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Conditional intensities for counting processes

N is a counting process if N(0) = 0 and N is constant except for jumps
of +1.

Assume N is adapted to {Ft}.

λ ≥ 0 is the {Ft}-conditional intensity if (intuitively)

P{N(t + ∆t) > N(t)|Ft} ≈ λ(t)∆t

or (precisely)

M(t) ≡ N(t)−
∫ t

0
λ(s)ds

is an {Ft}-local martingale, that is, if τk is the kth jump time of N ,

E[M((t + s) ∧ τk)|Ft] = M(t ∧ τk)

for all t ≥ 0 and all k.
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Lemma 1 If N has {Ft}-intensity λ, then there exists a unit Poisson
process (may need to enlarge the sample space) such that

N(t) = Y (

∫ t

0
λ(s)ds)
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Modeling with counting processes

Specify λ(t) = γ(t, N), where γ is nonanticipating in the sense that
γ(t, N) = γ(t, N(· ∧ t)).

Martingale problem. Require

N(t)−
∫ t

0
γ(s, N)ds

to be a local martingale.

Time change equation. Require

N(t) = Y (

∫ t

0
γ(s, N)ds).

These formulations are equivalent in the sense that the solutions have
the same distribution.
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Systems of counting processes

Lemma 2 (Meyer [4], Kurtz [3] ) Assume N = (N1, . . . , Nm) is a
vector of counting processes with no common jumps and λk is the {Ft}-
intensity for Nk. Then there exist independent unit Poisson processes
Y1, . . . , (may need to enlarge the sample space) such that

Nk(t) = Yk(

∫ t

0
λk(s)ds)

Specifying nonanticipating intensities λk(t) = γk(t, N):

Nk(t) = Yk(

∫ t

0
γk(s, N)ds)
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Markov chain models

X(t) number of molecules of each species in the system at time t.

νk number of molecules of each chemical species consumed in the kth
reaction.

ν ′k number of molecules of each species created by the kth reaction.

λk(x) rate at which the kth reaction occurs. (The propensity/intensity.)

If the kth reaction occurs at time t, the new state becomes

X(t) = X(t−) + ν ′k − νk.

The number of times that the kth reaction occurs by time t is given by
the counting process satisfying

Rk(t) = Yk(

∫ t

0
λk(X(s))ds),

where the Yk are independent unit Poisson processes.
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Equations for the system state

The state of the system satisfies

X(t) = X(0) +
∑

k

Rk(t)(ν
′
k − νk)

= X(0) +
∑

k

Yk(

∫ t

0
λk(X(s))ds)(ν ′k − νk) = (ν ′ − ν)R(t)

ν ′ is the matrix with columns given by the ν ′k.

ν is the matrix with columns given by the νk.

R(t) is the vector with components Rk(t).
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Rates for the law of mass action

For a binary reaction A1 + A2 ⇀ A3 or A1 + A2 ⇀ A3 + A4

λk(x) = κ′kx1x2

For A1 ⇀ A2 or A1 ⇀ A2 + A3,

λk(x) = κ′kx1

For 2A1 ⇀ A2,
λk(x) = κ′kx1(x1 − 1)
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Heat shock model

The following reaction network is a given as a model for the heat shock
response in E. Coli by Srivastava, Peterson and Bently [5]

Reaction Intensity Reaction Intensity
∅ → A8 4.00× 100 A6 + A8 → A9 3.62× 10−4XA6XA8

A2 → A3 7.00× 10−1XA2 A8 → ∅ 9.99× 10−5XA8

A3 → A2 1.30× 10−1XA3 A9 → A6 + A8 4.40× 10−5XA9

∅ → A2 7.00× 10−3XA1 ∅ → A1 1.40× 10−5

stuff + A3 → A5 + A2 6.30× 10−3XA3 A1 → ∅ 1.40× 10−6XA1

stuff + A3 → A4 + A2 4.88× 10−3XA3 A7 → A6 1.42× 10−6XA4XA7

stuff + A3 → A6 + A2 4.88× 10−3XA3 A5 → ∅ 1.80× 10−8XA5

A7 → A2 + A6 4.40× 10−4XA7 A6 → ∅ 6.40× 10−10XA6

A2 + A6 → A7 3.62× 10−4XA2XA6 A4 → ∅ 7.40× 10−11XA4
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Multiple scales
Take N0 to be of the order of magnitude of the abundance of the most abundant
species in the system.

For each species i, define the normalized abundances (or simply, the abundances) by

Zi(t) = N−αi
0 Xi(t),

where 0 ≤ αi ≤ 1 should be selected so that Zi = O(1). Note that the abundance
may be the species number (αi = 0) or the species concentration or something else.

The rate constants may also vary over several orders of magnitude κ′k = κkN
βk
0 , so

for a binary reaction

κ′kxixj = N
βk+αi+αj

0 κkzizj
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A parameterized family of models

Let

ZN
i (t) = Zi(0) +

∑
k

N−αiYk(

∫ t

0

Nβk+νk·αλk(Z
N(s))ds)(ν ′ik − νik).

Then the “true” model is Z = ZN0 .
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Approximate models
We have a family of models indexed by N for which N = N0 gives the “correct”
model.

Other values of N and any limits as N → ∞ (perhaps with a change of time scale)
give approximate models. The challenge is to select the αi, but once that is done, the
intial condition for index N is give by

ZN
i (0) = N−αi

i Xi(0),

where the Xi(0) are the initial species numbers in the correct model.

If limN→∞ ZN
i (·Nγ) = Z∞

i , then we should have

Xi(t) ≈ Nαi
0 Z∞

i (tN−γ
0 ).
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Example: Model of a viral infection
Srivastava, You, Summers, and Yin [6], Haseltine and Rawlings [2], Ball, Kurtz,
Popovic, and Rampala [1]

Three time-varying species, the viral template, the viral genome, and the viral struc-
tural protein (indexed, 1, 2, 3 respectively).

The model involves six reactions,

T + stuff
κ′
1⇀ T + G

G
κ′
2⇀ T

T + stuff
κ′
3⇀ T + S

T
κ′
4⇀ ∅

S
κ′
5⇀ ∅

G + S
κ′
6⇀ V
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Stochastic system

X1(t) = X1(0) + Yb(

∫ t

0

κ′2X2(s)ds)− Yd(

∫ t

0

κ′4X1(s)ds)

X2(t) = X2(0) + Ya(

∫ t

0

κ′1X1(s)ds)− Yb(

∫ t

0

κ′2X2(s)ds)

−Yf (

∫ t

0

κ′6X2(s)X3(s)ds)

X3(t) = X3(0) + Yc(

∫ t

0

κ′3X1(s)ds)− Ye(

∫ t

0

κ′5X3(s)ds)

−Yf (

∫ t

0

κ′6X2(s)X3(s)ds)
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Figure 1: Simulation (Haseltine and Rawlings 2002)
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Scaling parameters

Each Xi is scaled according to its abundance in the system.

For N0 = 1000, X1 = O(N0
0 ), X2 = O(N

2/3
0 ), and X3 = O(N0) and we take Z1 = X1,

Z2 = X2N
−2/3
0 , and Z3 = X3N

−1
0 .

Expressing the rate constants in terms of N0 = 1000

κ′1 1 1

κ′2 0.025 2.5N
−2/3
0

κ′3 1000 N0

κ′4 0.25 .25
κ′5 2 2

κ′6 7.5× 10−6 .75N
−5/3
0
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Normalized system

With the scaled rate constants, we have

ZN
1 (t) = ZN

1 (0) + Yb(

∫ t

0

2.5ZN
2 (s)ds)− Yd(

∫ t

0

.25ZN
1 (s)ds)

ZN
2 (t) = ZN

2 (0) + N−2/3Ya(

∫ t

0

ZN
1 (s)ds)−N−2/3Yb(

∫ t

0

2.5ZN
2 (s)ds)

−N−2/3Yf (

∫ t

0

.75ZN
2 (s)ZN

3 (s)ds)

ZN
3 (t) = ZN

3 (0) + N−1Yc(

∫ t

0

NZN
1 (s)ds)−N−1Ye(

∫ t

0

2NZN
3 (s)ds)

−N−1Yf (

∫ t

0

.75ZN
2 (s)ZN

3 (s)ds),
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Limiting system

With the scaled rate constants, we have

Z1(t) = Z1(0) + Yb(

∫ t

0

2.5Z2(s)ds)− Yd(

∫ t

0

.25Z1(s)ds)

Z2(t) = Z2(0)

Z3(t) = Z3(0) +

∫ t

0

Z1(s)ds−
∫ t

0

2Z3(s)ds
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Fast time scale
Define V N

i (t) = Zi(N
2/3t).

V N
1 (t) = V N

1 (0) + Yb(

∫ t

0

2.5N2/3V N
2 (s)ds)− Yd(

∫ t

0

.25N2/3V N
1 (s)ds)

V N
2 (t) = V N

2 (0) + N−2/3Ya(

∫ t

0

N2/3V N
1 (s)ds)

−N−2/3Yb(

∫ t

0

2.5N2/3V N
2 (s)ds)

−N−2/3Yf (N
2/3

∫ t

0

.75V N
2 (s)V N

3 (s)ds)

V N
3 (t) = V N

3 (0) + N−1Yc(

∫ t

0

N5/3V N
1 (s)ds)−N−1Ye(

∫ t

0

2N5/3V N
3 (s)ds)

−N−1Yf (

∫ t

0

.75N2/3V N
2 (s)V N

3 (s)ds)
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Averaging

As N →∞, dividing the equations for V N
1 and V N

3 by N2/3 shows that∫ t

0

V N
1 (s)ds− 10

∫ t

0

V N
2 (s)ds → 0∫ t

0

V N
3 (s)ds− 5

∫ t

0

V N
2 (s)ds → 0.

The assertion for V N
3 and the fact that V N

2 is asymptotically regular imply∫ t

0

V N
2 (s)V N

3 (s)ds− 5

∫ t

0

V N
2 (s)2ds → 0.

It follows that V N
2 converges to the solution of (1).
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Law of large numbers

Theorem 3 For each δ > 0 and t > 0,

lim
N→∞

P{ sup
0≤s≤t

|V N
2 (s)− V2(s)| ≥ δ} = 0,

where V2 is the solution of

V2(t) = V2(0) +

∫ t

0

7.5V2(s)ds)−
∫ t

0

3.75V2(s)
2ds. (1)

The original X2 should satisfy

X2(t) ≈ (1000)2/3V2(t(1000)−2/3)
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Determining the scaling exponents

Suppose that the rate constants satisfy

κ′1 ≥ κ′2 ≥ · · · ≥ κ′r0

Then it seems natural to select

β1 ≥ · · · ≥ βr0

and define κk so that
κ′k = κkN

βk
0 .
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General principles
Consider A1 + A2 ⇀ A3 + A4 A3 + A5 ⇀ A6

ZN
3 (t) = ZN

3 (0) + N−α3Y1(N
β1+α1+α2

∫ t

0

κ1Z
N
1 (s)ZN

2 (s)ds)

−N−α3Y2(N
β2+α3+α5

∫ t

0

κ2Z
N
3 (s)ZN

5 (s)ds) ,

or scaling time

ZN
3 (tNγ) = ZN

3 (0) + N−α3Y1(N
β1+α1+α2+γ

∫ t

0

κ1Z
N
1 (sNγ)ZN

2 (sNγ)ds)

−N−α3Y2(N
β2+α3+α5+γ

∫ t

0

κ2Z
N
3 (sNγ)ZN

5 (sNγ)ds) .

Assuming the other ZN
i = O(1), ZN

3 = O(1) if

β1 + α1 + α2 = β2 + α3 + α5

(ZN
3 (t) ≈ κ1Z

N
1 (t)ZN

2 (t)
κ2ZN

5 (t) or ZN
3 (t) ≈ ZN

3 (0)) or if

(β1 + α1 + α2 + γ) ∨ (β2 + α3 + α5 + γ) ≤ α3.
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Species balance condition

Let Γ+
i = {k : ν ′ik > νik}, that is, Γ+

i gives the set of reactions that
result in an increase in the ith species, and let Γ−i = {k : ν ′ik < νik}.

Condition 4 For each species Ai,

max
k∈Γ−i

(βk + νk · α) = max
k∈Γ+

i

(βk + νk · α). (2)

or
max

k∈Γ+
i ∪Γ−i

(βk + νk · α) + γ ≤ αi. (3)
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Subnetwork balance

There may be subsets of species such that the collective rate of pro-
duction is of a different order of magnitude than the collective rate of
consumption.

∅ κ1⇀ S1
κ2



κ3

S2
κ4⇀ ∅.

If 0 < β4 < β1 < β2 = β3 and α1 = α2 = 0, then

ZN
1 (t) = ZN

1 (0) + Y1(λ1N
β1t) + Y3(λ3N

β3

∫ t

0

ZN
2 (s)ds)− Y2(λ2N

β2

∫ t

0

ZN
1 (s)ds)

ZN
2 (t) = ZN

2 (0) + Y2(λ2N
β2

∫ t

0

ZN
1 (s)ds)− Y3(λ3N

β3

∫ t

0

ZN
2 (s)ds)

−Y4(λ4N
β4

∫ t

0

ZN
2 (s)ds)

The species balance condition is satisfied, but the species numbers will
go to infinity as N →∞.
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Atom graphs

Corresponding to each “atom” (molecular subspecies that is left intact
by all reactions), define a directed graph in which the nodes are iden-
tified with the species that contain the atom and the edges correspond
to the reactions that transform one species containing the atom into
another species containing the atom.

Let G0 be any subset of the nodes G of an atom graph. Let Γ+
G0

be the
collection of edges (reactions) that are entrance edges or that lead from
a node in G−G0 to a node in G, and let Γ−G0

be the collection of edges
that are exit edges or lead from a node in G0 to a node in G−G0.
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General balance condition

Condition 5 For each subset G0 of an atom graph

max
k∈Γ−G0

(βk + νk · α) = max
k∈Γ+

G0

(βk + νk · α) (4)

or
max

k∈Γ+
G0
∪Γ−G0

(βk + νk · α) + γ ≤ max
i∈G0

αi. (5)

Then (5) implies

γ ≤ min
G

min
G0⊂G,G0 unbalanced

(max
i∈G0

αi − max
k∈Γ+

G0
∪Γ−G0

(βk + νk · α)), (6)

where the first minimum is over all atom graphs G and the second
minimum is over all subsets G0 ⊂ G that do not satisfy the balance
equality (4).

Heat shock example
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Example

∅ κ1⇀ S1
κ2



κ3

S2,

Assume κi = λiN
βi

0 , where β1 = β2 > β3.

Balance conditions:

S2 β2 + α1 = β3 + α2

S1 β1 ∨ (β3 + α2) = β2 + α1

{S1, S2} β1 = −∞
Let α1 = 0, so balance for S1 and S2 is satisfied if α2 = β2 − β3.

we require
γ ≤ α1 ∨ α2 − β1 = −β3.
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Time scales

There are two time-scales of interest in this model, γ = −β1, the time-
scale of S1, and γ = −β3, the time-scale of S2. The system of equations
is

ZN
1 (t) = ZN

1 (0) + Y1(λ1N
β1t)− Y2(λ2N

β2

∫ t

0
ZN

1 (s)ds)

+Y3(λ3N
β3+α2

∫ t

0
ZN

2 (s)ds)

ZN
2 (t) = ZN

2 (0) + N−α2Y2(λ2N
β2

∫ t

0
ZN

1 (s)ds)

−N−α2Y3(λ3N
β3+α2

∫ t

0
ZN

2 (s)ds).
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Limiting systems
For γ = −β1,

ZN
1 (tNγ) = ZN

1 (0) + Y1(λ1t)− Y2(λ2

∫ t

0

ZN
1 (sNγ)ds)

+Y3(λ3

∫ t

0

ZN
2 (sNγ)

ZN
2 (tNγ) = ZN

2 (0) + N−α2Y2(λ2

∫ t

0

ZN
1 (sNγ)ds)

−N−α2Y3(λ3

∫ t

0

ZN
2 (sNγ)ds).

the limit of ZN(·Nγ) satisfies

Z1(t) = Z1(0) + Y1(λ1t)− Y2(λ2

∫ t

0
Z1(s)ds) + Y3(λ3

∫ t

0
Z2(s))

Z2(t) = Z2(0).

Note that the stationary distribution for Z1 is Poisson with E[Z1] =
λ1+λ3Z2

λ2
.
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Second time scale

For γ = −β3,

ZN
1 (tNγ) = ZN

1 (0) + Y1(λ1N
β1−β3t)− Y2(λ2N

β2−β3

∫ t

0
ZN

1 (sNγ)ds)

+Y3(λ3N
α2

∫ t

0
ZN

2 (sNγ)ds)

ZN
2 (tNγ) = ZN

2 (0) + N−α2Y2(λ2N
β2−β3

∫ t

0
ZN

1 (sNγ)ds)

−N−α2Y3(λ3N
α2

∫ t

0
ZN

2 (sNγ)ds).

λ2
∫ t

0 ZN
1 (sNγ)ds ∼ λ1t + λ3

∫ t

0 ZN
2 (sNγ)ds and ZN

2 (·Nγ) converges to
the solution of

Z2(t) = Z2(0) + λ1t.

Note that if we took γ > −β3, then ZN
2 (tNγ) →∞ for each t > 0.
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Heat shock model

The following reaction network is a given as a model for the heat shock
response in E. Coli by Srivastava, Peterson and Bently [5]

Reaction Intensity Reaction Intensity
∅ → A8 4.00× 100 A6 + A8 → A9 3.62× 10−4XA6XA8

A2 → A3 7.00× 10−1XA2 A8 → ∅ 9.99× 10−5XA8

A3 → A2 1.30× 10−1XA3 A9 → A6 + A8 4.40× 10−5XA9

∅ → A2 7.00× 10−3XA1 ∅ → A1 1.40× 10−5

stuff + A3 → A5 + A2 6.30× 10−3XA3 A1 → ∅ 1.40× 10−6XA1

stuff + A3 → A4 + A2 4.88× 10−3XA3 A7 → A6 1.42× 10−6XA4XA7

stuff + A3 → A6 + A2 4.88× 10−3XA3 A5 → ∅ 1.80× 10−8XA5

A7 → A2 + A6 4.40× 10−4XA7 A6 → ∅ 6.40× 10−10XA6

A2 + A6 → A7 3.62× 10−4XA2XA6 A4 → ∅ 7.40× 10−11XA4
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Exponents

ρ1 = β1

ρ2 = α2 + β2

ρ3 = α3 + β3

ρ4 = α1 + β4

ρ5 = α3 + β5

ρ6 = α3 + β6

ρ7 = α3 + β7

ρ8 = α7 + β8

ρ9 = α2 + α6 + β9

ρ10 = α6 + α8 + β10

ρ11 = α8 + β11

ρ12 = α9 + β12

ρ13 = β13

ρ14 = α1 + β14

ρ15 = α4 + α7 + β15

ρ16 = α5 + β16

ρ17 = α6 + β17

ρ18 = α4 + β18
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Balance conditions

{A1} ρ13 = ρ14

{A2} max{ρ3, ρ4, ρ5, ρ6, ρ7, ρ8} = ρ2 ∨ ρ9

{A3} ρ2 = max{ρ3, ρ5, ρ6, ρ7}
{A4} ρ6 = ρ18

{A5} ρ5 = ρ16

{A6} max{ρ7, ρ8, ρ12, ρ15} = ρ9 ∨ ρ17

{A7} ρ9 = ρ8 ∨ ρ15

{A8} ρ1 ∨ ρ12 = ρ10 ∨ ρ11

{A9} ρ10 = ρ12

{A2, A3, A7} ρ4 = ρ15

{A2, A3} ρ4 ∨ ρ8 = ρ9

{A2, A7} max{ρ3, ρ4, ρ5, ρ6, ρ7} = ρ2 ∨ ρ15

{A6, A7, A9} ρ7 = ρ17

{A6, A9} max{ρ7, ρ8, ρ15} = ρ9 ∨ ρ17

{A6, A7} ρ7 ∨ ρ12 = ρ17 ∨ ρ10

{A8, A9} ρ1 = ρ17
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V N
1 (t) = V N

1 (0) + Y13(

∫ t

0

λ13N
γ− 5

3 ds)− Y14(

∫ t

0

λ14N
γ− 5

3 V N
1 (s) ds)

V N
2 (t) = V N

2 (0) + Y3(

∫ t

0

λ3N
γV N

3 (s) ds) + Y4(

∫ t

0

λ4N
γV N

1 (s) ds)

+Y5(

∫ t

0

λ5N
γ− 2

3 V N
3 (s) ds) + Y6(

∫ t

0

λ6N
γ−1V N

3 (s) ds)

+Y7(

∫ t

0

λ7N
γ−1V N

3 (s) ds) + Y8(

∫ t

0

λ8N
γV N

7 (s) ds)

−Y2(

∫ t

0

λ2N
γV N

2 (s) ds)− Y9(

∫ t

0

λ9N
γV N

2 (s)V N
6 (s) ds)

V N
3 (t) = V N

3 (0) + Y2(

∫ t

0

λ2N
γV N

2 (s) ds)− Y3(

∫ t

0

λ3N
γV N

3 (s) ds)

−Y5(

∫ t

0

λ5N
γ− 2

3 V N
3 (s) ds)− Y6(

∫ t

0

λ6N
γ−1V N

3 (s) ds)− Y7(

∫ t

0

λ7N
γ−1V N

3 (s) ds)

V N
4 (t) = V N

4 (0) + N− 2
3 Y6(

∫ t

0

λ6N
γ−1V N

3 (s) ds)−N− 2
3 Y18(

∫ t

0

λ18N
γ−1V N

4 (s) ds)

V N
5 (t) = V N

5 (0) + N−1Y5(

∫ t

0

λ5N
γ− 2

3 V N
3 (s) ds)−N−1Y16(

∫ t

0

λ16N
γ− 2

3 V N
5 (s) ds)
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V N
6 (t) = V N

6 (0) + N− 5
3 Y7(

∫ t

0

λ7N
γ−1V N

3 (s) ds) + N− 5
3 Y8(

∫ t

0

λ8N
γV N

7 (s) ds)

+N− 5
3 Y12(

∫ t

0

λ12N
γV N

9 (s) ds) + N− 5
3 Y15(

∫ t

0

λ15N
γV N

4 (s)V N
7 (s) ds)

−N− 5
3 Y9(

∫ t

0

λ9N
γV N

2 (s)V N
6 (s) ds)−N− 5

3 Y10(

∫ t

0

λ10N
γV N

6 (s)V N
8 (s) ds)

−N− 5
3 Y17(

∫ t

0

λ17N
γV N

6 (s) ds)

V N
7 (t) = V N

7 (0) + N−1Y9(

∫ t

0

λ9N
γV N

2 (s)V N
6 (s) ds)−N−1Y8(

∫ t

0

λ8N
γV N

7 (s) ds)

−N−1Y15(

∫ t

0

λ15N
γV N

4 (s)V N
7 (s) ds)

V N
8 (t) = V N

8 (0) + Y1(

∫ t

0

λ1N
γ ds) + Y12(

∫ t

0

λ12N
γV N

9 (s) ds)

−Y10(

∫ t

0

λ10N
γV N

6 (s)V N
8 (s) ds)− Y11(

∫ t

0

λ11N
γ− 5

3 V N
8 (s) ds)

V N
9 (t) = V N

9 (0) + N− 5
3 Y10(

∫ t

0

λ10N
γV N

6 (s)V N
8 (s) ds)−N− 5

3 Y12(

∫ t

0

λ12N
γV N

9 (s) ds)
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γ = 0

α1 α2 α3 α4 α5 α6 α7 α8 α9

0 0 0 2
3

1 5
3

1 0 5
3

V2(t) = V2(0) + Y3(

∫ t

0

λ3V3(s) ds) + Y4(λ4V1(0) t) + Y8(λ8V7(0) t)

−Y2(

∫ t

0

λ2V2(s) ds)− Y9(

∫ t

0

λ9V2(s)V6(0) ds)

V3(t) = V3(0) + Y2(

∫ t

0

λ2V2(s) ds)− Y3(

∫ t

0

λ3V3(s) ds)

V8(t) = V8(0) + Y1(λ1 t) + Y12(λ12V9(0) t)− Y10(

∫ t

0

λ10V6(0)V8(s) ds)

V1(t) = V1(0), V4(t) = V4(0), V5(t) = V5(0), V6(t) = V6(0), V7(t) = V7(0), V9(t) = V9(0)
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γ = 1

V7(t) = V7(0) +

∫ t

0

[λ9V̄2(s)V6(0)− λ8V7(s)− λ15V4(0)V7(s)] ds

= V7(0) +

∫ t

0

[λ4V1(0)− λ15V4(0)V7(s)] ds

λ3V̄3(s) + λ4V1(0) + λ8V7(s)− λ2V̄2(s)− λ9V̄2(s)V6(0) = 0

λ2V̄2(s)− λ3V̄3(s) = 0

λ1 + λ12V9(0)− λ10V6(0)V̄8(s) = 0

V1(t) = V1(0), V4(t) = V4(0), V5(t) = V5(0), V6(t) = V6(0), V9(t) = V9(0)
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γ = 5/3

V1(t) = V1(0) + Y13(λ13 t)− Y14(

∫ t

0

λ14V1(s) ds)

V4(t) = V4(0) +

∫ t

0

[λ6V̄3(s)− λ18V4(s)] ds

V5(t) = V5(0) +

∫ t

0

[λ5V̄3(s)− λ16V5(s)] ds

V6(t) = V6(0) +

∫ t

0

[λ8V7(s) + λ12V9(s) + λ15V4(s)V7(s)− λ9V̄2(s)V6(s)− λ10V6(s)V̄8(s)− λ17V6(s)] ds

V9(t) = V9(0) +

∫ t

0

[λ10V6(s)V̄8(s)− λ12V9(s)] ds

λ3V̄3(s) + λ4V1(s) + λ8V7(s)− λ2V̄2(s)− λ9V̄2(s)V6(s) = 0

λ2V̄2(s)− λ3V̄3(s) = 0

λ1 + λ12V9(s)− λ10V6(s)V̄8(s) = 0

λ9V̄2(s)V6(s)− λ8V7(s)− λ15V4(s)V7(s) = 0
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V1(t) = V1(0) + Y13(λ13 t)− Y14(

∫ t

0

λ14V1(s) ds)

V4(t) = V4(0) +

∫ t

0

[λ6V̄3(s)− λ18V4(s)] ds

V5(t) = V5(0) +

∫ t

0

[λ5V̄3(s)− λ16V5(s)] ds

V6(t) = V6(0)−
∫ t

0

[λ17V6(s) + λ1] ds

V9(t) = V9(0) + λ1t

V̄3(s) =
λ2

λ3

V̄2(s) =
λ2

λ3

λ4V1(s) + λ8V7(s)

λ9V6(s)

V7(s) =
λ4V1(s)

λ15V4(s)
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Abstract
Identifying separated time scales in stochastic models of reaction networks

Reaction rates and chemical species numbers may vary over several orders of mag-
nitude. Combined these large variations can lead to subnetworks operating on very
different time scales. Separation of time scales has been exploited in many contexts
as a basis for reducing the complexity of dynamic models, but the interaction of the
rate constants and the species numbers makes identifying the appropriate time scales
tricky at best. Some systematic approaches to this identification will be discussed
and illustrated by application to a model of the heat shock response in E. Coli.


