinitesimal and rowwise independent random variables (11.5.1) and a sequence
{An} ⊆ R such that the distribution of (11.5.3) converges to µ.

Proof. Chow and Teicher (1988, pp.434-440). �
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Theorem 11.5.2 Suppose that (11.5.1) are infinitesimal and rowwise independent random vari-
ables and that (11.5.3) converges in distribution for some sequence {An} ⊆ R. Then the limiting
distribution is Gaussian if and only if

max
1≤j≤kn

|Xn,j |
P→ 0

or equivalently
kn∑
j=1

P{|Xn,j | ≥ ε} → 0

for every ε > 0.

Proof. Chow and Teicher (1988, pp.444-446). �
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