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Chapter 1

Measurable Spaces

1.1 Measurable spaces

In this section, we discuss some properties of o-algebras and measurable transformations. Let
Q and E be non-empty sets.

Definition 1.1.1 A family .% of subsets of € is called a o-algebra on € if

(i) 0 € F and Q € F;
(ii) A € # implies A° € .F;

(iii) {A1, Ag,---} C.Z implies J,o Ax € Z.

If .7 is a o-algebra on 2, we call (2, . %) a measurable space. The sets in .# are called measurable
sets.

Proposition 1.1.1 Suppose that I is an arbitrary index set and %, is a o-algebra on Q for
each o € I. Then .7 := (¢ Fa is a 0-algebra.

Proof. By the above definition, () € %, and Q € %, for each « € I. Then () € % and Q € Z.
If A e 7, for each a € I we have A € %, and hence A¢ € %, so A° € F. Suppose that
{A1, A, -} CZ. For cach a € I we have {Ay, Ay, ---} C %, so that | J,—; Ax € Z,, implying
Uzozl Ap € Z. O

Let f be a map from Q to E. For A C Q we write f(A) = {f(w) € B : w € Q} and for
B C E we write f}(B) = {w € Q: f(w) € B}. If € is a family of subsets of 2, then

o(€) = ﬂ{ﬁ . F D€ is a o-algebra} (1.1.1)

defines a o-algebra, which is called the o-algebra generated by €.

Proposition 1.1.2 Let f : Q@ — E be a map and ¥ a o-algebra on E. Then f~1(94) :=
{f~Y(B) CQ: B €%} is ac-algebra on Q.
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Proof. (Homework.) O

In the situation of the above proposition, we call f~1(%) the o-algebra generated by f and
is denoted by o(f). For a class 5 of mappings from Q to E, the o-algebra generated by J is
defined as

o(H) =c({f HA) : A€ &, fen). (1.1.2)

Proposition 1.1.3 Let % be a family of subsets of E. Then we have o(f =Y (%)) = fY(o(%))
for any mapping f: Q — FE.

Proof. By Proposition 1.1.2 we find that f~!(o(%)) is a g-algebra. Since f~'(o(%)) 2 f~1 (%),
we have f1(o0(%)) 2 o(f~H(%)). On the other hand, let ¥ = {BC E: fY(B) € o(f~1(%))}.
It is easily seen that f~1(¥4) C o(f~ (%)). If B€ %, we have f~Y(B) € f~Y(%) Co(f~Y %))
and hence B € ¢. That shows % C ¢. It is not hard to check that ¢ is a g-algebra on E so
that o(%) C ¢. Consequently, we have f~1(c(%)) C f~1(94) C o(f~1(%)). O

Given two measurable spaces (€2,.%) and (E,&), we say a mapping f : Q — E is F/&-
measurable, or simply .%-measurable, provided f~1(&) C .#. A one-to-one correspondence
¢ : Q — Eis called an isomorphism if ¢ is .% /&-measurable and ¢! is &/.%-measurable. We
say (2, %) and (E, &) and isomorphic if there is an isomorphism between them.

Proposition 1.1.4 Ifevery f € J is .7 /&-measurable, then o() C F.

Proof. Under the assumption, we have {f~1(4): A€ &, f € #} C.Z and hence o(#) C .Z.
O

Proposition 1.1.5 Let (2,.%), (E,&) and (G,¥) be measurable spaces. If f : Q — E is
F |&-measurable and h : E — G is & /9-measurable, the composition ho f : Q@ — G is F /9-
measurable.

Proof. Since h is & /9-measurable, we have h=1(¢4) C & and hence

(ho /)" M) = (1 (9) C fH(&).
From the measurability of f we get f~1(&) C .#. Consequently, h o f is .# /4-measurable. [

Let ¢(R?) denote the family of all open sets on the Euclidean space R?. We call Z(R?) :=
o(O(R?Y)) the Borel o-algebra of on RZ. Clearly, %(R?) includes all open sets, closed sets,
intervals, singletons, finite sets and countable sets.

Proposition 1.1.6 Let Z(R?) = {(—oc0,b] : b € R?} and Z(RY) = {[a,0) : a € R?}. Then
#RY) = o(ZR?)) = o(Z(R?)).

Proof. As observed above, we have Z(R?) C 2(R%). Since Z(R?) is a o-algebra, we conclude
that o(Z(R?)) € Z(RY). On the other hand, for any a < b € R? we have (a,b] = (—o0,b] \
(—00,a] € o(ZL(R%)). Since each element of @ (R?) is the union of a countable number of intervals
of the form (a, b], we get O(R?) C o(Z(R%)) and hence ZB(R%) = o(0(R?)) C o(L(R?)). That
shows Z(R%) = o(Z(R?)). The equality Z(R?) = o(#(R%)) follows by similar arguments.
(Homework.) O
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Corollary 1.1.1 Let .7(R%) = {(a,b] : a < b € R?}. Then Z(R?) = o(.7(R?)).

Proposition 1.1.7 Let f be a real function on (2, .%). Then following properties are equiva-
lent:

(i) f is % | PB(R)-measurable;

(i) f~1((—o0,b]) € F for every b € R;
(iii) f~1((—00,b)) € F for every b € R;
(iv) f~1(la,—0)) € F for every a € R;
(v) f~Y((a,—00)) € F for every a € R.

Proof. Clearly, (i) implies (ii) — (v). Now suppose (ii) holds. In other words, f~1(Z(R)) C .Z.
Then Propositions 1.1.6 and 1.1.3 imply

FHBR)) = (0(ZLR)) =o(f(LR)) C 7.

Then (ii) holds. Clearly, (iii) implies (ii), so it also implies (i). The remaining assertions are
immediate. O

Corollary 1.1.2 Let {f,} be a bounded sequence of real functions on (Q,.%). If each f, is
F -measurable, then the following real functions are . -measurable: inf, f, sup,, f, liminf, f,
limsup,, f.

Example 1.1.1 A finite or countable family {U; : i € I} of disjoint subsets of Q satisfying
Uicr Ui = Q is called a partition of Q. If € = {U; : i € I} is a partition of , then o(%) =
{ Ujes U+ J C I} with Ujep Uj = 0 by convention. (Homework.)

Example 1.1.2 Let ¥ = {U; : i € I} be a finite or countable partition of Q2. We equip R with
the o-algebra #(R). Then a function X : Q — R is 0(%)-measurable if and only if

W)=Y clyw), weq, (1.1.3)
el

for a family of real constants {¢; : ¢ € [}. (Homework.)

Example 1.1.3 Let {¢; : i € I} be distinct real numbers and let € = {U; : ¢ € I} be a
partition of Q. Let (R, Z(R)) be given as in the last example. If the function X : Q@ — R has
representation (1.1.3), then o(X) = 0(%’). (Homework.)

1.2 Metric spaces and Borel functions

Definition 1.2.1 Let E be a non-empty set. A function p: F X F — R is called a metric if it
satisfies:
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x,y) =0 if and only if x = y for all z,y € E;
= p(y,x) for all z,y € F;

< p(x,z) + p(y,2) for all z,y,z € E.

In this case, we call (E, p) a metric space.

Suppose that p is a metric on E. For z,y € E let r(x,y) = 1 A p(z,y). It is easy to show
that 7(-,-) is also a metric on E. In this sequel, we assume (F, p) is a fixed metric space.

Definition 1.2.2 Let a € E and r > 0. We call B(a,r) := {z : p(a,z) < r} a ball centered at
a with radius r. A set U C FE is called an open set, if for each a € U there is some r = r(a) > 0,
such that B(a,r) € U. A set F is called a closed set if E'\ F is an open set.

Clearly, the sets F and () are simultaneously open and closed. A typical metric space is the
space R¢ equipped with the Euclidean metric determined by

d

1/2

[z —y[= (Zm’ —yj|2) -
i=1

Definition 1.2.3 Let x € A C E. If there is some r > 0 such that B(z,r) C A, we call z an
interior point of A. We call A° := {interior points of A} the interior of A and call A := ((A¢)°)¢
the closure of A. Tt is not hard to show that A° is the largest open subset of A and A is the
smallest closed superset of A. The set 9A := A\ A° is called the boundary of A. We say A C E
is dense in F C E if A D F. The space E is said to be separable is it has a countable dense
subset.

Proposition 1.2.1 Let A C E. Then x € A if and only if there is a sequence {x,} C A, such
that x,, — x as n — oo.

Proof. “=" Suppose that x € A = ((A49)°)¢, so z ¢ (A°)°. According to the definition of the
interio, for every n > 1 the inclusion B(z,1/n) C A¢ does not hold. In other word, for every
n > 1 there is some x,, € B(z,1/n) such that x, ¢ A°. That is, x, € B(x,1/n) N A. It follows
that x, € A and p(x,,z) < 1/n, so we have z, — = as n — oo.

“«<” Suppose there is {z,} C A such that z, — = as n — co. We shall prove z € A =
((A€)°)c. If this is not true, we have z € (A°)°, that is, there is some r > 0 such that B(z,r) C A°.
Then xz,, ¢ B(z,r) for every n > 1, which is in contradiction to the fact x,, — x. O

Definition 1.2.4 Let (E, p) and (F,r) be two metric spaces. We say f : E — F' is continuous
at x € E if for each € > 0 there exists 0 > 0 such that f(B,(x,0)) C B.(f(x),e). We say f is
continuous on E if it is continuous at every x € E. We say f is uniformly continuous on E if
for each € > 0 there exists 6 > 0 such that f(B,(x,0)) € B.(f(x),¢) for every x € E.
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Theorem 1.2.1 A mapping f : (E,p) — (F,r) is continuous if and only if f~1(U) C E is open
whenever U C F' is open.

Proof. “=7” Suppose that f is continuous and U C F is an open set. For each x € f~(U)
we have y := f(z) € U. Since U is open, there is some € > 0 such that B,(y,e) C U. By the
continuity of f, there is § > 0 so that

f(Bp(x7 5)) - Br(f(.%'),z’:‘)) - BT(%E)'

It follows that
By(x,8) C fH(B:(y,¢)) € fH(U).
That shows that f~1(U) is an open set.

“<" Suppose that f~1(U) C E is open whenever U C F is an open set. Let x € E and
e > 0. Then f~YB.(f(z),e)) C E is an open set and = € f~Y(B.(f(x),¢)). It follows that
B,(z,8) C f~Y(B-(f(z),)) for some § > 0, which implies that f(B,(z,d)) C B,(f(z),£). Then
f is continuous. O

Corollary 1.2.1 A mapping f : (E,p) — (F,r) is continuous if and only if f~'(A) C E is
closed whenever A C F' is a closed set.

Let O(FE) denote the family of open subsets of E. We call Z(F) := o(C0(FE)) the Borel
o-algebra of E. A set B € #A(F) is called a Borel set and a #(E)-measurable real function
[+ E — Ris called a Borel function.

Proposition 1.2.2 A continuous function f : E — R is a Borel function.

Proof. Since f is continuous, by Theorem 1.2.1 we have f~1(0(R)) C O(E). It follows that
FTHBR)) = [THo(0R) = o(fTH(OR))) C o(O(E)) = B(E).

Then f is B(F)/%(R)-measurable. O

Proposition 1.2.3 For any non-empty set A C F, let
p(x, A) = inf{p(x,y) : y € A}, re k. (1.2.1)

Then p(-, A) is a uniformly continuous function on E.

Proof. Let x,y € E. For any z € A we have

p(x, A) = ply, 2) < p(x,2) — p(y, 2) < p(x,y).

Then we can take sup,c 4 in both sides to get

p(z, A) — p(y, A) < p(x,y).
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A similar argument shows that

p(y, A) — p(z, A) < p(z,y).

Combining those two inequalities, we obtain

oz, A) = ply, A)| < p(z, y)-

Then p(+, A) is uniformly continuous on E. O

Proposition 1.2.4 Let C(E)" denote the class of bounded, non-negative and continuous func-
tions on E. Then o(C(E)") = B(E).

Proof. By Proposition 1.2.2, each f € C(E)" is %(F)-measurable. Then Propositions 1.1.4
implies o(C(E)") C B(F). For fixed U € O(E) let h(x) = 1 A p(z,U€). By Proposition 1.2.3,
we have h,, := h'/" € C(E)* so h, is o(C(E)")-measurable. Clearly, h(z) = 0 for z € U®
and 0 < h(x) < 1 for x € U. It follows that h, — 1y, so 1y is o(C(E)")-measurable and
consequently U € o(C(E)*"). That shows that O(E) C o(C(E)"). Thus #(E) = o(0(E)) C
o(C(E)T). O

We shall often need to consider functions taking values in the extended real line R := [—o0, 00]
denote the. A metric p; on R is defined by
z Y
T+]z| 14yl

:01(337 y) =

Proposition 1.2.5 Let (£,.%) be a measurable space and f : {2 — R an extended real-valued
function on ). Then following properties are equivalent:

(i) f is F/PB(R)-measurable;

(i) f~1([—o0,b]) € F for every b € R;
(iii) f~1([—00,b)) € F for every b € R;
(iv) f~Y([a,—x]) € F for every a € R;
(v) f~1((a,—o0]) € F for every a € R.
Proof. (Homework.) O

Corollary 1.2.2 Let {f,} be a sequence of extended real-valued functions on (2, .%). If each f,
is % -measurable, then the following extended real-valued functions are .#-measurable: inf, f,
sup,, f, liminf, f, limsup,, f.

Definition 1.2.5 We say a sequence {x,} C E is Cauchy if p(zy,,z,) — 0 as m,n — co. We
say @, converges to x € E as n — oo, if p(x,,x) — 0 as n — oo. In this case, we write x,, — x.
The space (F, p) is said to be complete if every Cauchy sequence in it converges.

Proposition 1.2.6 Let 2 be a Borel subset of some complete separable metric space with
F = H(Q). Then there is a closed subset F of |0, 1] such that (§2,.%) is isomorphic to (F, B(F)).

Proof. This follows immediately from Parthasarathy (1967, p.14, Theorem 2.12). (Homework:
Read and understand the proof.) O
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1.3 Monotone classes of sets

We simply write A, T if {A,} is a non-decreasing sequence of sets and write A, | if {4,} is a
non-increasing sequence of sets. If 4,7 and A = (J;, 4, we write A, 1 A. Similarly, if A, |
and A = (2, An, we write 4,, | A.

Definition 1.3.1 A class & of subsets of 2 is called an algebra on Q if

(i) 0 € & and Q €
(ii) A € o implies A® € &;

(iii) {A1, Ag,---, Ay} C F implies J;_; A € Z.

Definition 1.3.2 A class Z of subsets of the non-empty set  is called a monotone class if it
has the following properties:

(i) If {A,} € Z and A,7, then |J,” | 4, € Z;
(i) If {A,} € Z and A,|, then (2, Ay, € 2.

Let € be a class of subsets of . Then

w(€) = ﬂ{@ : 9 O € is a monotone class}. (1.3.1)

is a monotone class, which is called the monotone class generated by €.
Lemma 1.3.1 If 9 is simultaneously an algebra and a monotone class, it is a o-algebra.

Proof. 1t is sufficient to show that Z is closed under the operation of countable unions. Suppose
that {A,} C 2. Since Z is an algebra, we have B, := Jj_; Ay € Z for each n > 1. By the
definition of the monotone class we have | Jo | A, = U, Bn € 2. O

Theorem 1.3.1 If % is an algebra, then u(€¢) =o(%) .

Proof. Since a o-algebra is a monotone class, we have o(%) 2 u(%¢). To prove u(%) 2 o(%),
it is sufficient to show (%) is a o-algebra. By Lemma 1.3.1 we only need to show u(%) is an
algebra. Since Q € € C u(%), it suffices to show A, B € (%) implies BU A and A\ B € u(%).
For A C Q, let

P94={BCQ:BUA B\ Aand A\ B € u(%)}.

The desired result will follow if we can prove Z4 D p(%) for all A € pu(%¢). We show this in
three steps as follows.

Step 1) We prove Z4 is a monotone class. If {B,} C %4 and B, 1 B, we have B, U A,
B, \ Aand A\ B, € u(%). Since p(%) is a monotone class, it is easily seen that BU A, B\ A
and A\ B € u(%), and so B € Z4. Similarly, if {B,} C Z4 and B,, | B, we have B € Z4.
Thus 2,4 is a monotone class.
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Step 2) For A € €, we prove 4 2 u(%). Suppose that B € €. Since € is an algebra, we
have BUA, B\ Aand A\ B € € C u(%). It follows that B € Z4. That shows Z4 O €. Since

94 is a monotone class we get Z4 2 u(%).

Step 3) For A € (%), we prove Z4 2 u(€¢). Suppose that B € ¢. By the last step, we
have Zp 2 p(%). In particular, we get A € Zp which implies B € Z4. It follows that 24 2 €
and hence Z4 D u(%). O

Corollary 1.3.1 If % is an algebra and 9 O € is a monotone class, then 9 O u(¢) = o(%).

Definition 1.3.3 A class % of subsets of €2 is called a w-class if AN B € € for all A,B € %.
A class 2 of subsets of 2 is called a A-class if

(i) Q€ Z and Q2 € Z;
(i) A,Be€ Z and AC Bimply B\ A € 7,
(iii) {An} € Z and A1 imply U,~, A, € Z.

For a class ¥ of subsets of €, let
ANE) = ﬂ{.@ 1 9 DO is a A\-class}. (1.3.2)

Then A(%) is a A-class, which is called the A-class generated by €.
Lemma 1.3.2 If Z is simultaneously a w-class and a A-class, it is a o-algebra.

Proof. By the definition of the A-class, we have Q € 2. Moreover, if A € &, then A° = Q\A € 2.
For any sequence {A,} C Z let B, = (J;_; A;. Then A} € Z for each n > 1 and hence
By = Nj; A5 € 2. 1t follows that B,, = (By,)° € 2. Using the definition of the A-class again
we conclude that B, T U, An € 2. Then 2 is a o-algebra. O

Theorem 1.3.2 If ¢ is a w-class, then \(¢') = o(%).

Proof. Since a o-algebra is a A-class, we have A\(¢") C o(%). To show o(%) C (%) it suffices
to prove A(%) is a o-algebra. By Lemma 1.3.2, we only need to show that A\(%) is a m-class.
For ACQlet 24 ={BCQ:ANB € \%)}. The desired result follows once it is proved that
P4 2 NE) for all A € \(¥). This property can be in three steps: Step 1) Prove Z4 is a A-class
for A € A\(¥); Step 2) Prove Z4 2O A(¥) for A € €; Step 3) Prove Z4 2 (%) for A € \(¥).
We omit the details. (Homework: Gives the details of the last part of the proof.) O

Corollary 1.3.2 If ¢ is a m-class and 2 O € is a A-class, then 2 D \(¢) = o(%).
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1.4 Monotone systems of functions

Definition 1.4.1 A non-empty family .# of non-negative extended real-valued functions on 2
is called a monotone system if the following conditions are satisfied:

(i) For any f1, fo € A and a1,as € R with a1 f1 + asfo > 0 we have a1 f1 + asfs € A
(i) If {f,} € A and f, T f, then f € 4.

Theorem 1.4.1 Let € be an algebra and .# a monotone system on 2. If .# contains the
indicators of all sets in €, it contains all non-negative o (%€ )-measurable functions.

Proof. Let 92 ={A C Q:14 € .#}. By the assumption, we have Z O %. We claim that 2 is
a monotone class. Indeed, suppose that {B,} C Z and B,, T B. Then 1p, | 1p € .# by the
definition of the monotone system. It follows that B € 2. If {B,} C 2 and B,, | B, we have
1p, € A . By the definition again we have 1, —1p, € # and (1, —1B,) 1 1p, —1p € A .
It follows that 15 =15, — (15, — 1B) € .# and hence B € 9. Now we have 2 D u(%¢) = o(%)
by Corollary 1.3.1. In other words, 14 € .# for each A € o(%). For a non-negative and
0(%)-measurable function f and n > 1, let

n2m

k—1
= g H-yz<saiszny + nligzny-
k=1

It is easy to see that f, € # and f, T f. Then f € .# by the definition of the monotone class.
O

Definition 1.4.2 A family .Z of non-negative extended real-valued functions on 2 is called a
A-system if

(i) 1 € Z;
(ii) For any f1, fo € £ and a1, az € R with a; fi + a2 fa > 0 we have a1 f1 + azf2 € Z;
(iii) If {fn} € Z and f, 1 f, then f € Z.

Theorem 1.4.2 Let € be a w-class and £ a A-system. If £ contains the indicators of all sets
in ¢, it contains all non-negative o (% )-measurable function.

Proof. This follows by similar arguments as in the proof of Theorem 1.4.1. (Homework.) g

Given a family % of non-negative functions on €2, we may define the following \-system:
N%) = ﬂ{f 1L DU is a A-system}, (1.4.1)

which is called the \-system generated by % .

Lemma 1.4.1 For |z| <1, define {P,(x)} inductively by Py(x) =0 and
1
Po(w) = Poa () + 5 [2? — P}_i(2)]. (1.4.2)

Then P,(x) > 0 and P,(x) T |z| as n — oo.
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Proof. 1f 0 < P,_1(z) < |z| < 1, then clearly P,(z) > P,_1(z) and

Pala) = Paa(@) + 5 [Jol + Paca (@) [l2] = Paca(&)] < Paca(a) + [lal = Pas(@)] < ol

By induction in n > 0 we have 0 < P, (x) < |z| and P,(z) 1. Let P(z) = lim, o P, (x). From
(1.4.2) we obtain 0 = 22 — P%(z) and hence P(x) = |z|. O

Theorem 1.4.3 Let % be a family of bounded non-negative functions on ) which is closed
under multiplication. Then A(% ) contains all non-negative o (% )-measurable functions.

Proof. Step 1) For any non-negative function g on €2, let
Ly={feMu):fge M%)}

It is easy to show that £ is a A-system for g € A(%). (Homework: Prove this fact.)

Step 2) Let g € % . For any f € %, we have fg € % C A(%) and hence f € .Z,. That is,
Ly D % . Since £, is a A-system, it follows that £, O A(%).

Step 3) Let g € A(% ). For any f € %, we have £y O A(% ) and hence g € Zs. This implies
that f € .Z,. It follows that £, O % . Since .Z is a A-system, we have .Z; O A(%). Then the
definition of %}, implies that A(%) is closed under multiplication.

Step 4) For bounded f,g € A(% ), let us prove f A g € A(%). Obviously, we may assume
0 < f,g <1 and hence |f — g| < 1. From the last step and the definition of the A-system it
follows that
(f—9?=f+g"—2fg e N%).

Let {P,(x)} be defined as in Lemma 1.4.1. By induction in n > 0 we have P,,(f — g) € AM(%)
and hence |f — g| € A(%). It then follows that

frg=5li+g-1f - gl € A@)

Step 5) Let # ={ACQ:14 € A(%)}. It is easily seen that .7 is a A-class and a m-class, so
it is a o-algebra. Let f € % and a > 0. Then (a1 f)Al € A(%) andso 1—[(a L f)AL]" € A(%).
It follows that
1= [(@ ' /) A1]" T 1{jcay EAZ)

by the definition of the A-system. That means that {f < a} € # and so f is #-measurable.
By Proposition 1.1.4 we have o(% ) C %. That is, 14 € A(%) for every A € o(%).

Step 6) Let f > 0 be o(% )-measurable. For n > 1 define f,, as in the proof of Theorem 1.4.1.
By the last step and the definition of the A-system it is easy to show that f, € A(%). Since
fu 1 f, we have f € A(%). O

Let Q be a non-empty set and (E, &) a measurable space. Recall that the o-algebra generated
by a mapping g : Q — E is defined as o(g) := g~ 1(&).

Theorem 1.4.4 A function ¢ : (Q,0(g9)) — (R, #(R)) is measurable if and only if there is a
measurable function f: (E,&) — (R, Z(R)) such that ¢ = f og.
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Proof. “<” Since g is 0(g)/&-measurable, this follows from Proposition 1.1.5.

“=" The proof of this part is a typical application of the monotone system method. Let
% ={fog: fis anon-negative and measurable function on (F,&)}. We shall prove that .Z is
a monotone system containing the indicator of every set in o(g).

(a) Suppose that A € o(g). Then we have A = g~!(B) for some B € &. It follows that

la(w) = 14-1(p)(w) = 1B(9(w)) = 1p 0 g(w), w e Q.
Thus .Z contains the indicators of all sets in o(g). In particular, 1 € .Z.

(b) Suppose that {¢1,p2} € £ and {a1,a2} € R with a1¢1 + azgpa > 0. Then there are non-
negative and measurable functions f; and fy on (E,&) such that ¢ = f1 0g and ¢2 = fa0g.
Let h = a1f1 +azf2 and f = hlg,>gy. It is easy to see that f is a non-negative and measurable
function on (F, &) and

a1$1(w) + az¢2(w) = fog(w) =hog(w),  weL

Thus we have a1¢1 + axp2 € 2.

(c) Suppose that {¢,} C £ and 0 < ¢, T ¢. For each n > 1, there is a non-negative and
measurable function f, on (E,&) such that ¢, = f, o f. Let h = sup,,>; fn and f = hl{pcono}-
Then f is a non-negative and measurable function on (E,&) and ¢ = f o g. It follows that

peZ.

We have shown that £ is a monotone system containing the indicator of every set in o(g).
By Theorem 1.4.1 we see that £ contains all non-negative o(g) measurable functions on Q. If ¢
is a measurable function on (€, 0(g)), both ¢* and ¢~ are non-negative measurable functions.
Then ¢ and ¢~ € £ by the above arguments. Suppose that ¢™ = fiog and ¢~ = fy0g,
where f; and fy and both non-negative and measurable functions on (F,&’). Then f = f1 — fo
is a measurable function on (F,&) and ¢ = fog. O

Theorem 1.4.5 Let (F,p) be a metric space and £ a A-system which contains all bounded,
non-negative and continuous functions. Then £ contains all non-negative Borel functions.

Proof. Clearly, the class % of bounded, non-negative and continuous functions on F is closed
under multiplication. By Proposition 1.2.4 we have Z(E) = o(% ). Then Theorem 1.4.3 implies
that .2 O A(%) contains all non-negative #(E)-measurable functions on E. O
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Chapter 2

Random Variables and Distributions

2.1 Extension theorem of measures

Let . be a class of subsets of the non-empty set 2. A mapping p : ¥ — [—00,00] is called a
set function on .. It is said to be o-finite if there is a sequence {4, Ag, -} C . such that
UnZ; 4, = Qand —oo < p(A,) < oo for each n > 1. Suppose that p1 and pg are set functions
on the set classes .77 and .2 on €, respectively. If .77 C %% and pi(A) = ua(A) for every
A €., we say s is an extension of uy on S.

Let p be a set function on the set class .. We say it is finitely additive if for any finite
sequence of disjoint sets {A1,---,A,} C . such that A := Jj_; Ax € - we have pu(A)
> peq W(Ag). We say it is o-additive if for any countable sequence of disjoint sets {A;, Aa, -« - }
& such that A := ;2 A € ¥ we have p(A) = > 27, 1(Ag).

Nl

Definition 2.1.1 Let . be a set class on € containing the empty set (). A o-additive set
function p on . satisfying u(0) = 0 is called a signed measure. A non-negative signed measure
is called a measure. If p is a measure on the measurable space (§2,.%), we call (2, %, u) a
measure space. If () = 1 in addition, we call (2, . %, u) a probability space.

Proposition 2.1.1 Suppose that p is a signed measure on (2,.%) and {A,} C F. If A,, T A,
then p(Ay) T p(A). If p(Ar) < oo and Ay, | A, then u(Ay) | p(A).

Proof. (Homework.) O
Let (E, p) be a metric space. A measure p on (E, Z(F)) is said to be regular if
w(B) = sup{u(C) : C C Bis closed} = inf{u(U) : U DO B is open}.

Theorem 2.1.1 A finite measure p on (E, Z(F)) is regular.

Proof. Let Z be the class of regular sets in Z#(F). We need to show that #Z = Z(FE). We first
prove that # is a o-algebra. Clearly, () and Q € #. Suppose that A € Z and € > 0. There
exists an open set U: O A and a closed set C. C A such that

p(Ue) — e < p(A) < p(Ce) +e.

13
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It then follows that

p(A%) = W(E) — p(A) < p(E) — w(Ue) + & = p(U7) + ¢
and

u(A) = p(E) — p(A) > p(E) — p(Ce) —e = p(C7) —e.

Note that that US C A° C C¢, where U! is closed and CY is open. Since € > 0 is arbitrary,
we have A° € #Z. Next we let {B,} C #Z and B = |J,_, B,. For ¢ > 0 there are open sets
Un,e 2 By, and closed sets C), . € B,, such that

p(Unpe\ Chre) < g/2" n > 1.
Set Us = Up?{Une and F, = |Jo2 | Cpe. We have |Ji_; Cre T Fe. Since p is finite, there is

n=1

no = no(e) > 1 such that
no no
,U(FE \ U Cn,s) = ,U(Fe) - N( U Cn,s) < 5/2-
n=1 n=1

Setting C. = J° Cp e, we have C. € B C U, and
pU:\Ce) < p(Ue\ Fr) + p(Fe \ Cc)

< w(JWn\Cos)) +¢/2
n=1
< igﬁ"“ +e/2=c¢.
n=1

This proves that B € #. If follows that % is a sub-o-algebra of #(E). The theorem will follow
if we can show &% contains all closed subsets of E. Let F' C E be closed. Of course, we have
w(F) =sup{u(C) : C C F is closed}. For each n > 1, the set U,, = {zx € E : p(z,F) < 1/n} is
open. On the other hand, we have F' = (2, U, and so lim, .. u(Uy,) = p(F). It follows that
w(F) =1inf{u(U) : U D F is open}. O

Corollary 2.1.1 Suppose that j1 and v are finite measures on (E, #(E)). (i) If n(U) = v(U)
for all open sets U C E, then u(B) = v(B) for all B € #(FE); (ii) If u(C) = v(C) for all closed
sets C C E, then u(B) = v(B) for all B € #(FE).

Definition 2.1.2 A class . of subsets of  is called a semi-algebra if
(i) D € & and Q € .7
(i) Ae ¥ and B € . imply AN B € .,

(iii) If A1,B € . and A; C B, there is a finite family {As,---,A,} C . such that B =
Uk=1 Ak-

Theorem 2.1.2 (Extension Theorem) A measure u on a semi-algebra . has an extension fi on
o(.7), that is, i is a measure on o(.%) and i(A) = u(A) for every A € .. If yu is also o-finite
on ., its extension on o(.¥) is unique.

Proof. See Chow and Teicher (1988, pp.159-162). O
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2.2 Distributions of random variables

Suppose that (£2,.%#) and (F, &) are measurable spaces and f :  — FE is an .% /&-measurable
transformation. Let u be a measure on (€2, .%) and let p¢(B) = u(f~1(B)) for B € &. 1t is easy
to show that py is a measure on (E, &), which is called the measure induced by f.

Definition 2.2.1 Let (©2,.%,P) be a probability space. A measurable transformation X from

(Q,.7) to (R, A(R)) is called a random variable. The measure Px on (R, Z(R)) induced by X
is called the distribution of X.

By Proposition 1.1.7, a real function X defined on (£2,.%#) is a random variable if and only
if X7 1((—o0,b]) € F for every b € R.

Definition 2.2.2 A non-decreasing and right continuous function F on R is called a distribution
function. Then the limits F(0c0) := lim, o F'(z) and F(—o0) := lim,_,_o F(z) exist for a
distribution function F. If F(co) = 1 and F(—o0) = 0 in addition, we call F' a probability
distribution function on R.

In particular, if Px is the distribution on (R, Z(R)) of a one-dimensional random variable
X, then Fx(x) := Px((—o0,z]) defines a probability distribution function Fx, which is called
the distribution function of X. The following theorem shows that the distribution of a one-
dimensional random variable is uniquely determined by its distribution function.

Theorem 2.2.1 For each distribution function F' on R, there is a unique o-finite measure pp
on (R, #A(R)) such that

pur((a,b]) = F(b) — F(a), a<beR. (2.2.1)

To prove the above theorem, we need some lemmas. Set . = {(a,b] : —00 < a < b < o0},
where (a,b] = (a,00) for b = co by convention. Clearly, .# is a semi-algebra.

Lemma 2.2.1 Let Ey € . and let {E}.} C .¥ be a sequence of disjoint sets such that Ej, C Ej.
Then we have

> ur(Ey) < pr(Eo).
k=1

Proof. We first consider the finite subsequence {FE1,---,E,} C .. Write Ey = (ag,by| for
0 < k < n. By re-enumerating the sequence, we may assume that a; < as < --- < a,. Since the
intervals {(ag, by : kK > 1} are disjoint and (ag, bx] C (ag, bo] for each k > 1, we have

ap <ay <by <ax <by < <ap < by < by

It follows that

n

> pp(Er) =Y [F(b) = Flax)] < F(bo) — F(ao) = pr(Eo).
k=1 k=1

Then we get the desired inequality by letting n — oo. O
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Lemma 2.2.2 Let Ey € .7 and {E} C 7. If Ey C |y~ Ex, we have
o0
F(Eo) <) pr
k=1

Proof. Write Ey, = (ag,by] for k > 0. We first consider the case where ag < by € R. Choose a
constant 0 < € < bg —ag. Set Ko = [ag+¢,bo] and Vi, = (ay, b +€x), where ¢, is to be specified.
Then we have Koy C Ey C [Jy; Ex € Ure; Vi By the Heine-Borel theorem, Ky has a finite
covering {V1,---,V,,} C{V1,Va,---}. It is easily seen that

F(by) — F a0+6<z (by, +ex) — < [F(by +ex) — Flag)]-
k=1

Since F' is right continuous, we can choose ¢ so that

F(be + k) < F(bg) + /2",

Then we get
F(bo) — F(ao+¢) i Flay)] +¢/2F} = i[F(bk) — F(ag)] +e.
—1 k=1

Letting € | 0 we obtain
F(bo) — Fao) <> [F(bg) — F(ax)],
k=1

as desired. In the general case ag < by € R, the result follows by a limit procedure. O

Proof of Theorem 2.2.1. By Lemmas 2.2.1 and 2.2.2 we find that pupr is a measure on the
semi-algebra .. Since up is clearly o-finite, it has a unique extension on A(R) = o(.) by
Theorem 2.1.2. g

The measure defined by (2.2.1) with F(z) = z is called the Lebesgue measure on (R, Z(R)).
Let A denote the Lebesgue measure. It is easy to see that A({zo}) = 0 for any singleton set
{zo} C R. Consequently, A({x1,z2,---}) =0 for any sequence {z1,z2,---} CR.

2.3 Examples of distribution functions

Given the finite or countable sets {x1,x2, -} C R and {p(z1),p(z2), - -} € (0,00) such that
> pp(zx) = 1, we can define a probability distribution function F' by

F(z) =Y plar) =Y pi@i)lcoom (@), T ER, (2.3.1)
k

<z

which is called a step probability distribution function. If F is defined by (2.3.1) and if up is the
corresponding o-finite measure on (R, #(R)) given by Theorem 2.2.1, then we have

= pi@)ip(@),  BeAR). (2.3.2)
k
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Let A denote the Lebesgue measure on (R, #(R)). A probability distribution function F' is
said to be singular if there is E € B(R) such that A(E) = 0 and pp(E) = 1. Clearly, a step
distribution function is singular. A probability distribution function F' is said to be absolutely
continuous if

F(z) = / p(y)dy,  z€ER, (2.3.3)
where p(+) is a non-negative function on R such that
/ p(y)dy = 1.

(For the moment, we understand the integrals in the Riemannian sense.) In this case, the
function p(-) is called the density of F.

Example 2.3.1 For fixed g € R, let

F(a:):{ 0 if z < xo,

1 if x > Zo-

Then F' is a step probability distribution function on R, which gives a degenerate distribution.
Clearly, we have

. 1 if zg€ B
nr(B) _{ 0 if ¢ B.

We shall write Pp = 0y,.

Example 2.3.2 For any parameter A > 0, we can define a step probability distribution function
F on R by

Ai
F(x) :Ze*)‘i—‘, x € R,
i<z ’

which gives the Poissonian distribution.

Example 2.3.3 For any m € R and ¢ > 0, we can define an absolutely continuous probability
distribution function F on R by

F(zx) = L / e_(y_“)2/2"dy, x € R,

270 Jo

which gives the Gaussian distribution N (u,c?).

Example 2.3.4 A continuous singular distribution function can be defined as follows. Let

o - (1Y)

1 2 2 1.2 2
@ - Gn)UGe 30 3)
2 327 32 U 5T 303 3

n—1 n—1
ar 1 ar 2
6 = UN(Z5+e Zi+e): ooz
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Then G := |J,~, Gy is an open subset of [0, 1]. The closed set E := [0,1]\ G is called the Cantor
set. Let

We can extend F' to a probability distribution function on R by setting F(z) = 1 for x > 1 and
F(z)=inf{F(y): ye G and y >z}

for z < 1. Clearly, ur([0,1]) = 1 and pup(G) = 0. It follows that up(F) = pur([0,1])—pr(G) = 1.
On the other hand, we have

i X 9n—1
AG) =Y MG = 23n ~1
n=1 n=1

Thus AM(E) = A([0,1]) = A(G) = 0, so F is singular. It is not hard to show that F is continuous.
(Homework.)

2.4 Multi-dimensional random variables

Definition 2.4.1 Let (2,.7,P) be a probability space. A measurable transformation X from
(Q,.7) to (R, B(RY)) is called a d-dimensional random variable. The probability measure Py
on (R? #(R%)) induced by X is called the distribution of X.

Definition 2.4.2 A real-valued function F on R? is called a probability distribution function if

(i) F(z1, -+ ,2n) — 0 as x; — —oo for some ¢, and F(x1,--- ,x,) — 1 as z; — oo for all i;
(ii) F is right-continuous in each z;;
(iii) for all h; > 0 and z; € R, the following inequality holds:

F(x1+h1,x2+h2,~-- ,xd+hd)
—[F(z1,22+ hay - yxg+ hg) + -
+F(x1 + hi,zo + ho, -+ ,xq-1 + ha—1,24)]
+[F(w1,x2,x3+h3,--- ,$d+hd)+"'
+F(x1+ hi,z2+ ho, -+ ,T4g—2 + ha—2, Td—1,Tq)]

+(~1)4F (21,29, -+ ,24) > 0.

The following result can be proved similarly as Theorem 2.2.1.
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Theorem 2.4.1 For each distribution function F on RY, there is a unique o-finite measure jp
on (R%, Z(R%)) such that

pr((z,z+h]) = F(x1+hi, 22+ ha, -, 2q + hg)
i[F(xl’x2+h27... 7$d+hd)+"'
+F(x1 +hi, 22+ ho, -+ 241 + ha—1,%4q)]
+[F(z1, 22,23+ h3, -+ ,xq+ hg) + -+ -
+F(x1 + hi,zo+ ho, -, 24—+ hg—2,Zq—1,24)]

+(—1>dF($1,a}2, oo ,xd) > 0.

for x € R? andhER‘_‘f_.

Proposition 2.4.1 A d-dimensional function X = (Xy,--- , Xy) defined on (2,.%,P) is a ran-
dom variable if and only if each X; (1 < j < d) is a random variable.

Proof. “=7" Suppose X is a d-dimensional random variable. Then X~'(B) € .%# for each
B e B(RY). Fix c Rand 1 < i < d. Let B; = (=00, 3] and By, = R for all k # i. Clearly,
we have B = [[¢_, By € (R?) and hence X;}((—o0,4]) = X 1(B) € .Z, proving that X; is a
one-dimensional random variable.

“«=” Suppose that each X}, is a random variable. For b € R% we have

d
X (=00, b)) = [ X}, ' ((—o0, be]) € Z.
k=1

Thus X is a d-dimensional random variable. g
Definition 2.4.3 Let X = (X1, -, Xy) be a d-dimensional random variable. The distribution
Px of X is a probability measure on (R% %(R?)) defined by

Px(B)=P({w: X(w) € B}),  Be BR%. (2.4.1)
The the distribution function Fx of X is defined by

Fx(z) = Px((—o0,1]), z € B(RY). (2.4.2)

We sometimes write Px, x,.... x, and Fx, x,.... x, instead of Px and Fx, respectively. It is
easy to show that

Fxy Xy, x4(00, T2, -+ ,1q) = Fixy . x,(T2,+ ,Ta),
FX17X2,-~~ ,Xd(007 o0, - - ,flfd) = FXg, X (1'3, e ,Q?d),
etc. Moreover, for any permutation {i1,4, - ,iq} of {1,2,---,d} we have

Fx Kigy: Xiy ($i17mi27 t 71'1}1) = FX17X27"'7Xd(:B17:E27 te 7$d)-

i1
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2.5 Independence

Let (Q2,.#,P) be a fixed probability space. We assume that all random variables are defined
on this space. Let T" be a nonempty index set.

Definition 2.5.1 Suppose F; € .# for each t € T. We say the events {F; : t € T} are
independent if for any finite subset {t1,--- ,t,} C T,

P(Qth) :jli[lp(th). (2.5.1)

Definition 2.5.2 Suppose that %, C .Z for each t € T. We say the classes {Z; : t € T} are
independent if the events {F; : t € T'} are independent whenever F; € Z; for every t € T.

Clearly, if {2, : t € T'} are independent event classes and if €; C 2, for each ¢t € T, then the
classes {€; : t € T'} are also independent.

Definition 2.5.3 Suppose that for each ¢t € T we have a random variable X;. Let o(X;) denote
the o-algebra generated by X;. We say the random variables {X; : t € T'} are independent if
{o(X};) : t € T} are independent classes of events.

Theorem 2.5.1 Let X and Y be respectively m-dimensional and m-dimensional random vari-
ables. Then X and Y are independent if and only if

Fixy)(@y) = Fx(z) - Fy(y) (2.5.2)

for every x € R™ and y € R™.

Proof. If X and Y are independent, by (2.5.1) we have
Fixyy(,y) =PH{X <z} n{X <z}) = P{X <z} P{X <2} = Fx(2) - Fy(y),
proving (2.5.2). Conversely, suppose (2.5.2) holds for every z € R™ and y € R™. We shall prove
the independence of X and Y in two steps.
Step 1) Let € = {(—o0,z] : x € R™}. Then ¥ is a m-class on R and A\(¢') = o(¢) = B(R™).
For fixed y € R” let
72 ={AcBR"):P{X €AY <y} =P{X € A} - P{Y <y} holds}.

By (2.5.2) we have ¥ C 2. We claim that Z is a A-class. Indeed, we clearly have R™ € 2.
Moreover, if A,B € & and A C B, we have

P{XcB\AY <y} = PUX€B, Y<y}\{XeBY <y}
= P{XeBY<yl-P{XecAY <y}
= P{XeB}-P{Y<y}-P{XecAl PY<y
= P{XeB\A P{Yy <y}
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Consequently, B\ A€ 2. If {A,,} C Z and A, 1 A, we have

P{XecAY <y} = lmP{XecA,Y <y}

n—oo

— lim P{X € A,} P{Y <y} =P{X € A} - P{Y <y},

and hence A € . Then % is a A-class and the monotone class theorem implies that 2 D
AN@) = B(R™). By the definition of Z we have 2 C ZB(R™) and so Z = AB(R™).

Step 2) Let & = {(—o00,x] : € R™}. Then & is a m-class on R™ and A\(%) = 0(%) = Z(R").
Fix A € Z(R™) and let

% ={BeBR"):P{X €AY € B} =P{X € A} - P{Y € B} holds}.

The result proved in the last step implies that & C % . By repeating the above arguments one
shows that % is a A-class and so Z = Z(R"™). In other words,

P{X €AY e B} =P{X € A} -P{Y € B}.

holds for every A € Z(R™) and B € #(R"). That proves the theorem. O
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Chapter 3

Integration and Mathematical
Expectation

3.1 Definition of integrals

Definition 3.1.1 Let (£2,.%#) be a measurable space. An extended real-valued function f on
(©2,.7) is said to be simple if there exists a sequence of disjoint sets {Ay,---,4,} C F and
{a1,--+ ,an} C R such that

flw) = ZaklAk(w), w € Q, (3.1.1)
k=1

where +00 - 0 = 0 by convention. (We may assume J;_; Ax = ©, so that {Ax} is a partition of

Proposition 3.1.1 A simple function is measurable.

Proof. Suppose f has the representation (3.1.1) with (J;_; A = Q. For any B € %(R), let
{ak,, -+ ,ax,, } = BN{ay, - ,a,}. It is easy to see that f~1(B) = I, Ay, € #. Then f is
measurable. 0

Proposition 3.1.2 (i) A non-negative measurable function is the limit of an increasing sequence
of non-negative simple functions; (ii) An extended real-valued measurable function is the limit
of a sequence of simple functions.

Proof. Suppose f is a non-negative measurable function. For n > 1 and k£ > 1, let

n2"

k—1
falw) =Y o L{t-n/2n<<ijany (W) F 0l py (@)
k=1

Clearly, f, is a simple function and f, T f. That proves first assertion. The second assertion
follows as an immediate consequence. O

23
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Definition 3.1.2 Let (2,.#,u) be a o-finite measure space. The integrals of extended real
measurable functions are defined in the following way:

(i) For a simple function f =>"}_; arla, we define

/ fdp =" aru(Ar),
@ k=1

which is clearly independent of the particular form of the representation of f.

(ii) For a non-negative measurable function f we define
/ fdup = sup { / hdu : h is a simple function and 0 < h < f}
Q Q

(iii) For a measurable function f we set f* =0V fand f~ =0V (—f). If [, fTdu < co or

Jo [ dp < oo, we define
/Qfdu = /Qf+du —/Qfdu-

If [o fTdu+ [o [ dp < oo, wesay f is integrable. If [, f*du = [, f~du = co, we say the
integral fQ fdu does not exist.

(iv) For A € .# and a measurable function f we set

/A fp = /Q FLady

if the integral on the right hand side exists.

The integrals of complex functions can be introduced in the obvious way: If f; and fo are
extended real measurable functions and if f = fi +ifs, we define

/Q fdu = /Q frdp +i /Q fad.

In this chapter, we shall only discuss integrals of extended real functions. To express explicitly
the integration variable, we sometimes write

[ ran= [ s@du) = [ o).

3.2 Convergence theorems of integrals

In this section, we prove three important convergence theorems of integrals. Let (2,.%, 1) be a
o-finite measure space.

Theorem 3.2.1 (Monotone Convergence Theorem) Let f and f,, be non-negative measurable
functions on (0, #, ). If f,, T f, then

/Q Fudyt 1 /ﬂ f.
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Proof. Since f, < fni1 < f, it is easy to show that
[ i< [ frdus | o
Q Q Q

a:= lim fnd,ug/fd,u.

and hence

We will prove the desired result in three steps.

Step 1) Suppose that fQ fdu < oo. For € > 0, let h be a simple function such that 0 < h < f

and
(/MW%S/%WS/fW-
Q Q Q

Suppose h has the representation h =y ;_; arla,. Note that if a; = oo, we must have p(4;) = 0.
Then we may assume 0 < a; < oo forall1 <i<n. ForO0<c<1llet Q.={we: fn(w)>
ch(w)}. Then fn, > fmlq,,. > chlq,, .. It follows that

/ fmdp > / chlq,, du = c/ hlg,, .du. (3.2.1)
Q Q Q
By Definition 3.1.1,
/ thm,cdlu’ = / Z aklAkﬁQm,cdﬂ = Z app(Ag N Qm@). (3.2.2)
Q k=1 k=1

Since 0 < h < f and f, T f, we have Q,, . T Q. From (3.2.1) and (3.2.2) it follows that

lim fmdp > lim cZak,u,(Ak N Q) = cZaku(Ak) = c/ hd .
m—oo [o m—0o0 1 =1 Q

Since 0 < ¢ < 1 is arbitrary, we get

lim mwz/mmz/me
m—o Jo Q Q

and hence

lim fndu:/fdu.
Q Q

n—oo

Step 2) Suppose that [, fdu = oo and p({f = oco}) = 0. For N > 0, let h be a simple
function such that 0 < h < f and [, hdp > N. Clearly, u({h = oo}) = 0 so we may assume
0 < h < 00. As in the proof of the last step, we have

lim fndu > / hdu > N.
Q Q

n—oo

It follows that
lim fndu =00 = / fdu.
Q

n—oo 0
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Step 3) Suppose that [, fdu = co and b := p{f = co} > 0. Let An, = {w : fu(w) > N}.
Since fn, 1 f, we have Anyn € Anpt1 and Ay = o2 Anpn 2 {f = oo}. It follows that
limy, 00 (AN ) = (An) > b. In view of the relation

/fnduz/fnlAN,nduZ/NlAN,nduzNu(AN,n),
Q Q Q

we have
lim [ fodp > lim Nu(Any) > Nb.
n—oo Q n—oo
Since N > 0 is arbitrary, the desired result follows. d

Corollary 3.2.1 Let f be a measurable function and {A,} C .% be such that A, 1 A€ Z. If
[ fdu exists, then [, fdu exists for every n > 1 and

/fd,u: lim/ fdu.
A n—oo 4

Proof. (Homework.) O

Corollary 3.2.2 For any non-negative measurable function f we have

/QfdMZ/OOO#{th}dt

where dt denote the integral with respect to the Lebesgue measure.

Proof. Since f is non-negative, we have

,  i—1
/Qfdu = "h—{go/Q;< on )1{(i71)/27lgf<i/2"}dﬂ

_ AW i
- nf;‘ozl(zn )“{ on —f<27}
1=

oo i—1

=1 (7
= Jlim 3l <7}

7j=1
. O~ (]
= hm/ e = < f ol jon<icijonrdt

- Amuﬁéfwu

where we have used the monotone convergence theorem for two times. O
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Proposition 3.2.1 Suppose that « € R and f is a measurable function on (2, %, ). Then we

have
/afdu—a/fdu.
Q Q

(This means if one of the integrals exists, so does the other and the equality holds.)

Proof. When f is a simple function, the equality follows from Definition 3.1.2. In the case
where f is a non-negative measurable function, we have by Proposition 3.1.2 a sequence of
simple functions {f,} such that 0 < f,, T f. If @« > 0, we can use the monotone convergence
theorem to the sequence of simple functions {af,} to see

/afd,u: lim /ozfnduz lim a/fnd,u:oz/fd,u.

If @ < 0, we have (af)™ = 0 and (af)” = —|a|f. Then we can use Definition 3.1.2 and the
result just proved to get

/Qozfdu=—/ﬂlalfdu=—a\/ﬂfndu=oc/gfdu-

Finally, we obtain the general result by considering the decomposition af = (af)™ — (af)” in
the two cases o > 0 and a < 0. O

Proposition 3.2.2 Let g and f be two measurable functions on (2, %, ) such that f + g is

well-defined. If
/fdu, /gdu and /fdu+/gdu
Q Q Q Q

/Q(erg)du:/Qfdqu/ﬂgdu-

Proof. Step 1) Suppose that f and g are simple functions given by

m n
f:ZailAi and g:ijlBj.
i=1 j=1

all exist, then we have

In this case, we have

/Q(erg)du = /Q

ZailAi + ij13j>d,u
i=1 j=1
Z ailAiﬂB]' + Z bj]-AlﬂBJ> du
,J 1,J
= / [Z(ai + bj)lAmBj] du
Q
(

7 N N

a; +bj)p(A; N Bj)
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Step 2) Suppose that f and g are non-negative measurable functions. By Proposition 3.1.2
there are simple functions f,, and g, such that 0 < f,, T f and 0 < g, T ¢g. By the monotone
convergence theorem and the last step,

n—oo

= lim [ fodu+ lim /gnd,u—/fdu—i-/gdu.

[+ = [ tim (Gt gudu= i [ (-t 9o

Step 3) In the general case, from the relation

(f+9) —(f+9) =f+g=f"—f +g" -9

we obtain

f+9) "+ +9 =(F+9) +f+g".

Then the result of Step 2) implies that
[rortans [ fraus [ grau= [ (oo aus [ fraes [ gtan @23
Q Q Q Q Q Q
By the assumption, we have [ f~dp+ [ ¢ dp < oo or [ frdu+ [gtdu < co. Suppose that
/fd,u—l—/gd,u < 00. (3.2.4)
Q Q
It is easy to show that (f +¢)~ < f~ 4+ ¢~ . Then (3.2.4) implies that

/Q(f 4+ g) dp < oo, (3.2.5)

From (3.2.3), (3.2.4) and (3.2.5) we get

[rartan= [Grora= [ fran= [ s [ gtau- [ g

giving the desired result. O

Corollary 3.2.3 Let a and b be real numbers and g and f be measurable functions on (0, %, i)
such that af + bg is well-defined. If

/fdu, /gdu and a/fd,u—i—b/gdu
Q Q Q Q

/Q(af+bg)du - a/Qfdqub/diu.

Proof. This follows immediately by Propositions 3.2.2 and 3.2.2. g

all exist, then we have



3.2. CONVERGENCE THEOREMS OF INTEGRALS 29

Corollary 3.2.4 Suppose that f is a measurable function on (0, %, 1) such that [, fdu exists.
If {Ay} is a sequence of disjoint measurable sets and if we let A = J;- Aj, then

fdp = / fdp.
Jorm=2,
Proof. This follows immediately by Corollary 3.2.1 and Proposition 3.2.2. g

Proposition 3.2.3 Suppose that g : (Q,.#) — (E,%) is a measurable mapping and f :
(E, %) — (R, #B(R)) is a measurable function. Then we have

[ rostn= [ rau,

where fi4 is the measure on (E, %) induced by p and g.

Proof. Step 1) Suppose that f is a simple function on (E, %) given by

m
Zaklf‘lk re L.
k=1

Then we have

= arlaly Zakl ~1(a,) (W

1

k=
which is a simple function on (€2,.%). It follows that
/Qf ogdp =Y aru(g” (Ax)) =D appg(A) = /Efdug-
k=1 k=1

Step 2) Suppose that f is a non-negative measurable function. By Proposition 3.1.2 there
is a sequence of simple functions {f,} such that 0 < f,, T f. Clearly, each f, o g is a simple
function on (Q,.%) and 0 < f,0g T fog. By the monotone convergence theorem and the result
proved in Step 1),

/fogd,u: lim /fnogduz lim/fnd,ug:/fdug.
Q n—oo Jq n—o JE E

Step 8) For a general measurable function f, it is easy to show that (f o g)* = f*og. By
the result proved in the last step we have

[roartan= [ (7=oqdu= [ redu,

yielding the desired result. g

Theorem 3.2.2 (Fatou’s Lemma) Let g and f,, be measurable functions on (2,.%, u).
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(i) If g is integrable and g < f,, then
hm 1nf/ fndp > / hm mf fndps.
(ii) If g is integrable and g > f,, then

limsup/ fnd,u,g/limsupfndu.
Q Q

n—oo n—oo

Proof. We shall only give the proof of (i), which implies (ii) as a consequence. Let h,, = infy>,, fi.
Then 0 < (hy, — g) T and the monotone convergence theorem yields

n—oo

lim hnd,u—/gd,u:/ lim hndu—/gd,u.

lim hnd,u:/ lim hndu:/liminffndu. (3.2.6)
Q Q Q "o

n—oo n—oo n

lim [ (h, —g)dpu = / lim (hy, — g)dpu,
O QO n—oo

that is,

It follows that

On the other hand, for any 7 > n we have

[ gidu= [ ut fudp = [ o
Q Qk=2n Q

igf/fjduz/hndu. (3.2.7)
Jj=zn

Then we may use (3.2.6) and (3.2.7) to see that

and hence

lim inf fnd,u— lim mf/fjd,u> lim /h du = /hminffndu.

n—oo n—oo

That proves the desired result. O

Theorem 3.2.3 (Dominated Convergence Theorem) Let g and h be integrable functions on
(Q,.Z7,u). If {fn} is a sequence of measurable functions such that g < f, < h for each n and
f =1lim,,_ fn, then

lim fndu / lim fnd,u:/fd,u.
Qn—oe Q

n—oo

Proof. Since f = liminf, .. f, = limsup,,_, ., fn, we get the result easily by Fatou’s lemma. []

Proposition 3.2.4 If f and g are two measurable functions on (Q,.%, u) satisfying f = ¢
that is, uw({f # g}) = 0, then we have

/Qfduz/ﬂgdu-
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Proof. Step 1) Suppose that f and g are simple functions given by

m n
f:ZailAi and g:Z:blej7
=1

j=1
where {4;} and {B;} C .# are two partitions of Q. If u(A; N B;) > 0, then A; N B; # () and we
must have a; = b;. It follows that

m n

/Qfdu = > aip(A)=>Y aip(A;iN By
=1

i=1 j=1

= ZZbJM(AZ N Bj) = ij,u(BJ) = /di#
j=1

i=1 j=1
Step 2) Suppose that f and g are non-negative measurable functions. By Proposition 3.1.2
there are simple functions f,, and g, such that 0 < f,, T fand 0< g, T ¢g. Let N ={w: f(w) #
g(w)}and hy, = foln+gnlye. Then hy, is a simple function and 0 < h,, T fly+glye = f. Under

the assumption, we have u(N) = 0. It follows that h, *= g,. By the monotone convergence
theorem and the result proved in Step 1),

/fd,u: lim hndp = lim /gnd,u:/gd,u.

Step 3) For general measurable functions f and g, from f £ ¢ we have f* = g*. By the

result of the last step,
[ = [ gtdn,
Q Q

which implies the desired result. O

Definition 3.2.1 Let h be an extended real-valued function on (Q,.%,u). If there is an Z-
measurable function f and a set N € .%# such that flye = hlye and pu(N) = 0, we say h is
u-a.e. . F -measurable. If the integral of f exists, we say the integral of h exists and define

/Q hdy = /Q fdp.

If f is p-integrable, we say h is p-integrable.
Clearly, all the results in this section can be extended to p-a.e. measurable functions.

Definition 3.2.2 Let F' be a distribution function on R? and f a measurable function on
(RY, (R%)). Then F defines a unique o-finite measure ppr on (R%, Z(R?)) via Theorem 2.4.1.
We define the Lebesgue-Stieltjes integral

JdF = / Fdpr.
Rd Rd
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Proposition 3.2.5 Suppose that F' is a bounded distribution function on and f is a bounded
continuous function on R?. Then the Lebesgue-Stieltjes integral defined above coincides with
the Riemannian-Stieltjes integral.

Proof. This follows from the dominated convergence theorem. (Homework: Give the details.)
O

3.3 Mathematical expectation

Let (2,.%#,P) be a probability space and X a random variable defined on this space. Let
g : R — R be a Borel function. Then ¢g(X) is also a random variable. Let F'x denotes the
distribution function of X and write

Elg(x) = [

Q

§(X (0))dP(w) = / o(y)dFx (y). (3.3.1)

R

Definition 3.3.1 We say that the mathematical expectation of g(X) exists if E[|g(X)|] < oo.
In this case, we call E[g(X)] the expectation of g(X).

Example 3.3.1 Suppose that Fx is a step distribution function with discontinuity points
{x1, 9, -} and jump sizes {p(z1),p(z2), - }. Then E[g(X)] exists if and only if

> lg(@n)p(wn) < oo.
n=1

In this case, we have

E[g(X)] = /R oW)dFx(y) = S g(wn)p(wn).
n=1

Example 3.3.2 Let Fx be absolutely continuous with density p(y). Then E[g(X)] exists if and
only if [; [g(y)|p(y)dy < co. In this case,

Elg(X)] = /Rg(y)p(y)dy-
Let 4 = A(9Q,.7,P) = {all random variables X such that E[|X|] < oo}.

Proposition 3.3.1 (i) For any X € £, we have |E[X]|| < E[|X|]; (ii) For X,Y € £ and
a,B € R, we have aX + Y € £ and EjaX + BY| = oE[X]| + BE[Y]; (iii) If E[|X|P] < oo for
some p > 0, then E[| X|?] < oo for 0 < g < p.

Proof. (Homework.) O

Proposition 3.3.2 Let X be a random variable and let p > 0. If E[| X |P] < oo, then 2PP{|X| >
x} — 0 asz — oo.
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Proof. Let F denote the distribution function of X. Observe that

E[|X ] :/ |Xde—|—/ X [PdP.
{X[>0) {1X|<a}

Under our assumption, the second term converges to E[|X|P] as z — co. Then we have

0= lim | X|PdP = lim xp/ (|X|/x)PdP > limsup zPP{| X| > =},
T {1 X[ za} e X za) Z—00
giving the desired result. O

Proposition 3.3.3 Let X be a non-negative random variable with distribution function F'.
Then we have

E[X] = /000[1 ~ P(a)de = /OOO P{X > 2}de — /OOO P{X > z}da. (3.3.2)

Proof. Note that
E[X] = / zdF(z) = lim zdF(x).
0

n—oo 0

By integration by parts,
/0 xdF(x) = nF(n)— /0 F(x)dx
= —n[l - F(n)] —|—/0 [1— F(z)]dx
— _nP{X >n}+ / "1 = F(2)]da (3.3.3)
0

If E[X] < oo, Proposition 3.3.2 implies nP{X > n} — 0 as n — oo. Then we obtain the first
equality in (3.3.2) by letting n — oo in (3.3.3). On the other hand, if

/00[1 — F(x)]dx < oo,
0
we get from (3.3.3) that
/0 2dF(z) < /0 [l F(a)lds < /0 [ — F(z)]de < oo,
Letting n — oo gives
E[X]| = /000 xdF(x) < /000[1 — F(z)]ldx < oo.

Then we obtain the first equality in (3.3.2) again from (3.3.3). The second equality is immediate.
The last equality holds since P{X > x} # P{X > z} for at most countably many points. O
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Corollary 3.3.1 For any random variable X with distribution function F,

0o 0
E[|X|]:/O [1—F(a:)]d:v+/_ F(z)dz.

If E[| X|] < oo, we have
0

E[X] —/OOO[I—F(w)]dm—/ F()dz.

— 00

Proof. Recall that X* =0V X and X~ =0V (—X). Let Y = —X~. Let F* and G denote the
distribution functions of X* and Y, respectively. We have

F(x) x>0 1 x>0
-+ _ - _ i}
F(z) {O r<0’ G(x){F(x) z < 0.
Then Proposition 3.3.3 implies that

E[X+] = / 1 — F(x)|da

0
and
EX™] = / P{X™ >z}dx = / P{Y < —z}dx
0 0
00 —o0 0
= | Gt =— [ Gy [ Faay

Since [ X| = XT+ X~ and X = Xt — X~ we have the desired result. O

Corollary 3.3.2 Let X be a random variable and let 0 < p < co. Then
E[| X[ = / P{|X| > z'/P}dz < o0
0
if and only if

> P{X| > n'/P} < 0.

n=1
Proof. By Proposition 3.3.3, we have
o o
E[|X]7] :/ P{|X|P > z}du :/ P{|X| > z'/P}dzx.
0 0

Since & — P{|X| > z!/?} is non-increasing, the desired result follows. O

Corollary 3.3.3 Let X be a random variable and let 0 < p < co. If nPP{|X| > n} — 0 as
n — oo, we have E[| X9 < oo for any 0 < ¢ < p.
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Proof. By Proposition 3.3.3 it follows that
BIXT] = [TPUXI =z at)de = [T ROX] 2
- qf Ty 0P {IX] > gy, (3.3.4)

Under the condition, we have y?P{|X| > y} — 0 as y — o0o. Then the right hand side of (3.3.4)
is finite. (]

3.4 Some inequalities

A real-valued function ¢ defined on an open interval I C R is said to be convex if

PAz + (1= Ny) <Ad(x) + (1= N)odly),  zyel,0<A<T

Lemma 3.4.1 If ¢ is a convex function on I C R, it has left and right derivatives ¢)(x) and
¢l (x) at every x € I and

P(x) < ¢h(x) < dj(y) < dp(y), x<yel

Proof. Suppose that 1 < z9 < x <y € I. It is easy to show that

Bar) = 9lx) _ dw) — H(x) _ Sly) — o)

Tl —X - To — X - Yy—x

Then the left derivative exists

2Tz Z—X Yy—x
The remaining assertions hold by similar arguments. O

Theorem 3.4.1 (Jessen’s inequality) Let X be a random variable and ¢ a convex function on
R such that E[X] and E[¢p(X)] exit. Then ¢(E[X]) < E[¢(X)].

Proof. By Lemma 3.4.1, the convex function ¢ is continuous on R. The convexity implies that
¢(2) — o(y) > ¢ (y) (2 — v).
In particular, we have a.s.
$(X) — ¢(E[X]) > ¢, (E[X])(X — E[X]).

Taking the expectation in both sides we get the result. O

Corollary 3.4.1 Ifp > 1 and E[|X|P] < oo, then |[E[X]|P < (E[|X|])? < E[|X]?].



36 CHAPTER 3. INTEGRATION AND MATHEMATICAL EXPECTATION

Proposition 3.4.1 Let X be a random variable and ¢(-) is a non-negative, Borel and even
function which is non-decreasing on [0,00). Then for any ¢ > 0 we have

Blg(X)]

g(e)

P{|X]|>¢€} <

Proof. Let E = {w € Q,|X(w)| > €}. Then

E[g(X)]=/Eg( +/Ecg (w)

For each w € E, we have | X (w)| > €, so g(X(w)) > g(e). It follows that

E[g(X)] > /E 9(X(@)dP(w) + 0 = g(P(E),

giving the desired inequality. U

Corollary 3.4.2 (Chebyshev/Markov) For any p > 0 and € > 0,

E[|X|7]
P{|X|> €} < T
Theorem 3.4.2 (Holder) Suppose 1 < p,q < oo and 1/p+1/q = 1. Let X and Y be random
variables such that E[| X |P] + E[|X|?] < co. Then we have

E[|XY] < {E[IX[P]}/P{E[ Y|}/, (3.4.1)
Proof. We first show
al/Pplle < € 4 é a>0,8>0. (3.4.2)
P q
Indeed, (3.4.2) is equivalent to
1 1
—lna+-Ing <In (g + é),
p q p g

which is obvious since Inz is a concave function. To show (3.4.1), we may certainly assume
E[| X |PIE[| X9 # 0. For any w € 2, we set

X X
“=gixp " 7= Bix

in (3.4.2) to get
K@Y X@P | Y

(B[ X[]P}7 {E[Xx|a ~ PEIXP] - qE[Y]]
It follows that

X(@)Y ()] < {(E[X]P)}7 {BX |} ('XHP] *;E[(E/)”;)

Taking the expectations in both sides, we obtain the desired inequality. O
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Corollary 3.4.3 (Schwarz) For any random variables X and Y, we have

{BIXY[)}* < BIX*B[Y?).

Theorem 3.4.3 (Minkowsky) Let 1 < p < co. Then

{E[IX +YPYP < (E[IXPI}? + {E[Y]}/P. (3.4.3)
Proof. Tt suffices to assume 1 < p < oo and E[| X |P+|X 9] < co. Let ¢ be such that 1/p+1/q = 1.
By Holder’s Inequality,

E[X + Y X[+ E[X +YPY]
{B[X + Y|PV VIBIX PP + (E[Y [P} /P).

E[|X +Y[]P] <
<

From 1/p+1/q =1 we get p= (p — 1)q. Then (3.4.3) follows. O
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Chapter 4

Product Spaces

4.1 Product measurable spaces

Let E and F be two non-empty sets. We call E x F := {(x,y) : ¢ € E,y € F'} the Cartesian
product of F and F. For A C F and B C F, we call A x B a rectangle in E x I’ and refer A
and B as its sides. A typical product space is the Euclidean plane R? = R x R.

The section of C' C E x F determined by zg € E refers to the set Cy, := {y € F' : (zg,y) €
C} C F. The section of a function f on E X F determined by x¢ € E refers to the the function
fzo on F defined by fz,(y) := f(xo,y) for y € F. Similarly, we define the sections C% and f¥
determined by yo € F. In particular, we have (A x B),, = B or () according as xo € A or ¢ A,
and (A x B)¥ = A or () according as yo € B or ¢ B.

Let (E,&) and (F,.%#) be two measurable spaces. If A € & and B € %, we call A x B a
measurable rectangle. It is easy to check that the class Z of all measurable rectangles on £ x F'
is a w-class. We call & x F := o(Z) the product o-algebra on E x F.

Theorem 4.1.1 IfC € & x.#, we have Cy, € % for each xg € E, and C¥% € & for each yy € F.

Proof. Let zy € E be fixed and let & = {C CEXF:Cyy € F}. fC=AxBfor Aec &
and B € .#, then C,, = B or ¢ according as ¢ € A or € A°. In both cases, we have C,, € .%.
It follows that &/ O Z. Furthermore, it is easy to show that (D)., = (Dy,)¢ for D C E x F
and (U2, C”)xo = U2 (Ch)a, for {Cr} € E x F. Then & is closed under the operations of
complements and countable union. Thus & is a o-algebra, and hence &/ O o(%Z) = & x F.
That shows Cy, € .# for every C € & x .#. The proof of the second assertion is similar. O

Theorem 4.1.2 Let f be an extended real-valued measurable function on (E x F,& x %).
Then f;, is an .#-measurable function for each xg € E, and f% is and &-measurable function
for each yy € F.

Proof. This follows from Theorem 4.1.1 and the identities

(fo) (D) = (f7H(D))y, and  (f*)"H(D) = (F~H(D))"
for D € #(R). (Homework: Prove one of the above equalities.) O
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Proposition 4.1.1 If E and F are separable metric spaces, we have B(E x F) = B(E) x B(F).

Proof. (Homework; see e.g. Cohn (1980).) O

The definition of product o-algebras can be generalized to higher dimensions in a obvious way.
With such an extension, one may use Proposition 4.1.1 inductively to see that Z(R?) = B(R)?
for any integer d > 1. (Homework.)

4.2 Product measures and Fubini’s theorem
Let us consider two o-finite measure spaces (E, &, u) and (F, #,v).

Proposition 4.2.1 If C € & x .Z, then z — v(C,) is an &-measurable function on E, and
y — v(CY) is an .#-measurable function on F.

Proof. We only give the proof of the first assertion since the second one follows by symmetry.
By Theorem 4.1.1 we have C, € .% for each x € E. Suppose that v is a finite measure and let

o ={C €& xF:xw— v(C;)is &-measurable}.

One sees easily that &7 is a A-class. For A € & and B € .%, we have v((A x B);) = 14(x)v(B)
and so AX B € /. Then &/ contains the m-class Z of measurable rectangles. From the monotone
class theorem it follows that &7 O o(#Z) = & x .#. That is, z — v(Cy) is &-measurable for every
C € & x Z. In the case where v is a general o-finite measure, there is a partition {F,,} C .F of
F such that v(F),) < oo for every n > 1. For n > 1 we define the finite measure v, on (F,.%#) by
vn(B) =v(BNEF,) for Be .#. Then v => ", v,. By the result proved above, z — 1,,(Cy) is
&-measurable for every every n > 1. It follows that x — v(Cy) = Y o7 | 1,(Cy) is &-measurable.

O

Proposition 4.2.2 For each C € & x %, we have
[ viComtan) = [ uicrywian) (4.2.1)

Proof. We first consider the case where both p and v are finite measures. Let ¢ = {C € & x % :
the equality (4.2.1) holds}. By the properties of integrals it is easy to show that & is a A-class.
IfC=AxBfor Ae & and B € %, then v(Cy) = 1a(z)v(B) and u(CY) = 15(y)u(A) so that
both sides of (4.2.1) are equal to u(A)v(B). Then ¢ O #Z so that € D o(Z) = & x F. If p
and v are general o-finite measures, there are partitions {E,} C & and {F,,} C .# of E and F,
respectively, such that v(E,)+v(F,) < oo for every n > 1. For n > 1 define p,(A) = n(ANEy,)
for A € & and define v, (B) = v(BN F,) for B € #. Then p, and v, are finite measures on
(E, &) and (F, %), respectively. By the result proved above,

/ on(Calund) = / b CY )

Taking the summations over m,n > 1 we obtain (4.2.1). U
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Theorem 4.2.1 There is a unique o-finite measure A on (E x F,& x %) such that
AMA x B) = u(A)v(B), Ae & Be 7. (4.2.2)

Furthermore, for each C € & x .% we have
NO) = [ Captda) = [ uiewiay). (423)

Proof. By Proposition 4.2.2 and the monotone convergence theorem of integrals it is easy to
show that (4.2.3) defines a non-negative and o-additive set function A satisfying A(()) = 0. That
is, A is a measure on & x .%. Clearly, (4.2.2) holds. Now suppose p and v are finite and v is a
measure on & x % such that

v(Ax B) = w(Aw(B), Aecé& BeZ.

Let € ={C € & x F : \(C) =~(C)}. It is easy to show that € is a A-class and ¢ D #Z. Then
€ D o(#) =& x F, which gives the uniqueness assertion. The general case can be treated by
the decomposition arguments. O

The measure A defined by (4.2.3) is called the product of u and v is denoted by p x v.

Corollary 4.2.1 (Fubini) The following conditions are equivalent

(i) 1 x 1(C) = 0;
(ii)) v(Cy) =0 for p-a.e. v € E;
(iii) p(CY) =0 for v-a.e. y € F.

Theorem 4.2.2 (Fubini) Let f be a non-negative extended real-valued measurable function on
(E x F,& x F). Then the functions

xH/fme@)aM wa/fmwwm> (4.2.4)
F E

are &- and ¥ -measurable, respectively. Moreover, we have

/Efod(uxu / [/ f(z,y)v dy)} (dx) = / [/ flz,y)p dx)} v(dy). (4.2.5)

Proof. Let C € & x %. By Proposition 4.2.1 the function

wHV@H=AMMWMw=Lk@wM@)

is &-measurable. That is, the first function in (4.2.4) is &-measurable if f = 1¢. By the linearity
of the integral, it is &-measurable if f is a & x #-measurable simple function. Then we get
the &-measurability of the first function in (4.2.4) by approximating the general non-negative
& x F-measurable function by an increasing sequence of non-negative simple functions. By
Theorem 4.2.1 we have

/ExFlcd(ﬂ xv)=pxv(C)= /E v(Cr)p(d) = /E [ /F 1C($,y)u(dy)]u(dm).
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Thus the first equality in (4.2.5) holds if f = 1¢. By the linearity of the integrals, it also holds
if fis a & x #-measurable simple function. For a general non-negative & x .%-measurable
function the equality follows by the monotone convergence theorem. Other assertions hold by
symmetry. O

Theorem 4.2.3 (Fubini) Let f be an integrable extended real-valued function on the product
measure space (E x F,& x % ,u x v). Then for p-a.e. x € E the section f, is a integrable
function on (F,.%,v), and for v-a.e y € F the section fY is a integrable function on (E,&, ).
Moreover, the functions

oo [ Sty and g [ fagiis)
F E

are a.e. &- and .% -measurable, respectively, and

/Efod(MXV / [/ [z, y)v dy)} (dr) = / [/ flx,y)p dx)} v(dy). (4.2.6)

Proof. By Theorem 4.2.2, we have

/E :/F|f(x,y)|u(dy)] p(de)

- [ [¢en+re >>u<dy>}u<dx>

=[] [ womtan]aa+ [ [ [ 5 owan]aa

Then for p-a.e. x € ¥ we have

x 1 = (x 1 (x 1 o0
/Flf( )l (dy) /Ff<,y> <dy>+/Ff<,y> (dy) <

In other words, f* is a integrable function on (F,.%,v) for p-a.e. x € E. It follows that

o [ swywian) = [ ratin - [ 1 @)
is a p-a.e. well-defined measurable function. By Theorem 4.2.2 we have
L| [t
L1 [rmman|uan - [ | [ 5 @awtan]uas
= [ frawsn = [ g
- /Efodwxu),

which gives the first equality in (4.2.6). Other assertions follow by similar arguments. O

0> /E fld(ux )
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The theory of product measures plays a very important role in probability theory. This can
be seen from the following situation. Suppose that p and v are two probability measures on
(R, Z(R)). We can construct a probability space (£,.%,P) by setting Q = R, .# = %(R?)
and P = p x v. For w = (w1,w2) € Q let X1(w) = w1 and Xo(w) = wa. Then (X1, X2) is a
two-dimensional random variable defined on (2,.%#,P) and X; and X5 are independent. We
remark that all the results given above can be developed for multi-dimensional product spaces
and measures; see e.g. Halmos (1974).

4.3 Measures defined by kernels

Definition 4.3.1 Let (E, &) and (F,.#) be two measurable spaces. A function K : E x .% —
[0, 0] is called a kernel from (E, &) to (F, %) if

(i) for each fixed B € .#, the function z — K(z, B) is &-measurable;

(ii) for each fixed x € &, the function B — K(x, B) is a measure on (F,.%).

A kernel K is said to be o-finite if there are {E,} C & and {F,,} C .# such that E = J,°_| En,
F =, _,F, and

sup K(z,F,) <oo, m,n>1.
xEEm

We call K a probability kernel if K(x,F) =1 for all z € F in addition.

Example 4.3.1 For each t > 0 we can define a probability kernel p;(-,-) on (R, Z(R)) by

1
pi(x, B) = \/Tm/Bely—xN%dy

Proposition 4.3.1 Let K be a o-finite kernel from (E, &) to (F,.%#). Then for any C € & X Z,
the function z — K(z,C,) is &-measurable.

Proposition 4.3.2 Let u be a o-finite measure on (E, &) and K a o-finite kernel from (E, &)
to (F,.%#). Then

AC) = / K(z,Coulds), Ceé&x7, (4.3.1)
E
defines a o-finite measure A on (E x F,& x .F).
In the situation of Proposition 4.3.2 we shall write \(dz,dy) = p(dz)K (x, dy).

Theorem 4.3.1 Let f be a non-negative extended real-valued measurable function on (E X
F,& x .F). Then the function

T /Ff(x,y)K(x, dy)
is &-measurable. Moreover, if A is defined by (4.3.1) then

fpoptn= [ [ e an)an
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Theorem 4.3.2 Let f be an integrable extended real-valued function on the (E X F,& X F, \),
where X is defined by (4.3.1). Then for p-a.e. x € E the section f, is a integrable function on
(F,#,K(z,-)). Moreover, the function

oo [ S K. dy)
F

is a.e. &-measurable, and

/Efod)\:/E [/Ff(x,y)K(x,dy)]u(dx). (4.3.2)

Those results can be proved by obvious modifications of the proofs in the last two sections.

4.4 Kolmogorov’s Consistency theorem

Given an non-empty index set 7', we note R’ the set of all functions w : t — w; = w(t) from T to
R. In the sequel, we may write an element w € R” more explicitly as w. or w(-) or {wy : t € T}.

In particular, when T' = {1,--- ,n}, we identify RT with the n-dimensional space R™.
For any ordered finite set {t1,--- ,t,} C T we define the projection m, ... 4, : R”T — R™ by
setting my, .. ¢, (w) = (wy,, -+ ,wy,) for w € RT.

Definition 4.4.1 A set A C R” is called a cylinder if there exist {t1,--- ,t,} C T and M C R"
such that

A=ml  (M)={weR": (wy, - ,wy,) € M}. (4.4.1)
We remark that the representation (4.4.1) for the cylinder A is not unique. Indeed, if A
has representation (4.4.1) and if ¢,41 ¢ {t1,--- ,t,}, we also have A = 7Tt_1,1~~~,tn,tn+1(M x R). Of

course, if both A and {¢1,--- ,t,} are given, the set M satisfying (4.4.1) is uniquely determined.
The cylinder A defined by (4.4.1) is said to be Borel if M € Z(R™). Let ¢ denote the collection
of all Borel cylinders on R”.

Lemma 4.4.1 The collection €7 of Borel cylinders is an algebra on RT .

Proof. Clearly, we have RT € 7 and () € 6r. If A is given by (4.4.1) for {t1,--- ,t,} C T
and M € #A(R)", we have A = wtjltn(MC) € ¢r. Now suppose that Ay € € for k =
1,---,m. Then for each k there exist {tx 1, - ,tkn,} € T and M € Z(R™) such that A; =

! (Mg). Let {t1,--- ,tn} = Upoy{tr1, - ,tm,}. Clearly, for each k there exists

.
tk:,l )t 7tk,nk

M, € B(R") such that Ay, = w;ltn(Mk) Thus
m m m
U4k = U make 00 = mile, (U M) (4.4.2)
k=1 k=1 k=1

is a Borel cylinder. That shows that €7 is an algebra on R”. g

Let B(R)T = o(¢r). Clearly, m, .., is a measurable mapping from (RT, Z(R)T) to
(R™, B(R)™). Moreover, if we understand R” as a topological product space, then Z(R)? =
A(RT). (Homework.)
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Example 4.4.1 A one-dimensional stochastic process with index set [0, 00) is a random element
X taking values in (R[O’m),%(R)[O’m)). Suppose that X is defined on the probability space
(Q,.Z,P). Given w € Q we have X (w) = X.(w) € RI>*). In other words, for each fixed w € €,
the function ¢t — X;(w) is an element of R[9:20) which is called the path of X. We can also regard
the stochastic process as a family of random variables {X; : t € [0,00)}, where each variable X;
takes values in R. There is another way is to understand the stochastic process X, namely, we
consider it as a function X : (¢,w) — Xy(w) from [0,00) x  to R.

Definition 4.4.2 Suppose for each ordered finite set {t1,---,t,} C T there is a probability
measure P, .. ;. on (R", B(R")). We say {P, ..., : n > 1,{t1,--- ,t,} C T} are consistent if
they have the following properties:

n

(i) if B; € Z(R) for 1 <i <n and {i1,--- ,ip} is a permutation of {1,--- ,n}, then

Pt Lin (le X oo X an) = Pt17...7tn(31 X oo X Bn),

S
(ii) if m <n and B; € Z(R) for 1 <i < m, then

Py, (B XX Bp) =P, .. By X -+ X By x Rx -+ xR).

‘ 7tm:tm+17"' 7tn (

Proposition 4.4.1 Suppose that P is a probability measure on (R, 2(RT)). Then for any

{t1,--- ,tn} C T we can define a probability measure P, ... ;, on (R", Z(R™)) by

Py ,(B)=P(x;' , (B)), Be2BR". (4.4.3)
Moreover, the probability measures {P;, ...+, :n > 1,{t1,--- ,t,} C T} are consistent.
Proof. (Homework.) O

The following important theorem shows that the converse of Proposition 4.2.1 is also true.

Theorem 4.4.1 (Kolmogorov) If the probability measures {P;, ... 4, :n > 1,{t1,--- ,t,} C T}
are consistent, there is a unique probability measure P on (R”, 2(R")) such that (4.4.3) holds.

Proof. Step 1) For any A € ¢r we can find {t1,---,t,} € T and M € ZA(R") such that
A= Wil +, (M). By the consistency we see that the value Pr(A) := P, ... 1, (M) is independent
of the particular choice of {t1,--- ,t,} and M. We claim that Pr is a finitely additive set function
on the algebra €. To see that, suppose that { A1, - - , Ay, } is a sequence of disjoint subsets of 7.
As shown in the proof of Lemma 4.4.1, there exist {t1,--- ,t,} €T and {My,--- , M,,} C B(R")
such that Ay = 7751 (M) for each 1 < k < m. Clearly, the sets {My,---, M,,} are disjoint.

By (4.4.2) we have

PT< U Ak) - Pth...,tn( U Mk) = P (M) = 3 Pr(Ay),
k=1 k=1 k=1 k=1

giving the finite additivity of Pp.

) 7tn

Step 2) We shall prove that Pr is o-additive so it is a measure on %7. This will follow if we
can show {Ax} C €r and Ag | 0 imply Pr(Ag) | 0. In other words, we only need to show: if
{Ar} C r is a decreasing sequence and Pr(Ay) | eg > 0, then (72, A # 0.
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Let us write Ay = m}kl(Mk) for some Ty, = {t1, -+ ,tp, } C T and My € B(R™). In view of
the relation Ay O Ag41, we may assume Ty C Tj1q, so that ng < ngy1. Let Too = {t1,t2,- - }.
By the definition of Pp, we have Pr(Ay) = P, 1, (Mg) > €0 > 0. Since P .., is a
probability on Z(R"*), there is a compact set Fj, = Fj,(e9) C M, such that P, ... o (M \ Fy) <
g0/2F . Let By, = w;}_,_,tnk (F.) € ¢r and Cy, = By N -+ N Bg. Then C), C By C Ay, Since Pr
is finite additive, we have

Pr(Ae\ Cy) = PT(Am(UBC))— (L:JAk\B)

A
7
VN
||C:
::>
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jos!
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»?
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It follows that Pr(Cy) = Pr(Ax) — Pr(Ag \ Cr) > Pr(Ax) —e0/2 > 0. In particular, we have
Cr # 0, so there exists some wy = wi(-) € Cg. For m > k > 1 we have w,, € C,,, C Cy C By

and hence 7, ... 1, (Wm) = (Wi (t1), -+, wm(tn,)) € Fi. By the method of diagonalization, it is
easy to find a subsequence {wy, } C {wy} such that wy, (t;) — some x; for every j > 1. Since F},
is compact, we have (1, , 2, ) € Fy. Now we define wy € RT by

o Zj ift:tj,
wO(t)_{o if t €T\ Tho

Then ... t,,, (wo) = (@1, ,&n,) € Fy, and so wg € By, C Ag. That implies wy € (32, Ak
and so (oo, Ar # 0.

Step 3) Since ér is an algebra, by measure extension theorem Pr has a unique extension P
on B(RT). The equality (4.4.3) follows from the definition of Pr. O

Example 4.4.2 Let p be a probability measure on (R, Z(R)) and let pi(-,-) be the kernel
defined as in Example 4.3.1. For any 0 =ty < t; < --- <t let

Pto,tl,"' ,tn(A) = /Aﬂ<d$0)pt1—to (x()v dml) o 'ptn_tnfl(mn_17 dwn)? Ae ‘@(Rn+1)7
and

Py 4, (B) Z/M(divo)/ Pti—to(®0,dx1) Doty (Tn-1,dxy), B € BR").

R B
Ifo<ty<t <-<ty,andif {i1,---,i,} is a permutation of {1,---,n}, we define the
probability measure P, .1, on (R", Z(R")) by

Py oty (Biy X -+ X By) = Py 1, (B1 X - -- X By), B; € A(R).

197

tnim>1{t1, -+ ,tp} C[0,00)} are consistent.
By Theorem 4.4.1 there is a unique probability measure P on (R[> Z(R[:>))) such that
(4.4.3) holds for any {t1,---,t,} C [0,00). Let X;(w) = w; for t > 0 and w € R®*®). Then
w — X.(w) is a stochastic process defined on the probability space (R, Z(R[:>)) P). This
process is known as a one-dimenstonal standard Brownian motion with initial distribution pu.

Then the family of probability measures {P;, ... ;
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By obvious modifications of the arguments, one can generalize the results in this section to
the case where R is replaced by the d-dimensional space R?. We leave the consideration of those
to the reader.
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Chapter 5

Convergence of Random Variables

5.1 Borel-Cantelli lemma

In this section, we prove the very important Borel-Cantelli lemma which will be used in our
subsequent investigation. Let (€2,.7,P) be a given probability space and let {E,} C .% be a se-
quence of events. We often need to evaluate the probability of the the event E = (>2; Ur—,, Ek-
Clearly, w € FE if and only if w € Ej for infinitely many k£ > 1.

Lemma 5.1.1 (Borel-Cantelli) (i) If > > P(E,) < oo, then P(E) = 0. (i) If {E,} are
independent, then P(E) =0 or = 1 according as ) .. P(E,) < oo or = 0.

Proof. Under the assumption of (i), we have
o0
=p((U ) = tm p(U 5) < Jim 3 P =0
n=1k=n k=n k=n

If the events {E,} are independent, their complements {E¢} are also independent. Then for
any N >n > 1 we have

P((5) < P(ﬁEz)zﬂu—Pwk)]
k=n k=n k=n
< ﬁ e P(Er) = exp{ - iP(Ek;)}
k=n k=n

Letting N — oo we obtain

o0

P(ﬂ )<exp{ ZPEk}
k=n
It follows that
o0 o0 [e.e] o0
P(E°) = P( Uun Ek) < ZP( N Ek) -
n=1k=n n=1 k=n
and consequently P(F) = 1. O

49
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5.2 Almost sure convergence

Definition 5.2.1 Let X, X,, n = 1,2,--- be random variables defined on the probability
space (2,.7,P). We say X,, — X almost surely if there is N € % such that P(N) = 0 and
Xn(w) = X(w) for all w € N¢:=Q\ N. In this case, we write X, 23 X or limyoo X, = X

Definition 5.2.2 We say the sequence of random variables {X,} is almost surely Cauchy if
there is N € .# such that P(N) =0 and {X,,(w)} is a Cauchy sequence for every w € N°€.

Proposition 5.2.1 (i) A sequence {X,} is a.s. Cauchy if and only if X,, *% some X; (ii) If
X, 23 X and X, 23 Y, then Y = X.

Proof. (Homework.) O

Proposition 5.2.2 Let {X,} be a sequence of random variables. Then: (i) X, %3 X if and
only if for each € > 0 we have

lim P( U {(1Xm - X| >s}> = 0;

(ii) {X,} is a.s. Cauchy if and only if for each € > 0 we have

lim P< fj (| X — Xn| > 5}) = 0.

n—od
m=n

Proof. (i) Let D = {w € Q: X,,(w) — X (w) does not hold}. Then w € D if and if only there is
some k > 1 such that for any n > 1 there exist some m > n such that | X,,(w) — X(w)| > 1/k.

In other words,
o0 o0 o0

D=J [ Ufwe:|[Xnw) - X(w)| > 1/k}.

k=1n=1m=n

Then X,, 23 X if and only if P(D) = 0 or, equivalently,

P( N U %) - Xl 2 1/1)) =0

n=1m=n

for every k > 1. By the upper continuity of the probability measure, the above equality holds if
and only if

nlggop< U {1Xm(w) - X(w)| = 1/k}> =0

for every k > 1. Then we have the assertion (i).

(ii) Recall that a non-random sequence {ay} is Cauchy if and only if for each k& > 1 there is
some n > 1 such that |a,, —a,| < 1/k for every m > n. Let D = {w € Q : the sequence {X,,(w)}
is not Cauchy}. The proof is similar to that of (i). O



5.3. CONVERGENCE IN PROBABILITY o1

Corollary 5.2.1 (i) If }°° , P{|X,, — X| > ¢} < oo for every ¢ > 0, then X,, = X; (ii) If
S>> E[ X, — X|?] < oo, then X, a3 X,

Proof. Under the assumption of (i) we have
o o
P( U {1x: — x| 25}) <3S P{|X; — X| > &} — 0.
k=n k=n
Then the result follows from Proposition 5.2.2. Under the condition of (ii),
[e.9] o0
Y P{X,—X[>e} <> e B[ X, - X[’ < 0.
n=1 n=1

Then the a.s. convergence follows by (i). O

5.3 Convergence in probability

Definition 5.3.1 Let {X,,} be a sequence of random variables defined on (Q2,.7,P). We say
X,, converges to X in probability if P{|X,, — X| > e} — 0 as n — oo for every ¢ > 0. In this

. P
case, we write X,, — X.

Proposition 5.3.1 The sequence {X,} converges to zero in probability if and only if

| X" }
E|l— | L 5.3.1
[H!an’“ (5:3.1)

for some r > 0.

Proof. Observe that Y, := | X,|["/(1 + |X,|") < |X,|". If X, LR 0, we have |X,|" L0 and
hence Y, — 0. Then (5.3.1) follows by the dominated convergence theorem. (Homework:
Prove the dominated convergence theorem for a sequence of random variables that converges in
probability.) Conversely, suppose that (5.3.1) holds. For 6 > 0 and € > 0, let N = N(4,¢) be
such that

| X |" - ed”
14+ | X" 1497

for n > N. By Chebyshev’s inequality we have

T T T T
| X | > 0 - 146 B | X0 <.
1+ | X" — 1467 or 14+ |X,|"

P{|X,| > ¢} = P{

for n > N. That proves X, 2. O

Proposition 5.3.2 If X, 3 X, then X, LA X.
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Proof. By Proposition 5.2.2, if X,, %5 X, for each ¢ > 0 we have

lim P( U {1Xm —Xy>s}> =0.

n—oo
m=n

Then lim,, .. P{|X,, — X| > ¢} =0. O

Definition 5.3.2 We say {X,,} is Cauchy in probability if P{|X,, — X,,,| > ¢} — 0 as m,n — o0
for each € > 0.

Proposition 5.3.3 (i) If X, LN X, there is a subsequence {X,, } such that X,, *5 X; (ii) If
{X,} is Cauchy in probability, there is a subsequence {X,, } such that X, *% some X.

Proof. (i) Since X, L X, for each k£ > 1 there is an integer ny such that
P{|X,, — X|>1/k} <1/2F.

Let € > 0 and choose an integer m > 1/e. We have

m—1
ZP{IXnk—X|>6}< ZP{IXnk—X\>1/m}+ZP{|Xnk—X|>5}
k=1 k=m k=1
m—1
< ZP{IXM X|>1/k}+ Y P{|Xy, — X| > ¢}
k=m k=1
[ee] 1 m—1
<Y e+ S PN, - X| 2 ¢}
k=m k=1
1 m—1

Then X, 2% X by Corollary 5.2.1.

(ii) Since {X,,} is Cauchy in probability, for each £ > 1 we can choose my, so that
P{| X, — X,,| >1/2F} < 1/2F

for all m,n > my. Define {ny} inductively by setting ny = m; and ngyq = max{ng + 1, mg41}
for k > 1. Clearly, ny — oo. Let

oo
Fr = U {‘Xnk _Xnk-H’ 2 1/2k}'
k=m

Then {F,,} is a decreasing sequence and

= 1
m) < Z P{’Xnk - nk+1| > 1/2k Z Tg
k=m
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Let N = (o, Frn. We have P(N) = lim,,;, .o P(F};,) = 0. For any
[e.9]
weFS = ﬂ {1 Xy — Xngpn| < 1727}
k=m

we have [ Xy, — Xpn,,,| < 1/2% for k > m, so {X,, (w)} is a Cauchy sequence. Consequently,
for each w € N¢ = J°_, Ff, the sequence {X,,, (w)} is Cauchy. It follows that X, (w) — some
X (w) for every w € N°. Setting X (w) = 0 for w € N, we have X,,, % X. O

Proposition 5.3.4 The sequence of random variables {X,} is Cauchy in probability if and
only if X, P, some X.
Proof. Suppose that X, L. X. Then for any € > 0 and n > 0, there is N = N(g,n) such that
P{|X, - X| > /2} < n/2
for n > N. When m,n > N, we have
P{| Xy — Xol = e} < P({| X — X| = £/2} U{|X, — X| > £/2}) < n/24+0/2 = 1.

Thus {X,,} is Cauchy in probability. Conversely, suppose that {X,,} is Cauchy in probability.
By Proposition 5.3.3, there is a subsequence {X,,, } such that X, 2% some X. Consequently,

we have X, L X.Foré>0ande> 0, there exists N > 1 such that P{|X,, — X,,| > ¢/2} <
for m >n > N. For any n > N we choose n; > n so that

P{|Xn - X[2¢e} < P{|Xn—Xpn,|=¢e/2} +P{|Xy, — X[ =¢/2}
< §+P{|X,, — X|>¢/2).

Then we may let k — oo to see that P{|X,, — X| > ¢} < 4. O

Remark 5.3.1 (i) It is not hard to construct a sequence { X, } such that X, 5 X, but X, 23 X
does not hold. (ii) If X, P X and X, & Y, then X 2= Y. (Homework.)

5.4 Convergence in mean

Let (2, #,P) be a probability space and £ = £ (2, #,P) be the set of all random variables
X on (92,.%#,P) such that E[|X]|] < occ.

Definition 5.4.1 Let X, X,, € 4. Wesay {X,,} converges to X in mean if E[|X,, — X|] — 0 as

n — o0. In this case, we write X, 4 X. We say {X,} is Cauchy in mean if E[|X,, — X,|] — 0
as m,n — oo.

Proposition 5.4.1 (i) If X, 4 X, then X, > X; (ii) If {X,,} is Cauchy in mean, then it is
Cauchy in probability.
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Proof. Both results follow immediately from Markov’s inequality. O

Proposition 5.4.2 The sequence {X,} C £ is Cauchy in mean if and only if X, 4 some X.
Proof. Suppose X, 4 X. Fore > 0, there is N = N (e) such that E[|X,, — X|] < ¢/2 forn > N.
It follows that

E[| X — Xo|] <E[|Xnm — X[+ E[|X — Xn|] <e€/2+¢/2=¢

for m > n > N. That shows that {X,,} is Cauchy in mean. Conversely, suppose {X,} is
Cauchy in mean. By Proposition 5.4.1, {X,,} is Cauchy in probability. By Proposition 5.3.3,
there exists a subsequence {X,,, } such that X, *3 X. For € > 0, let N = N(¢) be such that
E[|X,, — X,|] < € for m > n > N. In particular, we have E[|X,,, — X,|] < € for nj, > n > N.
By Fatou’s lemma,

E[|X — X,|| = E[liminf | X,, — Xn@ < liminf B[| X, — Xa] < .
k—o0 k—o0

It follows that X, 2 X. O

Lemma 5.4.1 Let X € 4. Then to each € > 0 there corresponds § = d(e¢) > 0 such that

/|X|dP<e
E

for every E € .% with P(E) < 0.

Proof. Since E[|X|] < 0o, we may apply the monotone convergence theorem to see

n—oo [o

e J{IX>no}

Then for any € > 0, there exists ng = ng(e) > 1 such that f{‘X|>nO} | X|dP < €/2. Let § = ¢/2ny.
For E € % with P(F) < § we have

/ |X|dP§/ X|dP—|—/ | X|dP < ng-€/2ng + €/2 =€,
E En{|X|<no} {IX|>no}

as desired. ]

Proposition 5.4.3 Suppose that {X,,} C % . Then {X,,} is Cauchy in mean if and only if it
is Cauchy in probability and for each € > 0, there exists § = 6(e) > 0 such that

sup/ | X |dP < e (5.4.1)
E

n>1

for each E € F satistfying P(F) < 6.



5.4. CONVERGENCE IN MEAN 95

Proof. Suppose that {X,,} is Cauchy in mean. By Proposition 5.4.1, the sequence is Cauchy in
probability. Moreover, for € > 0 there exists ng = no(€) > 1 such that E|X,, — X,,,| < €¢/2 for
n > ng. By Lemma 5.4.1, there exists § = d(e) > 0 such that

/ | X |dP < €/2
E
when P(E) < § and n < ng. If P(E) < ¢ and n > ng, we have
/ X, [P < / X, — Xp|dP +/ X AP
E E E
< E[X, — Xpl] +/ | X0 |dP < €/2+€/2 =€
E

That proves (5.4.1). Conversely, suppose that {X,,} is Cauchy in probability and (5.4.1) holds
for e > 0and § > 0. Let N = N(§) > 1 be such that P{|X,, — X,,,| > €} < ¢ for m,n > N.

Then we have
Sup/ | Xk |dP < e.
E>1 J{|Xn—Xm|>e€}

It follows that, for m,n > N,

B, - Xl = X~ XnldP + [ Xy — Xpn|dP
{1 Xn—Xm|<e} {IXn—Xm|>e}

< e—l-/ an\dP+/ | X | dP
{IXn=Xom| >} {1 Xn—Xm|2e}

< e+ e+ e=3e

Thus {X,,} is Cauchy in mean. O
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Chapter 6

Laws of Large Numbers

6.1 Tail events and tail functions

Let {X,,} be a sequence of independent random variables on (€2,.%#,P). An interesting problem
in probability is the following: what is the probability that the series > .2, X; converges? A
remarkable result that we shall prove is that this probability must be either 0 or 1. The property
is shared by many other events associated with independent variables. Results of these type are
called zero-one laws.

Definition 6.1.1 For any infinite sequence {X,,} of random variables,

T = ﬂ o({Xn, Xn+1,-- }),
n=1

is a o-algebra, which is called the tail o-algebra of {X,,}. Any event A € .7 is called a tail event.
A function f : Q — R is called a tail function if it is .7-measurable, that is, f~(B) € .7 for
every B € #(R).

Proposition 6.1.1 Let {X,,} be a sequence of independent random variables. Then for any
n > 1 the classes o({X1, -+, X,}) and o({X,+1, Xn+2, - }) are independent.

Proof. Let n > 1 and A € o({X1,---,X,}) be fixed and let Z be the class of sets C' €
o({Xn+1, Xnt2, - }) such that P(ANC) = P(A)P(C). It is easy to show that Z is a A-class. Ac-
cording to the definition of the independence, for any m > 1 the random variables { Xy, -, X,,,
Xn+1,+ , Xntm} are independent. Then the classes { X1, -+, X, } and {X,41, -+, Xnym ) are
independent. It follows that P(A N B) = P(A)P(B) for every B € c({Xn+1,-* , Xntm}). In
other words, we have 2 O € :=J,,~1 0({Xn+1, -+ s Xntm}). Since Z is clearly a m-class, we
get 2 2 0(€) = 0({Xns1, Xni2, -+ }) by the monotone class theorem. That yields P(ANC) =
P(A)P(C) for all C € 0({Xpn+1, Xn+2,---}). Then o({ X1, -+, X, }) and o({Xp+1, Xnto, -+ })
are independent. O

Theorem 6.1.1 (Kolmogorov) Let {X,,} be a sequence of independent random variables. Then
P(A)=0or1 for any A€ 7.

o7
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Proof. By Proposition 6.1.1, for £ € o({X1,---,Xn}) and A € 7 C o({Xn+1, Xnt2,-- })
we have P(E N A) = P(E)P(A). By a monotone class argument, one shows that P(E N A) =
P(E)P(A) for E € o({X1,Xs,---}) and A € Z. In particular, taking £ = A we get P(A) =
P(A)? and hence P(A4) =0 or 1. O

Corollary 6.1.1 Let {X,,} be a sequence of independent random variables. Then any tail
function of {X,} is a.s. constant.

Proof. Let £ be a tail function of {X,}. By Theorem 6.1.1, for any a < b € R we have
P{a < ¢ <b]} =0 or = 1. Then to each k > 1 there corresponds an unique ny such that
P{ng/2" < € < (g +1)/2} = 1. Clealy, [ne1/25, (miar + 1)/251] © [y /28, (g + 1)/2]
for every k > 1. Let a € R be the unique point contained in all the intervals [ng /2", (ng +1)/2¥]
for £ > 1. Then we must have a.s. £ = a. O

Corollary 6.1.2 Let {X,} be a sequence of independent random variables. Then we have

(i) {X,} either a.s. converges to a finite limit or a.s. diverges.
(ii) >, X; either a.s. converges to a finite limit or a.s. diverges.

(iii) if b, — oo, then b;! >, X either a.s. converges to a finite limit or a.s. diverges.

Moreover, if the sequence as (i) or (iii) a.s. converges, the limit is a.s. constant.

Proof. For any m > 1 the event

(M {w: [ Xiw) = Xj(w)| < 1/m}

5,j2n
decreases in n > 1. Then we have

U N {w: 1Xiw) = X <1/m} = |J () {w: 1Xi(w) = Xj(w)| < 1/m}

n>14,j>n n>kij>n

for every k > 1. Consequently, the above event is belong to the tail o-algebra .7, then so is

{w : X, (w) converges} = ﬂ U m {w | Xi(w) — Xj(w)| < 1/m}.

m>1n>114,5>n

By Theorem 6.1.1 we have P{X,, converges} = 0 or = 1. If this probability is one, let X (w) =
lim,, oo X, (w) when the limit exists and let X (w) = 0 when X, (w) diverges. Clearly, X is a
tail function. Then Corollary 6.1.1 implies that X is a.s. constant. That proves (i). The proofs
of (ii) and (iii) are similar. (Homework.) O

Definition 6.1.2 We say two sequences of random variables {X,,} and {Y},} are tail equivalent
if they differ a.s. only by a finite number of term, that is, for a.e. w € ) there corresponds some
N(w) such that X, (w) = Y, (w) for all n > N(w). The two sequences {X,} and {Y},} are said
to be convergence equivalent if P({X,, converges and Y,, diverges}) = P({X,, diverges and Y,,
converges}) = 0.
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Proposition 6.1.2 Let {X,} and {Y,,} be two sequences of random variables such that

Y P{X, # Y.} < . (6.1.1)
n=1
Then we have
(i) {X,} and {Y,} are tail equivalent;

(ii) >0 Xy, and Y 2 |'Y, are convergence equivalent;

(iii) for any b, T oo, the sequences by'>"" | X; and b,' Y1 | 'Y; are convergence equivalent
and their limits a.s. coincide.

Proof. By (6.1.1) and Borel-Cantalli lemma,
P( (M U{xk # Yk}> =0,
n=1k=1

or, equivalently,

P(D ﬁ{Xk:Yk}> =1.

n=1k=n

Thus {X,} and {Y,,} are tail equivalent, giving (i). The assertions (ii) and (iii) are immediate.
(]

6.2 Weak law of large numbers

Let {X,,} be a sequence of random variables defined on (£2,.%, P). In this section, we study weak
laws of large numbers, which deal with condition of convergence in probability of the partial
sums

n
Spi=> Xp, n=12--
k=1

Definition 6.2.1 If there are sequences {A,} and {B,} with 0 < B, — oo such that (S, —

A,)/ By, L0 as n — oo, we say {X,} satisfies a weak law of large numbers.

Theorem 6.2.1 (Chebyshev) Let {X,} be a sequence of independent random variables. Sup-
pose that there is a constant v > 0 such that Var(X,) < v for all n > 1. Then we have
(S, — E[Sy])/n 0.

P1 001. By Chebyshev’s lnequalll Y, fOI’ a.ny g > O we haVe
= & E -\/ar
n n — = n

The right hand side goes to zero as n — oo. It follows that (S, — E[S,])/n Lo O
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Corollary 6.2.1 If {X,,} are i.i.d. random variables with E[X?] < oo, then

1 <& P
- > X; - p=E[X].
j=1

Theorem 6.2.2 Let {X,} be ii.d random variables with common mean u = E[X,]. Then

Sn/nguasnﬁoo.
Proof. The following argument is a typical application of the truncation method. Let § > 0 and
n > 1 be fixed. For 0 < k < n, set

x® _ X if | Xg| < nd,
k710 otherwise.

Then {X,gn) : 1 <k < n} are ii.d. random variables. Write 8 = E[|X1|] and define F,, = {w :
|X1(w)| < nd}. By the dominated convergence theorem,

uy = EX["] = E[X11p,] — .
Moreover, we have

Var(X\") < E[(X")} = [ X2dP < ns / 1 X1|dP < ndB.
ETL E’VL

Writing S} = > "1, X,gn), we have E[S’ /n| = ) and Var(S}/n) = Var(X{n))/n < 0. Choose
N = N(e) > 1 such that |u) — pu| < e for all n > N. Then we can see by Chebyshev’s inequality

aP{S }<P{

For 1 < k <n, we have

R B (P

n 1
P{X, £ X{"} = P{IX0| = on} = P{I1| = 6n} < o [ [xjaP
and consequently
" n - )y 1
Pis,# 51 < P(UN £ X)) < P £ Xy < 5 [ |xilap.
k=1 k=1 n

It then follows that

oS

By the dominated convergence theorem,

}<P<{‘——u >2s}u{s ;és* 5/ 1X1[dP.  (6.2.1)

n—oo Jq m

n—oo [ pe
n

Then (6.2.1) implies that

hmsupP{‘— —,u) > 26} < @

n—oo

Since § > 0 is arbitrary, we must have
S,
lim P{|> —u’ > 2} =0,
n—oo n

which yields the desired convergence. O
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6.3 Kolmogorov’s inequalities

Proposition 6.3.1 Suppose that {X1,---,X,} is a finite sequence of independent random
variables such that E[X;] = 0 and 07 = Var(X},) < oo for 1 < k < n. Let Sy = Zle Xi. Then,
for every € > 0,

Pl s> o =P(Ulisi> ) < 5 ok

Proof. Let E = {maxj<g<y |Sk| > €} and E; = {|S1| > €}. For 2 <k <n let

k—1
By, = {[Skl > e} 0 [({I8;] < e}

J=1

Then {E}1,- -, E,} are disjoint and E = (J;_; Ex. By the independence of the sequence,

Zag:Var(sn):/sgdpz/SﬁdP:Z SedP. (6.3.1)
k=1 0 E k=1 Ek

For any 1 < k < n we have

n

S2dp = /Ek (s+ X Xj)2dP

Ex j=k+1
= [ SpdP+ ) / X7dP+2 > / SpX;dP
Bk j=k+17 Bk j=k+1" Ex
+2 > X;X;dP, (6.3.2)
k+1<i<j<n Ek

where

SkadP = E[lEkSka] = E[lEkSk]E[X]] =0

Ey,

and

X X;dP = E[lEkXin] = E[lEkXZ-]E[Xj] = 0.
Ey,

From (6.3.1) and (6.3.2) it follows that

> o> Z/ SpdP > > P(Ey) = EP(E),
k=1 k=1 Er k=1

giving the desired inequality. O

Proposition 6.3.2 Let {X;,---,X,} be a set of centered and independent random variables.
Suppose there is a constant v > 0 such that P{|Xy| < v} = 1 for all 1 <k <n. Let Sy =
Zle X;. Then for every ¢ > 0,

(] (e+7)?
P{ 1?I?§n|5k| = 6} N P(}EJIHSM = 6}) 21- 72 + Var(S,)’
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Proof. Let E and Ej be defined as in the proof of Proposition 6.3.1. Let Fy = 2 and Fj =
ﬂ?zl{\Sﬂ < €} for k > 1. Clearly, F,_1 = E} U Fy and Ex N F = 0 for 1 < k < n. Note also
that

I, = SgdP—/ S2 . dP
Fy Frp_1
= / SZdP — S,zdP—/ SZ . dP
Fk—l Ek Fk—l
— [ (St X - st Jap - [ spap
Fr_1 Ey
= / (X? +2XSy_1)dP — [ SidP, (6.3.3)
Fr_1 Ey
where
XjdP = E[lp,_, X{] = P(Fp_1)E[X}] > P(F,)E[X}]
Fi—1
and

X Sp_1dP = E[leilsk_le] = E[leASk_I]E[Xk] =0.
Frp_1

For any w € Ej we have
1Sk(w)] < [Sk-1(w)] + [Xp(w)] < e+,

so that

SpdP < (e +7)*P(Ey).
Ey

From (6.3.3) it follows that
Iy > P(F)E[X{] — (e +7)*P(Ey)
for 1 <k < n. Since E = |J}_, Ex = Ff, we can take the summation in both sides to get

24P > P(F) Y EX - (c 4 7)?P(E)
Fn k=1

— P(E,)Var(S,) — (e +7)2(1 — P(F,).

On the other hand, we have

S2dP < *P(Fy,).
Fy

It then follows that
EP(F,) > P(F,)Var(s,) — (c +7)2(1 - P(F,))

and so
(e+7)% > [Var(S,) + (e +7)* = €JP(F,) > [Var(S,) + 7P (Fy).

We may rewrite this into
(€+7)* = [Var(S,) +7°](1 - P(E)),

from which the desired inequality follows. O
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6.4 Random series

Proposition 6.4.1 Let {X,,} be a sequence of independent random variables. If
e}
Z Var(X,) < oo,
n=1

then

)
(Xn — E[X,])
n=1
a.s. converges.

Proof. Set 02 = Var(X,,) and S,, = 2?21 X;. By Proposition 6.3.1 applied to the sequence
Xn+1 - E[Xn+1]7 Xn+2 - E[Xn+2], e

we have

n+k 1 n+m 1 [e%S)
2 2
> G-B)|z)< s Y el >

j=n+1 j=n+1 j=n+1

*(Uf

By the lower continuity of the probability measure, we may let m — oo to get
n+k

P(Q{ S (X, - EX)) 26}) gé i o

j=n+1 j=n+1

It follows that

00 n+k
im P(U{| 3 -Bi)|2c}) -

By Proposition 5.2.2 we see that the sequence {S,,—ES,, } is a.s. Cauchy and hence a.s. converges.
O

Proposition 6.4.2 Let {X,} be a sequence of independent random variables such that | X,| <~
a.s. for some constant v > 0. If

Z Var(X,,) = oo, (6.4.1)
n=1
then the series
Z(Xn - E[Xn]) (6‘4'2)
n=1

a.s. converges.

Proof. Note that ‘Xn - E[Xn]‘ < 2v. By Proposition 6.3.2,

n+k 2
(e +27)
P{sup‘ ) (Xj—E[Xj])‘ >e}>1— .
== Tk
k21 j=n+1 4’72 + Z?=n+l UJZ
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If (6.4.1) holds, we have

n+k
P{sup} 'Z (X; — E[X;])| > e} =1,

which clearly implies the a.s. divergence of (6.4.2). (Homework: Give a detailed proof of the
last step.) O

Corollary 6.4.1 Let {X,} be a sequence of independent random variables such that |X,| <
a.s. for some constant v > 0. Then the series

j{:()gl_'E”)(nD

n=1

converges a.s. or diverges a.s. according as

oo
ZVar(Xn) <oo or =o0.
n=1

Proposition 6.4.3 Let {X,} be a sequence of independent random variables such that | X,| < ~
a.s. for some constant v > 0. Then Y7 | X,, converges a.s. if and only if the following condition
hold:

(i) Y02 B[X,] converges;
(ii) Y02, Var(X,) < oo.

Proof. By Proposition 6.4.2, conditions (i) and (ii) imply the a.s. converges of the series
Y2 Xy, Then it suffices to show that the converse assertion. Suppose that > 2, X, a.s.
converges. On an extension of the original probability space, we may construct a sequence of
random variables {Y,} which is ii.d. with {X,}. Let Z, = X,, —Y,. Then {Z,} is a se-
quence of independent random variables. Moreover, we have |Z,| < 2v a.s. with E[Z,] = 0 and
Var(Z,) = 2Var(X,). Since > 2 | X,, a.s. converges, so does » > 'Y, It follows that

ZE:ZZL::EE:(AQL_'Y%)
n=1 n=1

also a.s. converges. From Proposition 6.4.2 it follows that >, Var(Z,) < oo, and hence
> o2, Var(X,,) < co. By Proposition 6.4.1, >, (X,, — E[X,,]) converges a.s. and hence

Y EX,] =) Xn— ) (X - E[X,))
n=1 n=1 n=1
converges. O

Theorem 6.4.1 (Three-Series Criterion) Let {X,,} be a sequence of independent random vari-
ables. Then Y ° | X, converges a.s. if and only if for some constant ¢ > 0 the following three
series converge:
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() 202y P{Xn| = ¢}
(i) 322, EIXG;
(ii) > 2, Var(Xyp),

where X = 1y|x,|<c}Xn. Moreover, if (i), (ii) and (iii) converge for some c > 0, they converge
for all ¢ > 0.

Proof. By Borel-Cantelli Lemma, the series (i) converges if and only if

P( A Ut > c}> 0 (6.4.3)

n=1k=n

or, equivalently,

P( fj ﬁ (X}, = X;;}> =1 (6.4.4)

n=1k=n

Suppose Y2, X, a.s. converges. Then X, %% 0, and hence we have (6.4.3) for each ¢ > 0. It
follows that (i) converges. By (6.4.4), the a.s. convergence of y 2 | X,, implies that of Y7 | X¢.
By Proposition 6.4.3, the series (ii) and (iii) are both convergent. Conversely, suppose (i), (ii)
and (iii) converge for some ¢ > 0. By Proposition 6.4.3, we know that ) ° | X¢ a.s. converges.
In view of (6.4.4), the series > > | X, a.s. converges. O

6.5 Strong law of large numbers

Lemma 6.5.1 (Toeplitz) If {a,} be a sequence such that a,, — some a as n — oo, we have
1 n
— Z ai — a (n — o0).
n
k=1
Proof. Well-known. O

Lemma 6.5.2 (Kronecker) If Y~ a,, converges, then

Proof. Let sp =0 and s, = Y _,_; ar. Suppose that s, — s. Clearly,

1 « 1 «
ﬁzkak = ng(Sk —Skfl)
k=1 k=1

1 < 1 <
= N lksk— (k= Dspoa] — — > si
nk:1[ sk — ( )Sk—1] o2 k-1

k=1

1n71
= sn——g Sp_1 —s—s=0.
n
k=1
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That gives the result. O

Proposition 6.5.1 Let {X,} be a sequence of independent random variables with o2 :=
Var(X,,) < oo for eachn > 1. If .22, 02 /n? < oo, then

SN BIXD 0 (oo,
k=1

Proof. Let Y, = (X, — E[X,])/n. Then E[Y,] = 0 and Var(Y,) = o2/n%. It follows that
>0, Var(Y,) < co. From Proposition 6.4.1 it follow that >, ¥;, converges a.s. Then

—Z X — E[X})) ZkYk (n — c0)

by Kronecker’s Lemma. O

Definition 6.5.1 Let {X,,} be a sequence of independent random variables and let S, =
> p_q X . If there are sequences {A,} and {B,} with 0 < B,, — oo such that

BL(S” —Ap) 220 (n — 00),

we say that {X,} satisfies a strong law of large numbers.

Theorem 6.5.1 (Kolmogorov) Let {X,,} be a sequence of i.i.d. random variables and let S,, =
> w1 Xk. Then the sequence {S,,/n} converges a.s. to a finite limit o if and only if E[| X,,|] < oc.
In this case, we have a = E[X,,].

Lemma 6.5.3 For any random variable X, we have
(o) (o)
> P{X|>n} <E[X[] <) P{X|>n}.
n=1 n=0

Proof. For the first inequality we have

E[X]] > ZkP{k<\X|<k+1} ZZP{k<|X!<k+1}

k=1n=1
O RUEEEIEIES s ER)
n=1k=n
The second inequality follows similarly. O

Proof of Theorem 6.5.1. Suppose that E[|X1]] < co. Let E, = {|X1| > n} for n > 0. Then
E, | 0 and E, =Jg—,, Ex \ Ekt1, which is a union of disjoint events. By Lemma 6.5.3 we have
Y1 P(Ey) <oo. Forn >1, let X} = 1y x,|<n}Xn- It follows that

Var(X}) < / X2dP <Y K*P(Ey_1 \ Ex),
{IXn|<n} =1
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and hence
. Var(X¥) o= k2 = =1
D S 20D PBE B = 3 FP(Eea \ ) Y s
n=1 n=1k=1 k=1 n==k
where
i 1 1 +/°° 1 p 1 1 2
P — <2
— n? — k2 R k2 kT k

Then we have

52 VerlX) <53 k(B \ B < 201+ BN < .
n=1 k=1

Set Si = S"7_, X;. By Proposition 6.5.1 we conclude that (S —E[Sz])/n “> 0. For each n > 1,
we have

E[X;] = E[l{x,|<n} Xn] = E[l{x,|<n} X1]-
Then the dominated convergence theorem implies that E[X] — E[X;] as n — co. By Toeplitz’

Lemma,

[S* = ZEXk — E[X1] (n — o0).

On the other hand, since
ZP{X # X} = ZP ) SE[IX] <

by Proposition 6.1.2 we have (S, — S%)/n %3 0 and hence S,,/n %3 E[X;]. Conversely, suppose
that {S,/n} converges to a finite limit o as n — co. We have

Xn Sp — Sn—1 N Sh n—15,-1

- bl
n n n n n—1

so that X,,/n %3 0 (n — 00). Tt follows that, for € > 0,

P Utxe =) =

n=1k=n

By Borel-Cantelli Lemma,
> P{[Xn/n| > e} = P{|X,| > ne} < cc.
n=1 n=1

In particular, we have
Y P{Xn| = n}=> P(E,) <
n=1 n=1

and hence

E[X,] < iP(E ) < 0
n=0

From the first part of the proof it follows that o = E[X}]. O
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Chapter 7

Convergence of Distributions

7.1 Convergence of distribution functions

Definition 7.1.1 Let F and F,,, n =1,2,--- be distribution functions on R and let Cr denote
the set of continuity points of F. We say F,, converges weakly to F' if F,(z) — F(x) as n — o0
for every x € Cp. In this case, we write F,, — F.

Clearly, if F,, = F and F,, = G, then F = G.

Proposition 7.1.1 Suppose that F,, > F. Then F,(+o00) — F(+00) if and only if Fy,(+00) —
Fp(—00) — F(+00) — F(—00).

Proof. We only need to prove the “if” part of the proposition. Since F,, — F, for any = € Cr
we have
limsup F,,(00) > liminf F},(c0) > lim F,(z) = F(x).

n—00 n—o0 n—00

By letting x — oo in C'r we obtain

lim sup F,,(00) > liminf F;,(c0) > F(00). (7.1.1)

n—oo n—0o0

Similarly, we can see that

lim inf F},(—o0) < limsup F),(—o0) < F(—00). (7.1.2)

n—oo n—00

If there is a strict inequality in (7.1.1), we can choose a subsequence {n;} C {n} such that
limy, o0 Fy,, (00) > F(00). In view of (7.1.2), we can find {my;} C {ny} such that limj_. F,, (—o00) <
F(—00). It then follows that

lim [Fy,, (00) — Fpp, (—00)] > F(00) — F(—00),

k—o0

which is in contradiction to the assumption. There is a similar contradiction if there is a strict
inequality in (7.1.2). Then we have the desired result. O
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Definition 7.1.2 Let F and F,,, n = 1,2, -+ be distribution functions on R and suppose that
F(£o00) are both finite. We say F,, converges completely to F and write F, 5 F provided
F, % F and F,(+00) — F(%00) as n — oo.

Definition 7.1.3 Suppose that X,, and X are random variables with distribution functions F},

and F, respectively. If F, — F, we say X,, converges in law to X and write X, L x.

Theorem 7.1.1 (Kolmogorov) If X, 5 X, then X, L X

Proof. For any © < y € R we have

P{X <z} < P{X,<yl+P{X <z X,>y}

<
< P{X, <y} +P{|X - X,| >y —x}.

Let F and F;, denote respectively the distribution of X and X,. Since X, x , we obtain
F(z) <liminf,, . F,(y) and hence

F(y—) < liminf F,(y). (7.1.3)

n—oo

By considering y < z and interchanging X,, and X in the above arguments, we obtain
P{X, <y} <P{X <z} +P{|X, - X|>z—y},
implying lim sup,, . Fy(y) < F(z) and so

limsup Fy,(y) < F(y+) = F(y). (7.1.4)

n—oo

From (7.1.3) and (7.1.4) we have F(y) = lim,,_,oc F},(y) for all y € C'r. Since F' and F,, are both
probability distribution functions, we get F,, — F. O

Corollary 7.1.1 Let ¢ € R be a constant. Then X, L ¢ if and only if X, B

Proof. (Homework.) O

Theorem 7.1.2 (Helly) Suppose that {F,} is a uniformly bounded sequence of distribution
functions. Then there is a subsequence {F),, } C {F,} which converges weakly to a bounded
distribution function F'.

Proof. Let D = {x1,x2, -} C R be a countable set which is everywhere dense in R. For each
x; € D, the sequence {F,,(z;) : n > 1} is bounded. Then we may choose subsequences

{F} 2{FMY 2 {F@) 2 {FP} 2 -+

such that F\” (x;) — some G(z;) as n — oco. Let G, = F{™. We shall prove G, ~— some F
so the theorem will follow. It is easily seen that G,(x;) = o) (x;) — G(x;) for every i > 1 as
n — oo. For x € R\ D, set

G(z) = inf G(z2).

r<zeD
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Then G is a bounded non-decreasing function on R. For any x € R, there are {yg,zx : k > 1} C D
such that y T x and z; | x. We have

G(yr) = lim Gp(yx) < liminf G, (x) <limsup Gy (z) < lim G, (zx) = G(zk).

n—o0 n—00

Letting k — oo we see that lim,, ., G, (x) = G(z) for all z € Cg. Now we define F(z) = G(x+)
for z € R. Clearly, F is a bounded distribution function and F,, = F. O

7.2 Convergence of integrals

Theorem 7.2.1 Let F and F,, be distribution functions on R such that F, — F. If g is a
continuous functions on [a,b] with a,b € Cp, then

lim gdF, = / gdF.
(a,b] (a,b]

n—oo

Proof. For each k > 1, let m, = {a = 20 < 21 < -+ < Zpm, = b} be a sub-division of [a, b].
We choose 7, in the way that x; € Cp for all 0 < i < mj and £ > 1 and

A = - P 0 k .
k 152&(‘”’“ Tgi-1) — (k — 00)

For each k£ > 1, define the simple function
my,

9k (@) = 9(@ki) Ly 100 (2.
i=1

Since g is uniformly continuous on [a, b], we have

My, = s<u;<)b\gk(x) —g(z)|—0 (k — o0). (7.2.1)

By the dominated convergence theorem,

/ grdF, — gdF, and / grdF — gdF (k — o).
(a,b] (a,b] (a,b] (a,b]
Observe that

‘/ ngn/ ng’ < /
(a,b] (a,b] (a,b]

)

+ /(a,b} grdF, — /(a,b} grdF
< My[Fy(b) — Fu(a)] + Mg [F (D) — F(a)]

+/ gden—/ grdF|. (7.2.2)
(a,b] (a,b]

lg — gi|dF, +/ lg — gi|dF

a,b

Since {zy;} C CF, we have

my,
lim grdFy, = lim Zg(xk,i)[Fn(xk,i) — Fu(zp,i1)]

n—oo (a,b] i—1

= Tri)[F () — F(ogi-1)] = dF.
;9( ki) [P (2,i) — F(@hi-1)] /(mb]gk
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Then we get from (7.2.2) that

lim sup
n—oo

| oar- [ ng]ng[F(b)—F(a)]-
(a,b] (a,b]

In view of (7.2.1) we may let k¥ — oo in the above to see that

b b
/ngn—/ ng’:O.

That gives the desired result. O

lim sup
n—oo

Theorem 7.2.2 Let F' and F), be bounded distribution functions on R , and let g be a bounded
continuous functions on R. If F,, = F, then

lim [ gdF, :/ng.

Proof. Let M = sup,, |g(z)|. For any a,b € C'r we have

[ oar,~ | gdp‘ R T
R R (b,00) (—00,d] (b,00)
—|—/ ]ng—i—‘/ ngn—/ ng’
(70070‘} (avb] (avb]

M[F,(00) = Fu(b)] + M[Fy(a) — Fp(—00)]
+ M[F(o0) — F(b)] + M[F(a) — F(—00)]

—l—‘/ ngn—/ ng‘.
(a,b] (a,b]

/OO gdF, — /OO ng‘ < OM[F(o0) — F(b)] + 2M[F(a) — F(—o0)].

—0o0 —00

IN

IN

It follows that

lim sup
n—oo

Letting a — —oo0 and b — oo we obtain the desired result. O

7.3 Weak convergence on metric spaces
Let (E, p) be a metric space with the Borel o-algebra denoted by Z(FE).

Definition 7.3.1 Let C'(E) denotes the space of bounded continuous functions on E. Suppose
that p, and p are finite Borel measures on (E, A(FE)). We say u, converges weakly to p and
write p, = p provided

/E Fan — /E fdu (73.1)
for all f € C(E).
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Proposition 7.3.1 Let p, and p be finite Borel measures on E such that u(E) > 0. Then

pin = p if and only if j1,(E) — p(E) and pn(E) ™ prn = p(E) " pe.

Proof. (Homework.) O

Thus the discussion of weak convergence of finite measures can often be reduced to that of
probability measures. The following theorem presents a number of equivalent conditions for the
weak convergence of probability measures.

Theorem 7.3.1 Let p, and p be probability measures on (E,Z%(FE)). Then the following
statements are equivalent:

(i) pn = p;
(ii) (7.3.1) holds for all uniformly continuous f € C(E);
(i)

U) < liminf,, . pun(U) for all open sets U C E;
(iv) p(C) > limsup,,_, pn(C) for all closed sets C C E;

(v) pn(B) — u(B) for every continuity set B of p, that is, u(0B) = 0.

Proof. The implications “(i) = (ii)” and “(iii) < (iv)” are obvious.

“(ii) = (iii)” Suppose that (7.3.1) holds for all uniformly continuous f € C(E). Let U C E
be an open set and let h(x) = 1A p(x, U¢) and hy(z) = h(x)'/*. Then hy is uniformly continuous
on E and h; T 1y as kK — oo. Note that

liminf p, (U) > lim hkdun—/ hydps.
E E

n—oo n—oo

Then we get (iii) by letting & — oo in the above inequality and applying the monotone conver-
gence theorem.

“(iv) = (v)” Suppose that (iv) holds and B € ZA(FE) is a continuity set of u. By the
equivalence of (iii) and (iv) we have
w(B) > limsup i, (B) > lim sup p, (B)

n—od n—oo
and
w(B°) < liminf p, (B°) < liminf u,(B).
Since (0B) = (B \ B°) = 0, we have u(B) = u(B°) = u(B). It follows that u(B) =
limy, o0 fin (B).

“(v) = (i)” Suppose that (v) holds. It suffices to show (7.3.1) for a non-negative function
feC(E). Let a =sup,cg f(x). By Corollary 3.2.2, we have

e /M polf = it and [ g = /[0 sz (7.3.2)

It is easy to show that O{f >t} C {f =t}. Then {f > t} is a continuity set of p if s — p{f > s}
is continuous at s = ¢. Since the non-increasing function s — p{f > s} has at most countably
many discontinuity points, we conclude that p,{f >t} — pu{f >t} as n — oo for a.e. t > 0.
Thus (7.3.1) follows from (7.3.2) and dominated convergence. O
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Corollary 7.3.1 Let F and F,,, n = 1,2,--- be probability distribution functions on R. Then

F, 5 F if and only if
/den — / fdF
R R

for all f € C(R).

Proof. (Homework.)



Chapter 8

Characteristic Functions

8.1 Definition of and basic properties

Definition 8.1.1 Given a probability distribution function F' on R we define its characteristic
function by

o(t) = /RemdF(:U) = /Rcos(tx)dF(ac) —|—z'/ sin(tz)dF(z), teR. (8.1.1)

R

We also call ¢ the characteristic function of the probability measure on (R, #(R)) determined
by F.

Proposition 8.1.1 The characteristic function ¢ is uniformly continuous on R and has the
following properties: (i) ¢(0) = 1; (ii) |p(t)| < 1; (iii) ¢(—t) = @(t), where ¢ is the complex
conjugate of .

Proof. Fort € R and h € R we have

(e + 1) =] = | [ @ cmyip)| < [ e - 1jar)

— 00

= / | cos(hz) — 1 + isin(hz)|dF(x)

= /_OO V2 — 2cos(hz) dF(x)

oo
—0o0

where the right side is independent of ¢ € R. Using dominated convergence we see that
sup;cr |¢(t + h) — ¢(t)] — 0 as h — 0, giving the uniform continuity of ¢ on R. The prop-
erties (i), (ii) and (iii) follow immediately from the definition. O

sin (%) ’dF(x),

Theorem 8.1.1 Let F' be a probability distribution with finite moments up to order n > 1.
Then the corresponding characteristic function  has continuous derivatives up the order n and

75
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©®)(0) = i*ay,, where
o
ap = / xde(:I:), k=1,---,n. (8.1.2)
—00
Moreover, ¢ admits the expansion
~ ()"

Pty =1+

k=1

ap +o(t™)  (t—0). (8.1.3)

Conversely, suppose that the characteristic function ¢ has an expression of the form (8.1.3) for
an integer n > 1. Then F' has finite moments up to order n if n is even, and up to order n — 1
if n is odd.

Proof. Suppose that F' has finite moments

/ lz|FdF(z) < oo, kE=1,---,n.

—00

Observe that

. oo thr __
(p(t_{—h})L So(t) _/ eztxe ; 1dF(ac)

—00

and |e"® — 1| < |hz|. By dominated convergence we obtain

dol)) [ e 1 [
—1 ite Fx) = " pdF (x).
7 lim . e - dF (z) =1 . " xdF ()

Thus the first derivative of ¢ exists and go(l)(O) = iay. Proceeding inductively we conclude that
© has derivatives up to order n and

o®) (1) = zk/ ek dF(z), kE=1,---,n.

Then ¢*)(0) = i*aj. By dominated convergence we see that o*)(t) is continuous in ¢t € R. By
Taylor’s expansion, for some 0 < § < 1 we have

n—1
A0 = 1+ e +eons
k;I tk
= 1+ ¢1(0) 5 + Ra(t)
k=1
with
Ra(t) = [6(01) — 6O = o).

That proves the first part of the theorem. Conversely, suppose that ¢ has an expansion of the
form (8.1.3) where n = 2m is even. Then ¢ has finite derivative of order 2m at ¢t = 0. If we
define the difference operator Ay, by Ay, f(t) = f(t+ h) — f(t — h), it is easy to check that

Z(,D(t) — / (eihx _ e_ihx)ne_itxdF(:L‘).

—0o0
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It then follows that

(2m) ) %) eihx_e—ihx 2m
g0 = fm ) g @)

= (=)™ lim /Oo <Singm)>2mdF(x)-

h—0 J_

By Fatou’s lemma,

o0

That proves the existence of the moment of order 2m. If ¢ has an expansion of the form (8.1.3)
where n = 2m + 1 is odd, we conclude by the same procedure that F' has finite moment of order
2m=n — 1. ]

Corollary 8.1.1 The characteristic function ¢ has continuous derivatives of all orders if and
only if F' has finite moments of all orders.

Corollary 8.1.2 If ¢ is a characteristic function and p(t) = 1+ o(t**9) for § > 0 as t — 0.
Then ¢ corresponds to the degenerate distribution at zero.

Proof. Since p(t) = 1 + o(t?), by Theorem 8.1.1 the first and the second moments of the
distribution of ¢ are both zero. Thus we have the result. O

We remark that if {¢x} is a sequence of characteristic functions and {ax} is a sequence of
non-negative numbers such that Ez’;l ag = 1, then 21?;1 ok 1s also a characteristic function.

8.2 Inversion Theorems

In this section, we prove two results which show the importance of characteristic functions in the
study of distributions. The first of these enables us to compute the distribution function from
its characteristic function. The second result gives a sufficient condition for the distribution
function to have a density.

Lemma 8.2.1 For any o € R we have

T sin(ax) d T

lim T = §Sign(a),

T—o0 0 i

where sign(a) = 1, —1 or 0 according as « > 0, < 0 or = 0.

Proof. By Fubini’s Theorem we have

T sin x T 0o [e%s) T
/ dr = / da?/ e "sinxdu = / du/ e " sin xdx.
0 x 0 0 0 0




78 CHAPTER 8. CHARACTERISTIC FUNCTIONS

By integration by parts it is not hard to show that

T 1 e~ vl
/0 oY in pdr — TRk w (usinT + cosT).
It follows that
/OT Sizxdx — arctanu ::O _ /OOO 16——:;(” sin T + cos T)du
v * et
= 3 _/0 m(usinT+TcosT)dt.

By dominated convergence one sees that the send term on the right hand side goes to zero as
T — oo. Then the desired result follows by a simple change of the integration variable. O

Theorem 8.2.1 (Inversion Theorem) Let F' be a probability distribution function and ¢ its
characteristic function. Then the relation

F(a+h)— F(a—h) = lim 1/Tsin(ht)

—ita
t)dt 8.2.1
Jim [ SRy (3:2.1)

holds for a € R and h > 0 whenever the points a £ h € Cp.

Proof. By Lemma 8.2.1 we have

s

2 [T sin(ht
O(h,T) = — / Smi )it = sign(h)
0
as T' — oo. By Fubini’s Theorem we have

1 (T sin(ht) _,,
Ir(a,h) = 7T/T i )6 tap(t)dt

T 00
- L / Slniht)eit(x_a)dF(a:)

=T —00

T .
dF(ac)/ Slrlft}n)eit(x_“)dt

—00 =T

8

where

/T sinf[(x — a + h)t] g 1 /T sin[(x — a — h)t] gt
0 13 0 t
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Note that both (-, -) and ¢(-,-) are bounded functions on R x R and

0 if x <a-—h,

1/2 ifz=a-—h,
lim g(z,T)=< 1 ifa-—h<z<a+h,
e 1/2 if t =a+h,

0 ifx>a+h.

Since a + h €CF, we can use dominated convergence to obtain
at+h
lim IT(a,h):/ dF (z) = F(a+h) — F(a— h).
T—oo a—h

That completes the proof. O

Corollary 8.2.1 For any «, 8 € Cg such that o < 3 we have

T _—itae _ —it8
Fla) - F(3) = lim — /_ ) (it (8.2.2)

Proof. Letting a = (4 «)/2 and h = (8 — «)/2 in (8.2.1) we obtain

F(B) ~ F(a) = F(a+h) — F(a—h) = lim % /_ i we—“<ﬂ+a>/2¢(t)dt.

By Euler Formula we have
sin[(8 — a)t/2]eHB+)/2
= sin[(8 — a)t/2] cos[t(B + @)/2] —isin[(8 — a)t/2] sin[t(8 + ) /2]

1, . . ( .
= i[sm(ﬁt) — sin(at)] + §[COS(ﬁt) — i cos(at)]

e—ita _ e—it,@
21

The proof is completed. O

Corollary 8.2.2 Let Fy and Fy be two probability distribution functions with characteristic
functions 1 and 9, respectively. If p1(t) = @o(t) for every t € R, then F} = F».

Proof. Let a,b € Cp, N CF, be such that a < b. Then (2) yields
Fi(b) — Fi(a) = Fy(b) — Fa(a).

Letting a — —oo we obtain Fi(b) = F»(b), so that F; = F5 on Cp, N Cp, and hence Fy = F». O

Corollary 8.2.3 A characteristic function ¢ is real and even if and only if the corresponding
probability distribution function F' is symmetric, that is, F(x—) =1 — F(—x) for all z € R.
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Proof. If ¢ is real, we have ¢(t) = p(—t) = ¢(t). By the uniqueness we see that ¢ and ¢ has
the same distribution function F. Then F' is symmetric. Conversely, if F' is symmetric, we have

(1) = [p(t) + ()]/2. Thus )
cp(t):/ cos(tx)dF (x),

which is real and even. O

Theorem 8.2.2 (Fourier Inversion Theorem) Suppose that the characteristic function ¢ is abso-
lutely integrable on R. Then the corresponding distribution function F' is absolutely continuous.
Moreover, the density function f = F’ is bounded and uniformly continuous on R and it is given

by

f(z) ! /OO e Ty (t)dt, x €R. (8.2.3)

:% .

Proof. Under the assumption, the integrand on the right-hand side of (8.2.1) is dominated by
an absolutely integrable function. Then we can write
1 [ sin(ht
Fla+ )= e -y = = [~ 2200

7T—OO

e~y (t)dt

whenever x+h € Cp. Taking the limits of both sides as h — 0+, we obtain F(z) — F(x—0) = 0.
It follows that F'is continuous on R. Using a similar argument on

F(x+h)—F(x—h) 1 /°° sin(ht)

2 o ¢ bt

—00
we conclude that F' is differentiable and

F@) = F(a) = = / ¥ i SO0 ity gy~ L / T ety dt.

= — im = —
21 J_oo h—0+ Bt 21 J_ o

Finally, we have

1 > —it(z —itx
[flz+h) = fl2)] < o | e TR — 7o (1) | dt
L% iy —ithy2
= 5/ |72 — eI |oo(t)| dt
1 [, .
= 77/ ‘Sln(th/Q)“(p(t”dt.
Then the uniform continuity of f follows by dominated convergence. O

8.3 Convolution of distributions

Let p1 and p; be two probability measures on (R, Z(R)). We can define a probability measure
won (R, ZA(R)) by

)
/f@muwz/pumu/f@rmmmum» feCR). (8.3.1)
R R R

It is not hard to show that p is the image of the product probability measure pq X o under the
mapping (z1,z2) — =1 + 2. (Homework.)
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Definition 8.3.1 The probability measure u defined by (8.3.1) is called the convolution of uy
and po and denoted by i * pe. We also write F' = Fy x Fy, where F, F7; and F5 denote the
distribution functions of u, p; and ps, respectively.

Theorem 8.3.1 Let u, p1 and us be three probability measures with characteristic functions
p, w1 and s, respectively. Then p = p1 * po if and only if p = p1pa.

Proof. Suppose first that g = p1 * po. Then we have (8.3.1). Clearly, this equality also holds
for a bounded continuous complex function f. In particular, we have

o(t) = / i (dr) = / i (dy) / ) 1 () = oo (£)ipalt)

for all t € R. Conversely, suppose that ¢ = p1ps. Let v = uq * o, and let 6 be the characteristic
function of v. Then from what we have shown above it follows that 8 = w109 = . By the
uniqueness of the characteristic function we have v = p. O

By applying Theorem 8.3.1 successively we see that, if ¢ is a characteristic function, so is
©F for each integer k > 0. Then for any A > 0, the function

Alp=1) *AZ k'go (8.3.2)

is also a characteristic function.

Proposition 8.3.1 If F = I} x Fy, then

F(z) = /OO Fi(z —y)dF(y), z €R. (8.3.3)

— 00

Proof. Suppose that F'is defined by (8.3.3). Let [a, b] be an arbitrary closed bounded interval
in R, and let
a=2Tpo<Tp1 < <Tpk, =b

be a sequence of subdivisions of [a, b] such that

A, = max (Tpp — Tpp—1) — 0
n 1§/€§k’n( n,k n,k )

as n — o0o. From Proposition 3.2.5 it follows that

b
/ AR (x) = nh_{rolozem”’“ (zn k) — F(Tnp1)]
a

~ lim / Ze” "0k D) B (g — y) — F1 (01 — 9)]edFa(y)

n—oo
0 k=1

— /_ . [ /a _yy itxdF1($):| M dF(y).

Let ¢, ¢1 and @9 denote the characteristic functions of F', F; and F3, respectively. Then we can
take the limits of both sides of the above equality as a — —oo and b — oo to obtain ¢ = ¢1p,.
Then the result follows from Theorem 8.3.1 and the uniqueness of the characteristic function.
O
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Proposition 8.3.2 Let p > 0 and let u and v be probability measures on R. Then

/ |z|Pu* v(dr) < oo (8.3.4)
R
holds if and only if

/R|ac|p,u(dx) —|—/R|x|p1/(dx) < 00. (8.3.5)

Proof. Suppose that (8.3.5) holds. Let ¢, =1 for 0 < p < 1 and ¢, = 2P~! for p > 1. From
Fubini’s theorem it follows that

Jlabusvian) = [ wian) [ fo v
o [ ntda) [ (ol + ()

cp[/ |x|Pu(dx) + /|y|p1/ d:r}
Conversely, if (8.3.4) holds, we have

[ i) [ 1o+ yrutdn = [ farpsvian) <o

/ @+ ylPu(dy) < oo
R

for p-a.e. x € R. Taking any x € R for which the above is true we find

IN

It follows that

/Iy!pV(dy) < cp/(lw+y|”+lx\p)V(dy)
R R

= cp/ |z + y[Pr(dy) + cplz|P < oo.
R

/R 2 [Pu(dz) < oo

That proves the desired result. O

By symmetry we see that

8.4 Continuity Theorem

In this section, we prove Lévy’s continuity theorem, which gives a necessary and sufficient
condition for the complete convergence of a sequence of probability distribution functions.

Lemma 8.4.1 For any o € R we have

/Oolcosz: T
7261.%:*.
0 T 2
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Proof. By integration by parts,

T1—cosx 1—cosz|t T ging
72dx =—| + dz.
0 A xT 0 0 A
Then the desired result is reduced to Lemma 8.2.1. O

Lemma 8.4.2 Let F' be a probability distribution function with characteristic function ¢. Then

we have
h 0 1 (% 1—cos(ht)
/0 F(y) dy — /_h F(y)dy = 7T/_OO —e(t)dt (8.4.1)

for every h > 0.

Proof. Let a > 0 and let G be the uniform distribution on [—a,a] with characteristic function
0(t) = sin(at)/at. The convolution H = F * G is given by

[e’e] a T+a
H(z) = / Flz — y)Gldy) = — / Flz - y)dy = — F(2)dz, (8.4.2)

o 2a J_, 2a Jp_u

which is continuous on R. Let 1 be the characteristic function of H. From Theorem 8.3.1 it
follows that

sin(at
v(t) = p(0)(t) = o) ).
Applying the inversion theorem to H and ¢ we obtain
1 (T sin®(at) _
H —H(z—a) = lim — ro(t)dt
@ra)=Ha—a) = fm [ S
_ 1 /°° 1 — cos(2at) e~ (1)t

2wa J_ o 12

In particular, we have
1 [>*1- ht
H(h/2) — H(—h/2) = h/ L= coshl) pyar.
T

On the other hand, from (8.4.2) we obtain

h 0
H(h/2) — H(—h/2) = ;L/O F(2)dz 2/ F(2)dz,

—h

Then the desired equality follows. 0

Theorem 8.4.1 (Lévy) Let {F,,} be a sequence of probability distribution functions with char-
acteristic functions {¢y}. Then {F,} converges completely to a probability distribution function
F if and only if ¢, — some ¢ on R as n — oo and ¢ is continuous at t = 0. In this case, the
limit function ¢ is the characteristic function of F.
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Proof. Suppose that F,, % F. From Theorem 7.2.2 it follows that ¢, (t) — o(t) for all t € R as
n — 00, where ¢ is the characteristic function of F'. Conversely, suppose that ¢, — ¢ on R and
¢ is continuous at t = 0. Since {F},} is a sequence of probability distribution functions, Helly’s
theorem implies the existence of a subsequence {F), } which converges weakly to a bounded
distribution function F'. We show that F' is a probability distribution function. From Lemma

8.4.2 we obtain
h 0 0o
1 1 — cos(ht
| Butwitn= [ = [ L coslhd) (bt

T J oo 12

for every h > 0. By dominated convergence we can let k& — oo in the above equality to obtain

h B 0 1 % 1—cos(ht)
/OF(y)dy /F(y)dy— / ————p(t)dt.

2
—h ™ J 0o t

Dividing both sides by h, we have

3y Py - [ ) Fy| =3 [ IS (3 (8.4

- —00

Since ¢ is continuous at ¢ = 0, we have
lim ¢(t/h) = ¢(0) = lim ¢,(0) = 1.
h—o0 n—oo

Letting h — oo in (8.4.3), we obtain

1 [ 1- cost
F(—l—oo)—F(—oo):/ S g = 1.

T ) o 2

Then F' is a probability distribution function. From the first part of the proof we conclude
that ¢ is the characteristic function corresponding to F. Now suppose that {F,} contains
another subsequence which converges to a limit, say F*. Proceeding as above, we see that F™*
is a probability distribution function and ¢ is the corresponding characteristic function. By
the uniqueness theorem it follows that F' = F*, which implies that every weakly convergent
subsequence of {F},} has the same limit F. This shows that F,, 5 F and ¢ is the characteristic
function of F. g

Theorem 8.4.2 Let {F,} be a sequence of probability distribution functions with characteristic
functions {p,}. Then {F,} converges completely to a probability distribution function F if and
only if ¢, — some ¢ uniformly on each bounded interval. In this case, the limit function ¢ is
the characteristic function of F.

Proof. See Laha and Rohatgi (1979, p.156-158). O

8.5 Criteria for characteristic functions

In this section we derive some important necessary and sufficient conditions for a complex-valued
function on R to be a characteristic function. For this purpose we first introduce the concept of
a positive definite function on R , which is due to Bochner.
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Definition 8.5.1 Let ¢ be a complex-valued function defined on R. Then ¢ is said to be
positive definite on R if the inequality

n
k=11

holds for all finite sets {t1,--- ,t,} C R and {wy, -+ ,w,} C C.

wkwlgp (tx —t;) >0 (8.5.1)

\gE

We note the following elementary property of a positive definite function.

Proposition 8.5.1 If ¢ is a positive definite function on R, we have: (a) ¢(0) > 0; (b) p(—t) =
@(t); (c) let)] < ¢(0).
Proof. (a) This follows by setting n =1, t; = 0 and wy = 1 in (8.5.1).
(b) Setting n =2, t; =0, tg =t, w; =w and we = 1 in (8.5.1) we see
(1 + [w[*)(0) + wip(—t) +wep(t) > 0.

Then we use (a) to see that wp(—t)+wp(t) is real. Now set w = 1 and w = ¢ = y/—1 successively
to see that p(—t) + ¢(t) = a and p(t) — p(—t) = ib for real numbers a and b. It follows that
20(t) = a + ib and 2p(—t) = a — ib, yielding (b).

(c) We first consider the case where p(0) = 0. Setting n =2, t; =0, t2 = ¢, w1 = ¢(t) and
we = —1 in (8.5.1) and using (b) we get
0 < (lp(®)] + )p(0) — p(t)p(—t) — B(t)p(t) = —2|p(t)[*.

Then ¢(t) = 0 for all ¢t € R. When ¢(0) > 0, we set n =2, t; =0, to = t, w1 = ¢(t)/¢(0) and
wo = —1 to get

2 = 2
0= (105 +1)000) - 20 - B o) = o(0) - 20
which yields (c). O

By Proposition 8.5.1, if a positive definite function ¢ satisfies p(0) = 0, then p(t) = 0 for all
t € R. We say a positive definite function ¢ is is normalized if ¢(0) = 1. Note that a positive
definite function need not be continuous. As an example, we can consider the function defined
by ¢(0) =1 and ¢(t) = 0 for ¢t # 0. We shall see, however, that if a positive definite function is
continuous at the origin, it is a characteristic function and hence uniformly continuous.

Lemma 8.5.1 Let {6(s) : s = 0,£1,%2,...} be a sequence of complex numbers such that
6(0) =1 and

Zn: En:wk@lg(k — l) >0 (8.5.2)

k=0 =0

for every finite set {wog,w1,...,wn} C C. Then there exists a probability distribution function G
concentrated on [—7, 7] such that

0(s) = / e dG(z), s=0,£1,2,---. (8.5.3)
[=.m]
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Proof. From (8.5.2) we obtain

n—1ln—1

1 .
e —ilk=Dzg(p 1) >0 > 1 R. 8.5.4
gn(T) nkzzoge (k—1) >0, n>1lxé€ (8.5.4)

Observe that the integer e~ *6(r) occurs in N — |r| terms of the sum in (8.5.4) for —N + 1 <
r < N — 1. Hence we can rewrite (8.5.4) as

n

gn(x) = Z (1 B T)eme(r) > 0. (8.5.5)

Multiplying both sides of (8.5.5) by €% for an integer s € [~n,n| and integrating with respect
to the Lebesgue measure on [—m, | we obtain

/7r €15 g, (z)dx = zn: ( —|Tn|>0(r)/

—r r——n -

' Ty = 27T< - H)9(5)

n

Since 0(0) = 1, the formula

Gn(x) - 1[71',00)('%') + 1[77r,7r)(m) ! /x gn<y)dy

Pz -

defines a distribution function G, which determines a probability measure concentrated on
[—m, 7. It follows that

(1 . @)9(5) — / 6isszn(l‘), —-n<s<n. (856)
n [_777”]

By Helly’s theorem, it is easy to see that {Gj}contains a subsequence {Gj, } that converges
weakly to a probability distribution G concentrated on [—m, 7]. From (8.5.6) and the Helly-Bray
theorem we get

(s) :/ e dG (x), s=0,%1,---.
[_7(771']

This completes the proof. O

Theorem 8.5.1 (Bochner) Let ¢ be a complex-valued function defined on R. Then ¢ is a
continuous, normalized and positive definite function on R if and only if ¢ is the characteristic
function of a probability distribution function.

Proof. Suppose that ¢ is the characteristic function of a probability distribution function F'.
Clearly, ¢ is continuous on R and ¢(0) = 1. For {¢1,--- ,t,} C Rand {w1, -+ ,wp} C C we have

n n

DO wkmplty —t) = ZZ%@/ =T qp ()

(&
k=1 I=1 k=1 1=1 R

n
= / ‘ E Wkelth
R =1

2
dF(z) > 0,
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which proves (8.5.1). Conversely, let ¢ be a continuous, normalized and positive definite function
on R. We note that for each integer n > 1 the sequence {p(s/n) : s = 0,£1,+2,---} satisfies
the condition of Lemma 8.5.1. It follows that there exists a probability distribution function G,
concentrated on [—m, 7] such that

o(s/n) = / e dGy (), s=0,£1,£2,--- (8.5.7)
[—7‘(,71’]

Set F,(x) = Gp(z/n). Then F), is a probability distribution function concentrated on [—nm, nr].
Let ¢, be the characteristic function of Fj,. We have

on(t) = / T dF, (z) = / e AG,, (y). (8.5.8)
[—nm,nm] [—m,7]
It follows from (8.5.7) and (8.5.8) that
o(s/n) = on(s/n), s=0,+1,£2,--- (8.5.9)

Let t € R and n > 1 be fixed. Then there exists an integer k = k(¢,n) such that 0 < 6,,(t) :=

t —k/n <1/n. We also have
-] = fen(00+5) -en(2)

/ €002 _ 114F, (2)
[—nm,nr]

' 1/2
|:/ |619n(t)x - 1|2an(1:):|
[—nm,n7]

_ [2 /[m,m][l _ cos(@n(t):v)]an(m)] "

Note that 1 — cos(fz) <1 —cos(z/n) for 0 < 0 < 1/n and —n7 < z < nz. It follows that
a-eu()| = [of [ (@ere]

= {lren (N

= {loree (I}

where we used (8.5.9) for the last equality. Since ¢ is continuous on R and ¢(0) = 1, we conclude
that

IN

IN

IN

Jim o) ()| =0
Now we note that
enlt) = [on®) = en ()] +00(3)

k k
- [ (5] #of2) -t
[@n() Sonn Spn — p(t)
as n — 00. Then the continuity theorem implies that ¢ is a probability characteristic function.
O

By Bochner’s theorem, if ¢ is a characteristic function, @, |p|? and Re ¢ are also characteristic
functions.
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Theorem 8.5.2 (Cramer) Let ¢ be a bounded, continuous and complex-valued function on R.
Then ¢ is a probability characteristic function if and only if p(0) = 1 and

U(z,T) / / e dsdt > 0 (8.5.10)

for every T > 0 and = € R.

Proof. Let ¢ be the characteristic function of a probability distribution function £. Then
©(0) = 1 and by Fubini’s theorem,

T T
Y(x, T) = / / [/e’(st)de(y)]ez(St)xdsdt
0 0 R
T . T .
= / [/ ezs(m+y)ds] [/ e_Zt(x"'y)dt] dF(y).
R 0 0

Writing z = z 4+ y we have

Tisz = Tcos sz) +isin(sz s—lsinsz — 1 cos(sz
| emas = [ feos(se) +isin(s2)lds = Zlsin(s2) - cos(sz)

= %{sin(TZ) +i[1 — cos(T'2)]}.

It follows that

T T
/ eiszdg/ e UEdt = %{sinQ(Tz) +[1 = cos(T2)]?} = %[1 — cos(T'z)].
0 0

z

Thus we have

o) =2 [ =TS ar o

This proves (8.5.10). Conversely, suppose that ¢ is a bounded, continuous and complex-valued
function such that ¢(0) =1 and (8.5.10) holds. We have

_ _ i(s—t)z >
flz,T) := w 27TT/ / (s —te dsdt > 0.

Writing u = s — t and v = t we get by some simple computation that

T—u
flz, T) = ﬁ du/ dv+ﬁ du/ dv
1
™ —0o0
where
pr(u) = Lu<ry (1= |ul/T)o(u).
For every W > 0 set
W ’.’L“ itx
J(tT, W) = /_W (1 - W)f(x,T)e dz. (8.5.11)
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By interchanging the order of the integration and using integration by parts it is not hard to

show that
1 W ’I" o0 .
.T _ 1 i(u+tt)z
J(t;T, W) by /_ ( —) [/_ or(u)e du] dx

Y 1—cos[(t+u)1;;]
N 7'('/_00 (t+u)2W

or(u)du.

Now writing v = (¢ + u)W we obtain

1 [ 1—cosv v

Then the dominated convergence theorem implies

. 1 [ 1—-cosv . )
&%J@fw>=w/ Tz ey —hdv

— 00

2 [*°1—cosv
= - _ —t)dv = —t),
W/O sz er(=t)dv = or(-1)

where we have used Lemma 8.4.1 for the last equality. Since f(z,T) > 0, we see from (8.5.11)
that J(¢;T,W)/J(0;T,W) is a probability characteristic function for every W > 0. Since
©r(0) = 1, by the continuity theorem we conclude that ¢r(—t) and hence pr(t) is a prob-
ability characteristic function. Clearly, ¢(t) = limr .~ @7(t), so that ¢ is also a probability
characteristic function. O

8.6 Criteria for absolute continuity

In this section, we give an additional set of useful sufficient conditions for a function to be the
characteristic function of an absolutely continuous distribution; see also Theorem 8.2.2.

Theorem 8.6.1 (Pdlya) Suppose that ¢ is a real-valued continuous function on R satisfying
the following condition: (i) ¢(0) = 1; (ii) ¢(—t) = ¢(t); (iii) ¢ is convex on (0,00); (iv)
limy o ¢(t) = 0. Then ¢ is the characteristic function of an absolutely continuous probability
distribution function.

Lemma 8.6.1 Under the assumption of Theorem 8.6.1, the function ¢ is a.e. differentiable
and the derivative has a version ¢' that is non-positive and non-decreasing on (0,00) and
limy 00 ¢'(t) = 0.

Proof. By Lemma 3.4.1, the function ¢ has a right-hand derivative ¥ on (0,00). Suppose that
U(tg) > 0 for some ty > 0. Then t(t) > 0 for all ¢ > ty. Consequently ¢ is strictly increasing
for t > tg. For ty > to >ty we have by the convexity of ¢ that

t1 + to 1
o(F52) < Sleltn) + olt2))
Letting to — oo and using property (iv) we see that ¢(t1) > 0 for all ¢; > ¢y, which contradicts
(iv) since ¢ is strictly increasing for ¢ > ¢y. It follows that ¢ (t) < 0 for every ¢ > 0. Then ¢ is
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non-increasing on (0, 00), so it differentiable a.e. on (0,00). Clearly, the derivative has a version
¢ that is non-positive and non-decreasing. Let a = limy—, ¢'(t). Suppose that o < 0. From
¢'(t) < a for all t > 0 we obtain

o(t) = p(0) +/0 ¢'(s)ds < 1+ at.

Letting t — oo, we see this inequality contradicts (iv). That proves lim; . ¢'(t) = 0. O

Lemma 8.6.2 (Pringsheim’s Lemma) Let ¢ be a non-increasing function on (0, 00) which is
integrable over every finite interval (0,a). Suppose further that limy_,o, ¢(t) = 0. Then for every
t > 0 we have the inversion formula

%[@(t +0)+¢t—0)] = % /OOO cos(tu) [/000 ©(y) cos(uy)dy | du.

Proof. See e.g. Titchmarsh (1937, p.16). O

Proof of Theorem 8.6.1. Let ¢ be given by Lemma 8.6.1. For T > 0 we can use integrating by
parts to see that

sin(Tx T
(Tz) 1 /O sin(tz)¢ (£)dt.

x T

T
/ cos(tz)p(t)dt = o(T)
0
Since ¢'(t) < 0, the properties (i) and (iv) imply that —¢'(¢)dt determines a probability measure
on [0,00). Then the function

F) = / T et (pydt = /0 " cos(tr)p()dt

27 J_ o T

is well-defined. By Pringsheim’s Lemma, we obtain

o0

o(t) = 2 /0 " cos(te) f () de = / ¢t f () da

—00

We shall prove that f is a probability density function. From (i) we get

| t@ds =0 =1,

For x > 0 we can integrate by parts to obtain

flx) = 7'(‘71.% 000 sin(tz)[—¢'(t)]dt = % 000 sinu[ - @’(%)}du
o (k1)
= Wiﬂ;/’m sinu[—cp’(%)}du
= % ﬂsinu{ i(l)k[d(uzkﬂ)}}du.
0 k=0

By Lemma 8.6.1, the function —¢’ is non-negative and non-increasing on (0, o). It follows that
f(z) >0 for x > 0. Since f is even, we also have f(z) > 0 for x < 0. We have proved that ¢ is
the characteristic function of the probability density function f. O
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Example 8.6.1 It is not hard to show that the conditions of Theorem 8.6.1 are satisfied by the
following functions:

. 1 for 0 < |t| <1/2,
(@) »(t) = { 1/4]¢) for [t] > 1/2.

. (1 for [t < 1,
(i) o(t) = { 0 for |t| > 1.

Note that the two distinct characteristic functions coincide over a finite interval.



92

CHAPTER 8. CHARACTERISTIC FUNCTIONS



Chapter 9

Signed-Measures and
Decompositions

9.1 Hahn and Jordan decompositions

Definition 9.1.1 Let (£2,.%) be a measurable space. A mapping v : .F — R is called a signed
measure if () = 0 and for any countable sequence of disjoint sets A,, C .% we have

o( G A,) = iuz(m. (9.1.1)
n=1 n=1

We say D 6 F is a positive set of ¥ if Y(A) > 0 for all A € F satisfying A C D. Similarly, we
call G € Z a negative set if Y(A) <0 for all A € .F satisfying A C G.

Proposition 9.1.1 Suppose that @ZJ is a signed measure on (2, %) and ¥(A) < 0 for A € Z.
Then there is a negative set G € .F such that G C A and ¥(G) < (A).

Proof. Let ag = sup{¢)(B) : B € % and B C A}. Then we have ag > ¢(0) = 0. If ag = 0, we
can take G = A so that ¢(G) = 9 (A). Otherwise, we have ap > 0. For each integer k > 1/
we have 1/k < ag so there exists B € .# such that B C A and ¢(B) > 1/k. Let k; be the
smallest positive integer such that there is A; € % with A1 C A and ¢ (A1) > 1/k;. Tt follows
that

YA\ A1) = P(A) —¥(A1) <Y(A) = 1/k1 <¢(A) <0

Let oy = sup{¢(B) : B € % and B C A\ A1}. If oy = 0, we can take G = A\ A; and the
procedure finishes here. In this case, we have ¢(G) < 1)(A). Otherwise, we have a; > 0. Then
the argument just applied to A is applicable to A\ A;. We may continue the procedure. If it
finishes at a finite time, we can take G = A\ |J;_; 4; for some n > 1. Otherwise, we get an
infinite sequence of positive integers {k,} and an infinite sequence of disjoint sets {A,} C .F#
with A, C Ag. Setting G = A\ U, A, we get

0> (A +Zw (G)+Zki,
n=1 "

93
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so that 1/k, — 0 as n — oo. Clearly, for each B € % satisfying B C G we have ¥(B) < 0.
Then G € % is a negative set of ¢ and ¥(G) < ¢¥(A). O

Theorem 9.1.1 (Hahn) Let ¢ be a signed measure on (2,.#). Then there exists D € .% such
that (A D) >0 and Yp(A( D) <0 for all A € F.

Proof. From the additivity of ¢ it follows that ether —oco < ¥(A) < oo for all A € Z, or
—o0 < P(A) < oo for all A € .. Without loss of generality, we assume ¥(A) > —oo for all
A € 7. Let ¢4 denote the class of negative sets of . Clearly, ¢ is closed under countable unions.
Let 8 = inf{¢(B) : B € 4}. We choose a sequence {Gy,} C ¢ such that lim,, . ¥ (G,) = 3 and
let G =U,2,Gn and D = G°. Clearly, G € ¢ and

B <Y(G) = (Gn) + (G \ Gn) <P(Gh)

for each n > 1. Tt follows that 0 > 8 = ¥(G) > —oco. To complete the proof it suffices to show
P(A) > 0 for all A € F satisfying A C D. If this is not true, there exists some Ay € # such
that Ag C D and ¥ (A4p) < 0. By Proposition 9.1.1, there exists Gy € ¥ satisfying Gy C Ap and
P(Gp) < P(Ap) < 0. Then Gy UG € 4 and

Y(Go U G) = 9¢(Go) +¢(G) < B,
which contradicts the definition of . O

The decomposition 2 = D U D¢ given in Theorem 9.1.1 is called a Hahn decomposition of €2
with respect to .

Example 9.1.1 Let f be a measurable function on the measure space (£2,.#,u) such that
fQ fdu exists. Then

B(A) ::/Afdu, Ae 7, (9.1.2)

defines a signed measure . In this case, {f > 0} U{f < 0} and {f > 0} U{f < 0} are both
Hahn decompositions of 2.

The last example shows that the Hahn decomposition is usually not unique. However, we
have the following

Proposition 9.1.2 Suppose 2 = Dy U D{ = Dy U DS are two Hahn decompositions of §) with
respect to 1. Then we have

Y(ANDy) =v(ANDsy) and Y(AN DY) =y(ANDS) (9.1.3)
forall Ae %.
Proof. Observe that AN (D; \ Da) = AN Dy N DS C Dy, so that (AN (Dy\ D2)) > 0. From

AN (D;\ D2) C D§ we have (AN (D1 \ D)) < 0. It follows that ¢ (AN (D; \ D2)) = 0. By
symmetry we get (AN (Dy\ D1)) = 0. Consequently,

PANDy) =¢(AND1) U (AN (D2 \ D)) = (AN (D1 U Dy)).

Similarly we get 1(A N Dy) = (AN (D1 U D3)) and so (AN Dy) = (AN Dy). The second
equality in (9.1.3) follows by symmetry. O
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Theorem 9.1.2 (Jordan) Let 2 = DU D¢ be a Hahn decomposition with respect to the signed
measure . Then

YT (A)=(AND) and v~ (A)=—-(AND), Ac.Z,

define two measures " and ¥~ on (9,.%). Moreover, 1)t and 1~ are independent of the
particular choice of the Hahn decomposition, at least one of them is finite and ¢ = ™ — ).

The representation ¢p = 1™ — 1)~ is called the Jordan decomposition of 1. The measure
[t := T + 9~ is called the total variation of 1. Let f be a measurable function on (Q,.%). If

both
/Q fdipt  and /Q Fdp~

/Q fdy+ - /Q fdy~
/Q fdi = /Q fdt - /Q fdv~

and call it the integral of f with respect to the signed measure 1.

exist and

is well-defined, we set

9.2 Radon-Nikodym derivatives

Definition 9.2.1 Let 1) and v be signed measures on (2, .%). We say ¢ is absolutely continuous
with respect to v and write ¢ < v if ¥(A) = 0 for all A € .Z with |y|(A) = 0. If ¥ < v and
v < 1, we say ¥ and v are equivalent and write ¢ ~ 7.

Example 9.2.1 Let g and h be two measurable functions on (Q,.%, i) such that [, gdp and
fQ hdp exist. Let 14 and 1)y, be two signed measures defined by

Yg(A) = /Agdu and p(A) = /Ahdm Ae Z.
If u({g # 0} \ {h # 0}) =0, then ¢, < 15,. (Homework: Prove this result.)

Theorem 9.2.1 Let ¢ and v be signed measures on (§,.%). Then the following properties are
equivalent: (i) ¢ < v; (i) v* < v; (iii) & < [y]; (iv) || < |y

Proof. “(i) = (ii)” Let & = D U D¢ be the Hahn decomposition with respect to ¢. If A € .7
and |v|(A) = 0, we have |y[(AN D) = |7|(AN D¢ = 0. Then (i) implies that (AN D) =
(AN D) = 0, that is, YT (A) = ¢~ (A) = 0. This shows that ¥+ < v and ¢~ < 7, proving
(ii). From the definition of the absolute continuity we know “(ii) = (iii)”. The implications
“(ill) = (iv)” and “(iv) = (i)” follow from the relations [¢|(A) = T (A) + ¢~ (A) and

0< [p(A)] =[¢7(4) =~ (A < ¢T(A) +97(4) = [¢|(4)

for every A € . O
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Theorem 9.2.2 Let ¢ and v be finite measures on (2, %) such that 1) < ~. Then for each
e > 0, there is 6 > 0 such that v(A) < ¢ implies (A) < ¢ for all A € F.

Proof. Suppose that for some €9 > 0 it is possible to find {B,} C .# such that v(B,) < 1/2"
and ¢ (By) > €o. Let B =", Uz, Bx. Then we have

¥(B) <Y (Br) =0 (n— o)
k=n

and hence v(B) = 0. On the other hand, we have

n—oo n—oo

(B) = tim ¢( | By) > limsup p(B,) > eo.
k=n

Since those contradict the relation ¢ < -, we have proved the desired result. O

Theorem 9.2.3 Suppose ¥ and ~y are finite measures on (2,.%) with ¢ < v and ¥ # 0. Then
there exist a constant € > 0 and a positive set A € .F for 1) — €7y such that y(A) > 0.

Proof. Let Q = D,, U D¢ be a Hahn decomposition with respect to the signed measure ¢ —~/n.
Then D, is a positive set for ¢ —~/n. Set Dy = J,- | Dy, and D§ = (2, DS. Since D§ C D¢,
we have ¢(D§) —v(D§)/n < 0 and consequently 0 < ¢ (Dg) < v(Dg)/n. Then ¢(D§) = 0. Since
¥ # 0, we must have 1(Dy) > 0 and so y(Dg) > 0 by the absolute continuity 1 < 7. Therefore,
there is some n > 1 such that vy(D,) > 0. Now the result follows with e = 1/n and A = D,,. O

Theorem 9.2.4 (Radon-Nikodym) Let v and ¢ be o-finite signed measures on (§2,.%#) such
that ¢ < «. Then there is a real-valued measurable function f on (,.%#) such that

q,b(A):/Afd% Ae 7. (9.2.1)

Moreover, the function f is y-a.e. unique.

Proof. Step 1) We first assume that both v and ¢ are finite measures. Let % be the class of
non-negative measurable functions f on (2,.7) satisfying

[ 1<), aes
A
Then we have
a::sup{/gfdfy:fe%} <P(Q) < 0.

Choose {f,} C % such that
lim frndy = a.

n—oo [¢)

Let g, = maxj<i<p fr and

En,k = {fl < gn}m"'m{f/@—l < gn}m{fk :gn}'
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Since Q = |J;_; En, for any A € .# we have

/ gndy = Z/ gndy = Z/ frdy < Z¢(A NE, k) =1%(A).
A k=1 AﬂEmk k=1 AmEn,k k=1

Let fo = sup,;>q fn = lim, . gn. By the monotone convergence theorem,

[ gor= i [ gy <o), aes
A =00 J A

and consequently fy € % . Moreover, we have fQ fody = a < o0, so v-a.e. fo < oo. Setting
[ = fol{f,<ocy We have y-a.e. f = fo and so f € %. Now define the measure 19 on (2,.%#) by

Yo(A /fdv P(A /fgdfy, Ae 7.

Clearly, 1y < 1 < 7. We shall prove 1y = 0, which yields the representation (9.2.1). If this is
not true, by Theorem 9.2.3 there exist € > 0 and a positive set A € .% for 1)y — ey such that
v(A) > 0. Thus

SANB) < h(ANB) = w(AnB) = [ oy

for each B € .#. It follows that
/(f+51A)d7 = / fdvy+ey(ANB) :/ fd7+/ fdy+ey(AN B)
B B B\A ANB

S [ i AN B) S p(B\A) +u(AN B) = U(B)

and consequently g := f +¢e€ly € % . Since

/gdv= / fdy+ey(A) = a+ey(A) > a,
Q Q

that contradicts the definition of f.

Step 2) Suppose that v and 1 are both o-finite measures. Then there is a sequence of disjoint
sets {Q,} C .Z such that Q = J;7; Q, and v(Qy,) + ¥(,,) < oo for each n > 1. For any n > 1
we can define finite measures v, and 1, by v, (A4) = v(ANQ,) and P,(A) = P(ANQ,) for
A € #. Clearly, we have ¥, < v,. By the last step, there is a sequence of non-negative
measurable functions {f,} such that ¢,(A) = [, fdy, for all A € Z. It follows that

bA) = Zwmﬂ Z%Arm Z/m fun
- ; /A | = Z / Lo, fudy = /A ;mnfndv.

Then we get (9.2.1) by setting f =Y >2 | 1o, fn-

Step 8) Suppose that v and 1 are both o-finite signed measures. Let v = v — v~ and
¢ =T — )~ be the Jordan decompositions for v and 1), respectively. Then we have ¢ < ||
by Theorem 9.2.1. By the last step, there are non-negative measurable functions fi such that
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YE(A) = [, f+d|y| for all A € Z. Let Q = D U D° be a Hahn decomposition for 4. For any

A € Z# we have
/ frdn] - / f-dp|
A A

= frdyt + / frdy™ — / fodyt — / fody™
AND AND¢ AND AND¢

— [ nar- [ gy [ pavs [ pa
AND ANDec AND ANDec

= [ = 11+ (- = 1o

¥(A4)

Then (9.2.1) follows with f = (f+ — f-)1p + (f— — f4+)1pe.

Step 4) Suppose that fo and fo are two measurable functions satisfying (9.2.1). Let Q =
D U D¢ be a Hahn decomposition for ~. It follows that

/ (fz—fl)dVJr:/ (f2 = f1)dy =0,
{f2>f1} {fe>f1}nD

which implies vt ({f2 > fi}) = 0. By symmetry we have v ({f1 > fo}) = 0 and hence
Yt({f2 # f1}) = 0. A similar arguments shows that v~ ({f2 # f1}) = 0. Consequently, we have
|7|({f2 # f1}) = 0. That proves that |y|-a.e. uniqueness of the function f satisfying (9.2.1). O

Definition 9.2.2 If the signed measures ¢ and ~ are related by (9.2.1), we call f a Radon-
Nikodym derivative of v with respect to v and write

f:@ or dy = fdy.
dry

Of course, the Radon-Nikodym derivative is only |vy|-a.e. unique.

Theorem 9.2.5 If v, v and p are o-finite signed measures on (),.%) such that ) < ~ and
v < i, then ¥ < u and p-a.e.

dy _ dpdy

= . 9.2.2
dp  dydp ( )

Proof. The assertion 1 < p is obvious. Thanks to the Hahn decompositions, in showing the
relation (9.2.2) we may and do assume p, v and v are all measures. Accordingly, we have

Let {f.} be a sequence of simple functions such that 0 < f,, T f. For each A € .7, we have

lim fnd’y:/fd’y and lim/fngd,u:/fgdu. (9.2.3)

On the other hand, for B € . we have

/1de—7(AﬂB)—/ gdu—/ 1pgdu,
A ANB A
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/A fudry = /A fugdp.

w(A)—/Afd'y—/Afgdu,
proving (9.2.2). O

which implies that

From (9.2.3) we get

Corollary 9.2.1 Let ¢ and vy be o-finite signed measures on (2,.%) such that ) < ~y. If f is
a measurable function on (Q,.%) for which [, fdi) exists, then

/Q f = /Q fflfdv.

Proof. (Homework.) O

9.3 Lebesgue decomposition

We say two signed measures ¢ and v on (Q2,.%) are singular to each other and write v L 1, if
there exists F € .7 such that |y|(E) = [¢|(E€) = 0. Consequently, v L v if and only if |y| L [].

Theorem 9.3.1 (Lebesgue) For any o-finite signed measures v and ¢ on (,.%), there are
two uniquely determined o-finite signed measures 1y and 1 such that ¥y L ~, ¥ < v and

o + 1 = .

Proof. As usual, we may assume both ~ and v are finite measures. Since ¢ < ~ + 1, by
Radon-Nikodym theorem, there is a measurable function fy such that

w(A)=Afod(v+¢):Afodv+Afod¢, Ae Z.

It is easy to see that (y +¢)-a.e. 0 < fy <1 and so -a.e. 0 < fo < 1. Let f = foljo<y<iy and
write B = {f =1} and F = E° = {0 < f < 1}. We define the finite measures ¢y and 1 by
Po(A) =yY(ANE) and Y1(A) = p(ANF) for A € .#. Then ¢ = 1)y + 11. Note that

B(E) = [E fiy + [E fdip = ~(E) + ().

and so y(F) = 0. It is then clear that 19 L~y. If v(A) = 0, then

/dwzwAmF): s+ [ giv= | fav
ANF

ANF ANF ANF
It follows that

/ (1— f)dy = 0.
ANF

But 1 — f > 0 on F, so we must have {)(AN F) = 0, that is, ¢1(4) = 0. That proves ¢ < 7.
Suppose that we also have ¥ = 1y + 11 with 19 L v and 91 < 7. Then ¥ — g = 91 — . If
we denote this measure by 7, then nn 1 v and n < . It follows obviously that n = 0, implying
Yo = to and 1 = 1. O
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Chapter 10

Conditional Expectations

10.1 Definition and examples

Let (Q,.%7,P) be a probability space and 4 a sub-c-algebra of .#. If X is a random variable
such that E[|X|] < oo, then

zp(G):/GXdP, Ged,

defines a finite signed measure ¢ which is absolutely continuous with respect to the restriction
of P on 4. By Radon-Nikodym theorem, there is an a.s. unique ¢4-measurable random variable
£ :Q — R such that

/§dP:/XdP, Ge¥. (10.1.1)
G G

We call € the conditional expectation of X given ¢, and denote it by E[X|¥¢]. For any A € .7, we
call E[14|9] the conditional probability of A given ¢, and denote it by P[A|¥¢]. If Y is another
random variable, we simply write E[X|Y] instead of E[X |o(Y)].

Proposition 10.1.1 Let X be a random variable such that E[|X|] < co. Then we have

(i) E[X|9] > 0 as. if X > 0 a.s.;
(i) E[aX|9] = aE[X|¥)] for any a € R;

(iii) E{E[X|¥]} = B[X];

(iv) E[X|9] = X as. if X is 9-measurable;

(v) E[X|9] = E[X] as. if X is independent of 4;

(vi) E[X|¥9] = E[X] a.s. if 4 = {0, Q}.
Proof. These are immediate consequences of the definition. O

101
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Proposition 10.1.2 Let a and b be real constants and X and Y be random variables. Suppose
that E[|X| + |Y|] < co. Then we have a.s.

E[aX +bY|¥9] = «E[X|¥Y] 4+ bE[Y|¥].
Proof. Clearly, aE[X|¥9] 4+ DE[Y'|¢] is ¥-measurable. By Corollary 3.2.3 we have
/G(aE[X|§4]+bE[Y]€4])dP _ a/GE[X|g]dP+b/GE[ng]dP
- a/XdP+b/ YdP:/(aX+bY)dP.
€] el G

That proves the desired result. U

Theorem 10.1.1 Let X and Y be random variables such that E[|Y| + | XY|] < oo exist. If X
is ¥-measurable, we have
E[XY|¥] = XE[Y|¥].

Proof. Since X is ¥-measurable, so is XE[Y|¥]. Then it suffices to prove
/ XE[Y|4]dP — / XYdP, Gew. (10.1.2)
G G
If X =1y for some H € ¢4, we have G N H € 4 and hence

/XE[YM]dP:/ E[Y|4]dP = YdP:/XYdP.
G GNH G

GNH

By taking the linear combinations we see that (10.1.2) holds if X is a ¥-measurable simple
function. If X and Y are both non-negative random variables, we may take a sequence of simple
functions { X, } such that 0 < X,, T X. By applying the monotone convergence theorem, we still
get (10.1.2). Finally, for a general X and Y we have

/XYdP = /X+y+dP—/X—Y+dP_/ X+Y_dP+/ XY dP
G G G G G
= /X+E[Y+|£¢]dP—/X—E[Y+|§¢]dP—/ XTE[Y ™ |¥4]dP
G G G
+/ X E[Y ™ |¥]dP
G
_ /(X+ _XOE[(Y* - Y )|¥]dP
G
= / XE[Y|¥]|dP
G

by Proposition 10.1.2, which proves the result. ]

Theorem 10.1.2 Let X be a random variable such that E[|X|] < oo, and let 5 and ¥ be
o-algebras such that 77 C 4 C %. Then we have

E[X|#)] = E{E[X|9]|2¢}. (10.1.3)
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Proof. Let H € 5#. By the definition of the conditional expectation,

/HXdP:/HE[X\%]dP

Since 7 C ¥4, we have H € 4 and hence

/HXdPZ/HE[X\g]dP

/E[X]%”]dP: E[X|¥]dP
H H

It then follows that

Certainly, E[X|7¢] is s¢-measurable, so (10.1.3) follows. O

Example 10.1.1 Suppose that (2, .7, P) is a probability space. Let 4 = o({U; : i € I}) for a
finite or countable partition {U; : i € I} C .% of Q with P(U;) > 0 for each i € I. Then for any
A € F we have

P(AJWLQ)

P(A|9)(w) = P(A|U;) = Tm)»

w e U (10.1.4)

This gives an interpretation for the random variable P(A|¥4)(w). The o-algebra ¢ can be
interpreted as the information obtained by observing a random system with different states
{U; : i € I} which has some influence on the event A. In this situation, (10.1.4) simply means
that the probability of A varies according to the different status of the system. To show (10.1.4),
define

n(w) = P(A|U;), w e U,.

From Example 1.1.2 we know that n is a ¢¥-measurable random variable. By Example 1.1.1,
each G € ¢ can be represented as G = J;; U; for a (finite or countable) set J C I. It follows
that

/1AdP = Y _P(ANU)) = ) PU)P(AU;)
G

jeJ jeJ

= / ndP = /ndP.
Ujes Us G

Then n = E[14]9] = P(A|¥) by the definition of conditional probability.

Example 10.1.2 Consider a probability space (Q2,.#,P). Let 4 = o({U; : i € I}) for a
countable partition {U; : i € I} C.Z of Q with P(U;) > 0 for each i € I. Clearly, for each i € I,
P;(4) :=P(A|U;), Ae 7 (10.1.5)

defines a probability measure on (£2,.%). Suppose that X is a random variable such that E[| X|] <
00. Then we have

E[X|¥](w /XdPZ, we U, (10.1.6)
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which gives a representation for the conditional expectation. Indeed, by Example 1.1.2,
{(w):/XdPi, wel;
Q

defines a ¢¥-measurable random variable . By (10.1.5), we have

(A N Uz)

P
Pild)=—pgy e AE7

and hence
/X(w)dPi(w) :P(Ui)_l/ X (w)P(dw).
Q U;

If G € 4 has the representation G = UjEJ Uj for J C I, then

/GXdP = > | XdP = ZP(Uj)/QXde

jes’U; jeJ

:/u UjgdP: /ngP.

JjEJ

By the definition of conditional expectation we get { = E[X|¥].

10.2 Some properties

Let (Q,.%#,P) be a probability space and let 4 C .% be a o-algebra.

Theorem 10.2.1 (Conditional Monotone Convergence Theorem) If X,, and X are non-negative
random variables such that E[|X|] < co and X, T X a.s., then E[X,,|¥4] T E[X|¥] a.s.

Proof. Clearly, E[X,|¥] 1 some ¥-measurable random variable Y < E[X|¥] a.s. For any G € ¥,
the monotone convergence theorem implies

/YdP =T lim E[X,|¥9]dP =7 lim XndP:/XdP.
G G n—oe Ja G

n—oo

Then we have a.s. Y = E[X|¥]. O

Corollary 10.2.1 For any sequence of disjoint events {A,} C .#, we have a.s.

P<nL;J1An

g) — Y P(4,/9).
n=1

Proof. (Homework.) O
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Theorem 10.2.2 (Conditional Fatou’s Lemma) Let {X,,} be a sequence of non-negative ran-
dom variables such that X := liminf, .. X, < oo a.s. and E[|X,| + | X|] < oo for every n > 1.
Then we have a.s.

E[X|¥9] < hnnilcng[X”M]

Proof. (Homework.) O

Theorem 10.2.3 (Conditional Dominated Convergence) Let X, and X be random variables
such that X,, — X a.s. Suppose there is a non-negative random variable Y such that E[|Y|] < oo
and |X,| <Y a.s. for each n > 1. Then E[X,|¥] — E[X|¥] a.s.

Proof. (Homework.) O

Theorem 10.2.4 Let X, and Xy be two random variables such that X; is ¥-measurable and
X is independent of 4. For a given bounded Borel function H(-,-) on R? define

h(iﬁl) = E[H(:L’l,Xg)], xr1 € R.
Then h(-) is a Borel function on R and a.s.

E[H (X1, X2)|9] = h(X1).

Proof. Clearly, X7 and X5 are independent of each other. Let Q2 denote the probability measure
on (R, Z(R)) induced by Xs. Then

h(z1) = : H (1, 32)Q2(dw2)

By Theorem 4.2.2 we see that h(-) is a Borel function on R. Let Y be a bounded ¢-measurable
random variable and let ) denote the probability measure on (R?, 2(R?)) induced by (X1,Y).
By the independence of (X7,Y) and X5, we have

E[H(X;, X2)Y] = /R2 Q(dﬂfl,dy)/RH(%,!Ez)yQﬂd@)
= [ hau@Udar.dy) = BRG]

which implies the desired result. O

Theorem 10.2.5 (Jessen’s inequality) Let ¢ be a convex function on R and X a random vari-
able such that E[|X| + |¢p(X)|] < oo exist. Then for any o-algebra ¢ C % we have a.s.

¢(E[X|9]) < E[p(X)|¥].

Proof. (Homework.) O
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Corollary 10.2.2 Ifp > 1 and E[X] exits, then a.s.

[EX|Z]]P < E[|X[|¢]" < E[X["|¢].

Proof. (Homework.) O

Proposition 10.2.1 Suppose that X and Y are random variables such that E[X? + Y?] < cc.
If'Y is ¥-measurable, then

E[(X —Y)?’] = E[(X - E[X|9])*] + E[(Y — E[X|9])*].

Proof. Observe that
(X -Y)? = (X -E[X|9)? + (Y - E[X|9])* - 2(X - E[X|9]))(Y —E[X|¥]). (10.2.1)

Under the assumption, each term in the above equation is integrable, so we may take the
conditional expectations given ¢. Since Y — E[X|¥] is ¥-measurable, we have

E{(X - EX|9])(Y - EX|¥9])|¥} = (Y - EX|9])E[(X — E[X|¥])|9] = 0.

Then the last term on the right hand side of (10.2.1) has expectation zero. That shows the
desired result. O

Corollary 10.2.3 If E[X?] < oo, then
Var(X) > Var(E[X|¥]) (10.2.2)

with equality if and only if X = Z for a 4-measurable random variable Z.

Proof. Setting Y = E[X] in Proposition 10.2.1 we obtain
Var(X) = E[(X — E[X|¥])?] + Var(E[X|¥]).

Then we have (10.2.2) with equality if and only if X ** E[X|¥], which holds if and only if
X = Z for a ¥-measurable random variable Z. O

10.3 Regular conditional probabilities

Let (92, #,P) be a probability space and ¢ a sub-o-algebra of .%. Recall that the conditional
probability P(A|¥) of an event A € .Z given ¢ is defined by

P(AY) = E[14|9].

We emphasis that P(A|¥) is only uniquely determined almost surely. It is easy to show that
a.s.

0<P(A9)<1 and P(Q¥)=1.
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By Corollary 10.2.1, for any sequence of disjoint events {A,,} C .# we have a.s.

P(QAn

However, these properties do not always imply that for a.e. w € €, the set function A —
P(A|9)(w) is a probability measure on (2,.#). The problem is that the exceptional null set for
(10.3.1) depends on the sequence { A, }, and there are usually uncountably many these sequences
in the o-algebra .#. We shall give some sufficient conditions that allow us to choose the random
variables P(A|¥) suitably so that A — P(A|¥) is a.s. a probability measure on .%.

g) - iP(An\g). (10.3.1)

Definition 10.3.1 A function @ : Q@ x .# — [0,1] is called a regular conditional probability
given ¥4 if
(i) for each w € Q, the set function A — Q(w, A) is a probability measure on (Q2,.7);
(ii) for each fixed A € .Z, the function w — Q(w, A) is ¥-measurable;
(iii) for each A € %, we have a.s.

P(Al9) = Q(, 4).

Proposition 10.3.1 Suppose there is a regular conditional probability Q(-,-) on (Q,.F) given
4. Let X be a random variable such that E[|X|] < co. Then we have a.s.

EIX[9]() = [ X&), ),
Q
Proof. If X =14 for some A € .7, for a.e. w € ) we have

E[l4|9](w) = P(A|9)(w) = Q(w, 4) = / 1a(w)Q(w, dw).

Q

The proof for the general case can be carried out by approximating arguments. ]

Definition 10.3.2 A function Qx : @ x B(R) — [0, 1] is called a regular conditional distribution
of the random variable X given ¢ if

(i) for each fixed w € 2, the set function B — Qx(w, B) is a probability measure on %(R);
(ii) for each fixed B € #(R), the function w — Qx(w, B) is ¥-measurable;
(iii) for every B € #A(R), we have a.s.
P(X{(B)|¥9) = Qx(w, B).
In particular, if a regular conditional probability function Q(,-) on (£2,.%) given ¥ exists,
we can define a regular conditional distribution of X by setting

Qx(w,B) = Q(w, X 1(B)), we QN Bec BR).
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Definition 10.3.3 A function Fx : Q x R — [0, 1] is called a regular conditional distribution
function of X given ¢ if

(i) for each fixed w € €, the function x — F(w, ) is a probability distribution function on R;
(ii) for each fixed z € R, the function w — F(w,x) is ¥-measurable;
(iii) for each z € R, we have a.s.

Fx(,x) =P{X < z}|9).

Proposition 10.3.2 A regular conditional distribution of X given ¢ exits if and only if there
is a regular conditional distribution function of X given ¢.

Proof. If Qx(+,-) is a regular conditional distribution of X given ¢, we may define a regular con-
ditional distribution function Fx by setting Fx(w,z) = Qx(w, (—00,x]). Conversely, suppose
there is a regular conditional distribution function Fx of X given 4. Then for each w € €2, the
probability distribution function Fx(w,-) determines uniquely a probability measure Q x (w, -)
on #(R). Let € denote the class of sets B € Z(R) such that w — Qx(w, B) is ¥-measurable,
and P(X~1(B)|¥9) = Qx(w, B) a.s. Then ¥ 2 & := {finite unions of left open and right closed
intervals}. Clearly, € is a monotone class and & is an algebra. By the monotone class theorem
we have ¢ 2 o(«) = A(R). Consequently, Qx is a regular conditional distribution of X given
9. O

Theorem 10.3.1 A regular conditional distribution of X given ¢ always exists.

Proof. By Proposition 10.3.2, it suffices to prove the existence of a regular conditional distribu-
tion function Fx of X given 4. Let Q = {r1,r2,- -} be an enumeration of all rational numbers.
For each r € Q, we fix a random variable 7(r) such that n(r) = P(X < r|9). For m,n > 1, let

Appn ={w € Q:n(rp)(w) > niry)(w)}

and let A =J Ap, . Since 1y, < ry, implies a.s. 9(ry,) < n(ry), we have P(A) = 0. Next

we set

Tm <Tn

By = {w € Q: limsup(ry + 1/k)(@) # n(ra) (@)}

k—o00

and B = |77 By,. From the conditional monotone convergence theorem we have a.s.
klim n(rn, + 1/k) = klim PH{X <r,+1/k}|9) =P{HX < }H¥Y) = n(ryn).
—00 —00
It follows that P(B,) = 0 for each n > 1, and so P(B) = 0. Similarly, letting

E ={w e Q:limsupn(n)(w) # 1 or limsupn(—n)(w) # 0},
n—oo n—oo
we have P(E) = 0. Thus for each w € A°N BN E°, the function 7n(r)(w) of r € Q is non-
decreasing, right continuous, lim, ..o n(r)(w) = 1 and lim, ._n(r)(w) = 0. Let G be an
arbitrary probability distribution function on R and let

_J limgsy e n(r)(w) for w € AN BN £°
FX(W7$)—{G(5U) forwe AUBUE.
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Then for any « € R we have a.s.

Fx(w,z) = lim n(r)(w) = lim P{X <r}|9) =P{X <z}|9)
Qorlx Qorlz
by the conditional monotone convergence theorem. That is, Fx is a regular conditional distri-
bution function of X given ¥. g

Corollary 10.3.1 Let Qx be a regular conditional probability distribution of X given ¢. If ¢
is a Borel function on R such that E[¢(X)] exists, then a.s

E[6(X)|¥)(w) = /j o(2)Qx (w, dz).

Proof. 1If ¢ = 1p for some B € ZA(R), this is just (iii) of Definition 10.3.2. The general case
follows by an approximating argument. O

Theorem 10.3.2 Suppose that there is a Borel set F' C R such that (£, %) is isomorphic to
(F,#(F)). Then for any sub-o-algebra & of %, a regular conditional probability function on
(Q,.7) given ¥ exists.

Proof. Let X : Q@ — F be the isomorphism. By Theorem 10.3.1, a regular conditional
distribution Qx of the random variable X given ¢ exists. For w € Q and A € Z#, let
Qw,A) = Qx(w,X(A)). Since X is an isomorphism, Q(w,-) is a probability measure on .%.
Clearly, w — Q(w, A) is .Z-measurable. Moreover, we have a.s.

P(A9)(w) = P(XH(X(4))|9)(w) = Qx(w, X (4)) = Q(w, A).

Then Q(-,-) is a regular conditional probability on (2, .#) given ¥. O

Corollary 10.3.2 Let Q be a Borel subset of some complete separable metric space with % =
PB(Q). Then for any sub-o-algebra ¢4 of %, a regular conditional probability function @ on
(Q,.7) given ¥ exists.

Proof. Under the assumption, € is isomorphic to a closed subset of the unit interval [0, 1]
furnished with the Borel o-algebra; see e.g. Parthasarathy (1967, p.14). Then the result follows
by Theorem 10.3.2. g
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Chapter 11

Infinitely Divisible Distributions

11.1 Definition and properties

Recall that the characteristic function ¢, of a finite measure ;1 on (R, Z(R)) is defined by

gZ)u(t):/Rem,u(dx), u € R, (11.1.1)

which determined g uniquely. In particular, if p is supported by R, it is also uniquely deter-
mined by its Laplace transformation L, defined by

Lu(t):/R e " p(de), t € Ry, (11.1.2)
+

Recall also that given two probability measures p and v on (R, Z(R)), we can define a probability
measure v on (R, Z(R)) by

/ Fde) = [ Fo+yuxvidndy),  feCR), (11.1.3)
R RxR

which is called the convolution of  and v and denoted by p* . Moreover, (11.1.3) holds if and
only if
Oy (1) = ou(t)du(t), teR. (11.1.4)

Similarly, we can define the n-fold convolution gy X s X - -+ X . A probability measure p on
(R, B(R)) is called infinitely divisible if for each integer n > 2 there is a probability measure p,,
on (R, Z(R)) such that p = " := fun * fin, % -+ * fin,.

The characteristic function ¢, of a probability measure p on (R, Z(R)) is said to be infinitely
divisible if so is pu. Clearly, the characteristic function ¢ is infinitely divisible if and only if for each
integer n > 1 there is a probability p, with characteristic function ¢, such that ¢(u) = ¢p(u)”
for all u € R.

Example 11.1.1 Let g be the normal distribution N (p, 02), where 4 € R and o > 0. We have

¢u(t) = exp {iut — o*t*/2}.

Let up, be the normal distribution N(u/n,0%/n). Then ¢, (u) = ¢, (u)" and so p = ™. Thus
w is infinitely divisible.

111
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Example 11.1.2 Let pu be Poisson distribution with parameter A > 0. Then
du(t) = exp {)\(eit -1}

It follows that u = u™, where u, is the Poisson distribution with parameter A\/n. Thus p is
infinitely divisible.

Example 11.1.3 Let p be the Gamma distribution I'(a, 8) for a > 0 and § > 0. We have

du(t) = / emiﬁ 2 le Py
0

['(a)
1 /Oo ity/B, a—1,—y
g e y (& dy
() Jo
1 / * a-1_—y(-it/B)
= = Yy e dy
I'(a) Jo

1 /Oo 1
= : 2% e Fdz
[(e) (1 —it/B)* Jo
1\ o
- (1- f) .
(-5
Then p = p!™ with p, = I'(a/n, 3) and so p is infinitely divisible.

Proposition 11.1.1 If both i and v are infinitely divisible, so is p * v.

Proof. If p= p and v = 1", then p* v = (uy * v,)*". O

Corollary 11.1.1 If ¢ is an infinitely divisible characteristic function, so is ||.

Proof. If ¢ is an infinitely divisible characteristic function, so is o(t) = ¢(—t). Then the
non-negative real-valued function ¢¢ is a infinitely divisible characteristic function. Now the
conclusion follows as we notice |¢| = [p¢]'/2. O

Proposition 11.1.2 If ¢ is an infinitely divisible characteristic function, then ¢(t) # 0 for all
teR.

Proof. Suppose ¢ = (¢p,)" for n > 1, where ¢,, is a characteristic function. Then both 9 := |¢|
and v, := |¢p| are non-negative real-valued characteristic functions. Since ¢ = (¢,)", we must
have 1, = /™. Thus 0 < ¢ < 1 implies () := lim,_o ¥ (t) = 0 or 1 according as ¥(t) = 0
or 1. Recall that ¢(0) = 1. Then there is a neighborhood U of the origin so that ¢(¢) > 0 for
all t € U. It follows that 6(¢t) = 1 for all ¢ € U. Now the continuity theorem implies that 6 is
a characteristic function. The continuity of # thus implies that 6(¢) = 1 for all ¢ € R. Then we
must have ¢(¢) > 0 and hence ¢(t) # 0 for all ¢t € R. O

Proposition 11.1.3 If f is a continuous and non-vanishing complex function on R with f(0)
1, there is a unique (single-valued) continuous function A on R with A\(0) = 0 and f(t) =
for all t € R.

(®)
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Proof. Let T > 0 be fixed and let pr = inf |f(¢)|. Since f is a continuous and non-vanishing
on [—T,T], there is o7 € (0, pr) such that for any —7 < r < t < T satisfying [t — r| < op
we have |f(t) — f(r)] < pr/2 < 1/2. For any integer m > 1, define the sequence {t; : j =
0,£1,£2,--- ,+m} by t; = jT/m. Note that

0 .
7
L(z) := : z—1)/
Sy
J_
is the unique determination (principle value) of logz on D := {z : |z — 1] < 1} vanishing at

z = 1. For any ¢ € [t_1,t1] we have |f(t) — 1| = |f(t) — f(to)| < 1/2 and so A(t) := L(f(t)) is
well-defined and exp{\(¢)} = f(t). Clearly, A(¢) is continuous in t € [t_1,¢;] and A(0) = 0. If
1<k<m-—1andtE€ [tg,trr1], then

o 1‘ O 1) er 1
f(t) [f)l T 200 2
Thus the definition of A can be extended from [t_g, tx] to [tx, tx+1] by Mt) = A(tk)+L(f(t)/ f(tx)).

Analogously, we may extend the definition to [t_;_1,t_g]. Now the function \ is defined and
continuous on [T, 7], and for each 1 <k <m — 1 and ¢ € [ty, tx11],

20— o {2(40) a0}
= oo {1(H0) ¥ o(f))
0
= fb).

A similar statement holds in [t_p_1,t_%]. Next, given XA on [-T,T] it can be extended by the
prior method to [-7'—1, T+ 1] and hence by induction to (—oo, 00). Finally, if two such functions
A1 and \g exist, we have e*(®) = e*2(1) and hence \;(t) — A1(t) = 27ik(t) for an integer k().
Since k(t) is continuous with k(0) = 0, it is necessary that k(¢) = 0. That is, A is unique. O

<

Definition 11.1.1 The function A defined in Proposition 11.1.3 is called the distinguished loga-
rithm of f and is denoted by Log f. The function exp{a\} is called the distinguished ath power
of f and is denoted by f<.

Note that Log (fg) = Log f + Log g and Log (f“) = alLog f.

Corollary 11.1.2 A characteristic function ¢ is infinitely divisible if and only if it does not
vanish on R and ¢*'" is a characteristic function for each integer n > 1.

Proposition 11.1.4 Let ¢ and ¢ be characteristic functions. If each ¢y is infinitely divisible
and ¢ — ¢, then ¢ is infinitely divisible.

Proof. Let vy, = |¢1|? and 1 = |¢|>. Then both 1}, and v are characteristic functions and each

1, is infinitely divisible. By Corollary 11.1.2, w;/ " is a characteristic function for each n > 1.
Since limy_, wi/ " — " and the limit is a continuous function, it is a characteristic function.
Consequently, the characteristic function ¢ is infinitely divisible. By Proposition 11.1.2, ¢
does not vanish, so neither does ¢. Then ¢'/" is a well-defined continuous function. Since

A" = limy_ o0 d),lc/ " it is a characteristic function. That yields the infinite divisibility of ¢. O
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11.2 Poisson type distribution

Let o, 3 € R and A > 0 be fixed constants. A probability measure p on (R, Z(R)) is said to be
of Poisson type if

n

n({B+na}) = %e_A, n=0,1,2,- - (11.2.1)

(In the case a = 0, we take u({#}) =1).) If p is given by (11.2.1), the corresponding character-
istic function is given by

- — A" 7 no
dult) = D e rellTnar
n=0 ’

& )\neinat

_ iBt—A
= € Z n!
n=0
= exp{ift + A — 1)} (11.2.2)

In view of (11.2.2), a Poisson type distribution is infinitely divisible.

Proposition 11.2.1 Let § € Ry and let L be a o-finite Borel measure on (0,00) such that

&
/(o,oo) 1 +§L(d£) < 0.

Then there is an infinitely divisible probability measure p on R4 with characteristic function
¢ = e, where

B(t) = Bt + / (e — 1) L(d).

(0,00)

Proof. The assertion is immediate if L is trivial. Then we assume

_ &
- /(0700) L) >0

in the proof. Let h(t,0) = it and

h(t, &) = (e — 1)12%, teR, &> 0.

Then h is bounded and uniformly continuous on [—7,7T] x Ry for each T' > 0. We fix T' > 0
and let C'= Cr > 0 be a constant such that |h(¢,£)| < C when |t| < T. For each integer n > 1,
choose a sequence {0 = 1,0 < Mp1 < -+ < M kn = M.} so that

& 1
/(Mmoo) mL(dﬁ) < mC

and
1

sup{|h(t,&) — h(t, )|+ Mnj—1 <E< M, 1 < J < kp} < Iy
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when |t| < T. Let

G(dg)—lngL(dg) and A, = nnj"G(nn,j_l,nnvj].

When |t| < T, we have

kn
‘ / (€™ —1)L(dE) = > Anj(em — 1)'
(0.0) Pt
kn
S ‘ /(0 ) h(tv S)G(dé.) - Z h(t, 77n7j)G(77n,j—1, nn,]]
;00 ]:1

It is easy to see that
kn
¢n(t) = exp {iﬁt + Z Anj(etmi —1) }
j=1

is the characteristic function of an infinitely divisible probability measure p,,. On the other hand,
from (11.2.3) we have lim,, .o ¢n(t) = ¢(t) with uniform convergence on [T, T)]. It follows that
¢ is the characteristic function of an infinitely divisible probability measure p on R. Clearly, we
have p,(R4) =1 for each n > 1 and so pu(Ry) = 1. O

Proposition 11.2.2 Let pu and i be given as in Proposition 11.2.1 and let

Lu(t) = / e ®u(de), t>0. (11.2.4)
Ry
Then we have L, (t) = exp{—0(t)} with

0(t) = Bt +/ (1 — e %) L(df). (11.2.5)

(0,00)

Proof. The result follows from the calculations in the proof of Proposition 11.2.1 with it replaced
by —t. O

Proposition 11.2.3 Let o and v be given as in Proposition 11.2.1. Then

Eu(dé) < oo (11.2.6)
Ry

holds if and only if

/ EL(dE) < oo. (11.2.7)
(0,00)
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Proof. Suppose (11.2.6) holds. From (11.2.4) we have

Lu(t) — Lu(t+ s) :/R ﬂe*tfu(df).

S S

By dominated convergence we see from the above equality that L,(u) is continuously differen-
tiable in v > 0 and

d _
-Gl = [ getontag)
R4
Then () is continuously differentiable in ¢ > 0. From (11.2.5) it follows that

O(t+s)—0(t) _ 54 / 1 _Sesge_th(df).
Ry

By Fatou’s lemma we find that

Lowy> 5+ [ etirig).
t R,

In particular, we have

B+ | EL(dE) < die(()) < 0.
Ry t

The converse assertion follows by similar arguments. O

Proposition 11.2.4 Let $ € R and let L be a o-finite measure on R \ {0} such that

€l g
/R\{O}lﬂﬂ () < co.

Then there is an infinitely divisible probability measure p on R with characteristic function
¢ = e¥, where

B(t) = iBt + /R € L)

Moreover, both 3 and L are uniquely determined by .

Proof. For t € R let
wi) = [ (eI
(0,00)

and

¢2(t):/(_ 0)(e—itf—1)L(d5).

By Proposition 11.2.1, there are infinitely divisible probability measures vy and v» on Ry with
characteristic functions ¢1(t) = e?*® and ¢o(t) = e¥2(®). Let 2 be the probability measure vy
induced from v5 by the mapping x — —=z. Then -, is an infinitely divisible probability measure
supported by R_ with characteristic function ¢o(—t) = e?2(=t) | We see easily that ¢ = e? is the
characteristic function of the infinitely divisible probability measure p := vy * 72 * dg. To prove
the uniqueness of o and L, we introduce the function

t+1

V(t) :=2¢(t) — P(s)ds.

t—1
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By elementary calculations,

_ ite
Vit) =2 /R et

where in¢
S11
G(de) = 2(1 - T)L(czg).

117

That is, V(t) is the characteristic function of the finite measure G. Then both G and L are

uniquely determined by 1 and hence by ¢. The uniqueness of 3 follows immediately.

Corollary 11.2.1 Let p and v be given as in Proposition 11.2.4. Then we have
(i) u(—00,0) = 0 if and only if f > 0 and L(—o00,0) = 0;
(ii) p(0,00) = 0 if and only if 3 <0 and L(0,c0) = 0.

Proof. (Homework.)

Proposition 11.2.5 Let u and L be related as in Proposition 11.2.4. Then

/ €]u(de) < oo
R

holds if and only if
[l < oc.
R\{0}

O

(11.2.8)

(11.2.9)

Proof. We use the notation of the proof of Proposition 11.2.4. Suppose (11.2.8) holds. By

Proposition 8.3.2, we have
[t + [ ehatie) < o

and so

/R g+ /R Gnle) <o

From Proposition 11.2.3 it follows that

/ SL(d§)+/ (=€) L(d€) < .
(0,00)

(_0070)

Then we have (11.2.9). The converse assertion follows similarly.

11.3 Lévy-Khintchine representation

Let us define a complex continuous function K(-,-) on R x R by K(t,0) = —u?/2 and

e )1+£2 LR, R\ {0).

— (e 1 5 TS5
K(t7£)_ (et ]' 1+§2 52 )
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For any € R and any finite measure G on (R, B(R)), set
vt5.6) =it + [ KOG,  teR, (11.3.1)
R

Then 1 (t, 3, G) is a continuous function of t € R with (0, 3, G) = 0. It follows that 1) = Loge¥.
Clearly, 1 has representation (11.3.1) if and only if it has representation

<e“§—1— ite )L(df), (11.3.2)

¢(t):iﬁt—at2+/ i e

R\{0}
where § € R, @ > 0 and L is a o-finite measure on R\ {0} such that

52
/]R\{O} : +§2L(d§) < 0.

Theorem 11.3.1 If ¢ is given by (11.3.1) or (11.3.2), then ¢ = ¢e¥ is an infinitely divisible
characteristic function. Moreover, ¢ uniquely determines the two sets of parameters (3, G) and

(B,a,L).

Proof. For each integer n > 1, let

B we . dtE
wn(t)_zﬁt+/{|£|>1/n}(et 1 1+§2>L(d§).

We see by Proposition 11.2.4 that e¥() is an infinitely divisible characteristic function. Then
bn(t) = exp{tb,(t) —at?} is an infinitely divisible characteristic function. By dominated conver-
gence we have lim,,_,o ¢, (t) = ¢(t) and the limit function is continuous in ¢ € R. Then ¢ is an
infinitely divisible characteristic function. The uniqueness of (p, G) follows by arguments similar
to those in the proof of Proposition 11.2.4. The uniqueness of (p, a, L) is then immediate. O

Theorem 11.3.2 Let 8 and (8, € R and let G and G,, be finite measure on R. If 3,, — ( and
Gn > G, then ¥(t, Bn, Gp) — ¥(t, 3,G) for every t € R.

Proof. Since for each fixed ¢t € R, the function { — K(t,£) is bounded and continuous, the
result is immediate. 0

Theorem 11.3.3 Suppose {(,} C R and {G,} are finite measure on R. If ¢(-,3,,G,) con-
verges to a continuous function g(-) on R, then 3, — some 3 € R and G,, > some finite measure
G. Moreover, we have g(t) = 1(t, 3,G) for all t € R.

Proof. 1t is easy to check that

t+1 ,
Valt) o= 20 3 Gu) = [ 00 B0, Gl = /R S, (d),
h
where Gmey 14 €2
Hy(dg) =2(1 - 5) g Gn(de).
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Under the assumptions, we have

t+1
Valt) = V(O =290~ [ gls)is,
t—1
where the limit function V' is continuous on R. By the continuity theorem, V' is the characteristic
function of some finite measure H on R and H,, — H. It is easy to find constants ¢; > ¢y > 0
such that

sin§>1+§2

c0<2(1— TS o
'3 &2

for all ¢ € R. Then we have G,, — G, where

1 siné\ -1 &2
G(dg)_§(1— 5) ).

It follows that

fim 0(0.0.G,) = lim [ K(1.9Gu(d) = [ K(t)6(de)

n—oo R

By the assumption, the limit lim, .~ ¥ (1, 8y, G,) exists, then so does the limit
B:= lim B, = lim i[¢(1,0,Gy) — ¥(1, B, Gr)].

n—oo n—oo

Consequently,

Tim (B, Go) = Tim (it + (1,0, Gp)] = Bt + /]R K(t,6)G(de).

That proves the desired result. ]

Theorem 11.3.4 (Lévy-Khintchine representation) A characteristic function ¢ is infinitely di-
visible if and only if 1 = Log ¢ has representation (11.3.1).

Proof. By Theorem 11.3.1, if ¢ is given by (11.3.1), it is an infinitely divisible characteristic
function. Conversely, suppose ¢ is an infinitely divisible characteristic function. It is easily seen
that

1 | 1
SV (t) = exp {ELog ¢(t)} = 1+ -Logo(t) + 0<E>.
Consequently,

Log@(t) = lim n[¢'/"(t) — 1] = lim n/R(e“5 — 1) pn (dE),

n—oo
where p,, denote the probability measure corresponding to ¢'/™. Setting

- n& B né?
8= [ Thmlde) and Gu(d9) = 1

Qﬂn(df)a

we obtain

Logg(t) = lim [zﬂnt—i— /R K(t,g)Gn(dg)]

Then Theorem 11.3.3 implies that ¢ has representation (11.3.1). O
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11.4 Kolmogorov representation

Proposition 11.4.1 Let u be a probability measure on R with characteristic function ¢. Then

/ 2 u(d€) < oo (11.4.1)
R

holds for an integer n > 1 if and only if ¢ is continuously differentiable to the (2n)th degree. In
this case, we have

o) (1) = i / ket pu(de),  weR, (11.4.2)
R

for 0 < k < 2n.

Proof. Suppose that (11.4.1) holds for some n > 1. Observe that

ot +s)—ot) _ /R eisz_ 1€it5u(d§),

S

and the integrand on the right hand side is bounded above by |¢|. By dominated convergence

we see that
o) =ty W00 i [ e,

exists and continuous in ¢ € R. Proceeding inductively we find that ¢ is continuously differen-
tiable to the (2n)th degree with derivatives given by (11.4.2).

Conversely, suppose ¢ is continuously differentiable to the (2n)th degree for some n > 1. It
is easy to show that

O(t) = 26(0) ~ 9(20) ~ o(~20) = 4 | sin (u(d).

R

Then the left hand side is real and non-negative. Now the monotone convergence theorem

implies that )
1 0
[ €ntae) =ty [ =1 ude) = tim 5 =~ < .

t—0 4t2

Then the first part of the proof shows that ¢ is twice continuously differentiable with ¢’ and ¢”
given by (11.4.2) with n =1 and 2, respectively. Proceeding inductively we obtain (11.4.1). O

Theorem 11.4.1 A function ¢ is the characteristic function of infinitely divisible probability
measure p with finite variance if and only if 1» = Log ¢ has the representation

vt =int - at’+ /R\{O} (€ — 1 —it€) L(dg), (11.4.3)

where v € R, a > 0 and L is a o-finite measure on R\ {0} such that

/ E2L(d€) < oo. (11.4.4)
R\{0}
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Proof. Suppose that 1) has representation (11.4.3) with L satisfying (11.4.4). Clearly, we have
(11.3.2) with

_ 13 _ o 53
f= 7+/R\{0} (1 = €>L(d§) =7 /R\{O} . +€2L(d£). (11.4.5)

From Theorem 11.3.4 we know that ¢ = e is the characteristic function of an infinitely divisible
probability measure . By dominated convergence it is not hard to show that @ ¢ is twice
continuously differentiable. Then ¢ is also twice continuously differentiable. It follows that pu
has finite variance. Conversely, suppose ¢ is the characteristic function of an infinitely divisible
probability measure p with finite variance. By Theorem 11.3.4 we know that ¢ = Log¢ has
representation (11.3.2). It follows that

O(t) == 21p(0) — (2t) — h(—2t) = 8at® + 4 /R o sin? (&) L(d¢).

Then the value on the left hand side is real and positive. Since ¢ and hence v is twice continu-
ously differentiable, by monotone convergence we have

/R §2L(dg) = lim /R Sin;(tg)L(dg) = lim i(;) — 8a < ¢"(0) — 8a < 0.

Now (11.4.3) follows from (11.3.2) with

— . f _ §3
’Y—ﬂ—i-/R\{o} (€ 1+52>L(d€)—ﬁ+/R\{0} 1+£2L(d£). (11.4.6)

That proves the desired result. O

Theorem 11.4.2 A function ¢ is the characteristic function of an infinitely divisible probability
measure (i satisfying

/ €] p(d€) < o0 (11.4.7)
R

if and only if 1) = Log ¢ has the representation (11.4.3), where v € R, a > 0 and L is a o-finite
measure on R\ {0} such that

[ leinlePrg < . (11.48)
R\{0}

Proof. Suppose that ¢ is the characteristic function of an infinitely divisible probability measure
. From Theorem 11.3.4 we know that ¢ = Log ¢ has representation (11.3.2). Under condition
(11.4.8), we have (11.4.3) with 7y given by (11.4.6). Then it remains to prove (11.4.7) is equivalent
to (11.4.8). Let up and p; denote respectively the infinitely divisible probability measures
corresponding to

53
o<lel<1y 1 +&2

) §
L(d¢) +iu /{|€>1} e

— ou? wE 1 — jué) L(d
ond? + /{o«m (e iu€) L(de)

Yolu) = iBu+iu /{ L(dé)
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and

u) = e — .
1 () /{M}( 1)L(de)

It is easily seen that ¢ = ¥y + ¥1 and so u = pg * p1. By Theorem 11.4.1 we have

/ P o (de) < oo.
R

Then Proposition 11.1.3 implies that (11.4.7) is equivalent to

/ €l (de) < .
R

By Proposition 11.2.5 the above holds if and only if

/ E|L(dE) < oo.
{I¢]>1}

which holds if and only if (11.4.8) is true. O

11.5 Infinitesimal random variables

In applications, we often need to consider classes of random variables such as
{Xnj 1<) <kpn>1}, (11.5.1)

where k, — 00 as n — co. We say the random variables are rowwise independent if the random
variables X, 1, Xp 2, -+, Xp i, are independent for each n > 1. The random variables in (11.5.1)
are said to be infinitesimal if

lim max P{|X,;|>¢e}=0 (11.5.2)

n—00 1<j<kn

for every € > 0.

Theorem 11.5.1 If the random variables in (11.5.1) are infinitesimal and rowwise independent
and

D> Xnj—An (11.5.3)

converges in distribution for some sequence {A,} C R, then the limiting distribution of (11.5.3)
is infinitely divisible. Conversely, for each infinitely divisible distribution p on (R, %(R)), there
is a family of infinitesimal and rowwise independent random variables (11.5.1) and a sequence
{A,} C R such that the distribution of (11.5.3) converges to .

Proof. Chow and Teicher (1988, pp.434-440). O
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Theorem 11.5.2 Suppose that (11.5.1) are infinitesimal and rowwise independent random vari-
ables and that (11.5.3) converges in distribution for some sequence {A,} C R. Then the limiting
distribution is Gaussian if and only if

P
X, | =0
lg}&g}gn\ n.gl =

or equivalently
kﬂ/

> P{Xnl>e}—0

J=1

for every € > 0.

Proof. Chow and Teicher (1988, pp.444-446). O
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