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Preface

These notes were used in a short graduate course on branching processes the author gave
in Beijing Normal University. The following main topics are covered: scaling limits
of Galton–Watson processes, continuous-state branching processes, extinction probabil-
ities, conditional limit theorems, decompositions of sample paths, martingale problems,
stochastic equations, Lamperti’s transformations, independent and dependent immigra-
tion processes. Some of the results are simplified versions of those in the author’s book
“Measure-valued branching Markov processes” (Springer, 2011). We hope these simpli-
fied results will set out the main ideas in an easy way and lead the reader to a quick access
of the subject.

Zenghu Li

Beijing, China
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Chapter 1

Preliminaries

In this chapter, we discuss the basic properties of Laplace transforms of finite measures
on the positive half line. In particular, we give some characterizations of the weak con-
vergence of those measures in terms of their Laplace transforms. Based on these results,
a general representation for infinitely divisible distributions on the positive half line is
established. We also give some characterizations of continuous functions on the positive
half line with Lévy–Khintchine type representations.

1.1 Laplace transforms of measures

In this section, we discuss the basic properties of Laplace transforms of finite measures
on the positive half line R+ := [0,∞). Let B(R+) = bB(R+) be the set of bounded
Borel functions on R+. Given a finite measure µ on R+, we define the Laplace transform
Lµ of µ by

Lµ(λ) =

∫ ∞

0

e−λxµ(dx), λ ≥ 0. (1.1.1)

Theorem 1.1.1 A finite measure on R+ is uniquely determined by its Laplace transform.

Proof. Suppose that µ1 and µ2 are finite measures on R+ and Lµ1(λ) = Lµ2(λ) for all
λ ≥ 0. Let K = {x 7→ e−λx : λ ≥ 0} and let L be the class of functions F ∈ B(R+) so
that ∫ ∞

0

F (x)µ1(dx) =

∫ ∞

0

F (x)µ2(dx).

Then K is closed under multiplication and L is a monotone vector space containing
K . It is easy to see σ(K ) = B(R+). Then the monotone class theorem implies L ⊃
bσ(K ) = B(R+). That proves the desired result. �

1



2 CHAPTER 1. PRELIMINARIES

Theorem 1.1.2 Let {µn} be finite measures on R+ and let λ 7→ L(λ) be a continuous
function on [0,∞). If there is a dense subset D of (0,∞) to that limn→∞ Lµn(λ) =
L(λ) for every λ ∈ D, then there is a finite measure µ on R+ such that Lµ = L and
limn→∞ µn = µ by weak convergence.

Proof. We can regard each µn as a finite measure on R̄+ := [0,∞], the one-point com-
pactification of [0,∞). Let Fn denote the distribution function of µn. By applying Helly’s
theorem one can see that any subsequence of {Fn} contains a weakly convergent subse-
quence {Fnk

}. Then the corresponding subsequence {µnk
} converges weakly on R̄+ to a

finite measure µ. It follows that

µ(R̄+) = lim
k→∞

µnk
(R+) = lim

k→∞
Lµnk

(0) = L(0).

Moreover, for λ ∈ D we have∫
R̄+

e−λxµ(dx) = lim
k→∞

∫ ∞

0

e−λxµnk
(dx) = L(λ), (1.1.2)

where e−λ·∞ = 0 by convention. By letting λ → 0+ along D in (1.1.2) and using
the continuity of L at λ = 0 we find µ(R+) = L(0), so µ is supported by R+. Then
limn→∞ µnk

= µ weakly on R+. It is easy to see that (1.1.2) in fact holds for all λ ≥ 0,
so we have Lµ = L. By a standard argument one sees limn→∞ µn = µ weakly on R+. �

Theorem 1.1.3 Let µ1, µ2, . . . and µ be finite measures on R+. Then µn → µ weakly if
and only if Lµn(λ) → Lµ(λ) for every λ ≥ 0.

Proof. If µn → µ weakly, we have limn→∞ Lµn(λ) = Lµ(λ) for every λ ≥ 0 by
dominated convergence. The converse assertion is a consequence of Theorem 1.1.2. �

We next give a necessary and sufficient condition for a continuous real function to be
the Laplace transform of a finite measure on R+. For a constant c ≥ 0 and a function f
on an interval T ⊂ R we write

∆cf(λ) = f(λ+ c)− f(λ), λ, λ+ c ∈ T.

Let ∆0
c be the identity and define ∆n

c = ∆n−1
c ∆c for n ≥ 1 inductively. Then we have

∆m
c f(λ) = (−1)m

m∑
i=0

(
m

i

)
(−1)if(λ+ ic).

The Bernstein polynomials of a function f on [0, 1] are given by

Bf,m(s) =
m∑
i=0

(
m

i

)
∆i

1/mf(0)s
i, 0 ≤ s ≤ 1,m = 1, 2, . . . . (1.1.3)
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It is well-known that Bf,m(s) → f(s) uniformly as m → ∞; see, e.g., Feller (1971,
p.222). A real function θ on [0,∞) is said to be completely monotone if it satisfies

(−1)i∆i
cθ(λ) ≥ 0, λ ≥ 0, c ≥ 0, i = 0, 1, 2, . . . . (1.1.4)

Theorem 1.1.4 A continuous real function θ on [0,∞) is the Laplace transform of a finite
measure µ on R+ if and only if it is completely monotone.

Proof. If θ is the Laplace transform of a finite measure on R+ it is clearly a completely
monotone function. Conversely, suppose that (1.1.4) holds. For fixed a > 0, we let
γa(s) = θ(a− as) for 0 ≤ s ≤ 1. The complete monotonicity of θ implies

∆i
1/mγa(0) ≥ 0, i = 0, 1, . . . ,m.

Then the Bernstein polynomial Bγa,m(s) has positive coefficients, so Bγa,m(e
−λ/a) is the

Laplace transform of a finite measure on R+. By Theorem 1.1.2,

θ(λ) = lim
a→∞

lim
m→∞

Bγa,m(e
−λ/a), λ ≥ 0,

is the Laplace transform of a finite measure on R+. �
We often use a variation of the Laplace transform in dealing with σ-finite measures on

(0,∞). A typical case is considered in the following:

Theorem 1.1.5 Let µ1 and µ2 be two σ-finite measures on (0,∞). If for every λ ≥ 0,∫ ∞

0

(1− e−λx)µ1(dx) =

∫ ∞

0

(1− e−λx)µ2(dx) (1.1.5)

and the value is finite, then we have µ1 = µ2.

Proof. By setting µ1({0}) = µ2({0}) = 0 we extend µ1 and µ2 to σ-finite measures on
[0,∞). Taking the difference of (1.1.5) for λ and λ+ 1 we obtain∫ ∞

0

e−λx(1− e−x)µ1(dx) =

∫ ∞

0

e−λx(1− e−x)µ2(dx).

Then the result of Theorem 1.1.1 implies that

(1− e−x)µ1(dx) = (1− e−x)µ2(dx)

as finite measures on [0,∞). Since 1 − e−x is strictly positive on (0,∞), it follows that
µ1 = µ2 as σ-finite measures on (0,∞). �
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Now let us consider a complete separable metric space E with the Borel σ-algebra
denoted by B(E). Suppose that h is a strictly positive bounded Borel function on E. Let
Bh(E) be the set of Borel functions f on E such that |f | ≤ const · h. Let Mh be the
set of Borel measures µ on E such that

∫
E
hdµ < ∞. Let Mh be the σ-algebra on Mh

generated by the mappings

µ 7→ µ(f) :=

∫
E

f(x)µ(dx), f ∈ Bh(E).

Given a finite measure Q on (Mh,Mh), we define the Laplace functional LQ of Q by

LQ(f) =

∫
Mh

e−ν(f)Q(dν), f ∈ Bh(E)
+. (1.1.6)

A random element X taking values on (Mh,Mh) is called a random measure on E. The
Laplace functional of a random measure means the Laplace functional of its distribution
on (Mh,Mh). The reader may refer to Kallenberg (1975) or Li (2011) for the basic theory
of random measure. In particular, the proofs of the following results can be found in the
two references:

Theorem 1.1.6 A finite measure on (Mh,Mh) is uniquely determined by its Laplace func-
tional.

Suppose that λ is a σ-finite measure on (E,B(E)). A random measure X on E is
called a Poisson random measure with intensity λ provided:

(1) for each B ∈ B(E) with λ(B) < ∞, the random variable X(B) has the Poisson
distribution with parameter λ(B), that is,

P{X(B) = n} =
λ(B)n

n!
e−λ(B), n = 0, 1, 2, . . . ;

(2) if B1, . . . , Bn ∈ B(E) are disjoint and λ(Bi) < ∞ for each i = 1, . . . , n, then
X(B1), . . . , X(Bn) are mutually independent random variables.

Theorem 1.1.7 A random measure X on E is Poissonian with intensity λ ∈ Mh(E) if
and only if its Laplace functional is given by

E exp{−X(f)} = exp
{
−
∫
E

(1− e−f(x))λ(dx)
}
, f ∈ Bh(E)

+. (1.1.7)
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Proof. Suppose thatX is a Poisson random measure onE with intensity λ. LetB1, . . . , Bn ∈
B(E) be disjoint sets satisfying λ(Bi) < ∞ for each i = 1, . . . , n. For any constants
α1, . . . , αn ≥ 0 we can use the above two properties to see

E exp
{
−

n∑
i=1

αiX(Bi)
}
= exp

{
−

n∑
i=1

(1− e−αi)λ(Bi)
}
. (1.1.8)

Then we get (1.1.7) by approximating f ∈ Bh(E)
+ by simple functions and using dom-

inated convergence. Conversely, if the Laplace functional of X is given by (1.1.7), we
may apply the equality to the simple function f =

∑n
i=1 αi1Bi

to get (1.1.8). Then X
satisfies the above two properties in the definition of a Poisson random measure on E
with intensity λ.

1.2 Infinitely divisible distributions

For probability measures µ1 and µ2 on R+, the product µ1×µ2 is a probability measure on
R2

+. The image of µ1×µ2 under the mapping (x1, x2) 7→ x1+x2 is called the convolution
of µ1 and µ2 and is denoted by µ1 ∗ µ2, which is a probability measure on R+. According
to the definition, for any F ∈ B(R+) we have∫ ∞

0

F (x)(µ1 ∗ µ2)(dx) =

∫ ∞

0

µ1(dx1)

∫ ∞

0

F (x1 + x2)µ2(dx2). (1.2.1)

Clearly, if ξ1 and ξ2 are independent random variables with distributions µ1 and µ2 on R+,
respectively, then the random variable ξ1 + ξ2 has distribution µ1 ∗ µ2. It is easy to show
that

Lµ1∗µ2(λ) = Lµ1(λ)Lµ2(λ), λ ≥ 0. (1.2.2)

Let µ∗0 = δ0 and define µ∗n = µ∗(n−1) ∗ µ inductively for integers n ≥ 1. We say a
probability distribution µ on R+ is infinitely divisible if for each integer n ≥ 1, there is a
probability µn such that µ = µ∗n

n . In this case, we call µn the n-th root of µ. A positive
random variable ξ is said to be infinitely divisible if it has infinitely divisible distribution
on R+.

We next give a characterization for the class of infinitely divisible probability mea-
sures on R+. Write ψ ∈ I if λ 7→ ψ(λ) is a positive function on [0,∞) with the
representation

ψ(λ) = hλ+

∫ ∞

0

(1− e−λu)l(du), (1.2.3)

where h ≥ 0 and (1 ∧ u)l(du) is a finite measure on (0,∞).
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Proposition 1.2.1 The pair (h, l) in (1.2.3) is uniquely determined by the function ψ ∈
I .

Proof. Suppose that ψ can also be represented by (1.2.3) with (h, l) replaced by (h′, l′).
For λ > 0 and θ ≥ 0, we can evaluate ψ(λ+ θ)− ψ(θ) with the two representations and
get

hλ+

∫ ∞

0

(
1− e−λu

)
e−θul(du) = h′λ+

∫ ∞

0

(
1− e−λu

)
e−θul′(du).

By letting θ → ∞ we get h = h′, and so l(du) = l′(du) by Theorem 1.1.5. �

Theorem 1.2.2 Suppose that ψ is a continuous function on [0,∞). If there is a sequence
{ψn} ⊂ I such that ψ(λ) = limn→∞ ψn(λ) for all λ ≥ 0, then ψ ∈ I .

Proof. Suppose that ψn ∈ I is given by (1.2.3) with (h, l) replaced by (hn, ln). We
can define a finite measure Fn on R̄+ by setting Fn({0}) = hn, Fn({∞}) = 0 and
Fn(du) = (1− e−u)ln(du) for 0 < u <∞. For λ > 0 let

ξ(u, λ) =


(1− e−u)−1(1− e−uλ) if 0 < u <∞,
λ if u = 0,
1 if u = ∞.

(1.2.4)

Then we have

ψn(λ) =

∫
R̄+

ξ(u, λ)Fn(du), λ > 0.

It is evident that {Fn(R̄+)} is a bounded sequence. Take any subsequence {Fnk
} ⊂ {Fn}

such that limk→∞ Fnk
= F weakly for a finite measure F on R̄+. Since u 7→ ξ(u, λ) is

continuous on R̄+, we have

ψ(λ) =

∫
R̄+

ξ(u, λ)F (du), λ > 0.

Observe also that limn→∞ ψ(1/n) = ψ(0) = 0 implies F ({∞}) = 0. Then the desired
conclusion follows by a change of the integration variable. �

Theorem 1.2.3 The relation ψ = − logLµ establishes a one-to-one correspondence be-
tween the functions ψ ∈ I and infinitely divisible probability measures µ on R+.
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Proof. Suppose that ψ ∈ I is given by (1.2.3). Let N be a Poisson random measure on
(0,∞) with intensity l(du) and let

ξ = h+

∫ ∞

0

xN(dx).

By Theorem 1.1.7 for any λ ≥ 0 we have

E e−λξ = exp
{
− hλ−

∫ ∞

0

(
1− e−λu

)
l(du)

}
.

Then ψ = − logLµ for a probability measure µ on R+. Similarly, for each integer n ≥ 1
there is a probability measure µn on R+ so that ψ/n = − logLµn . It is easy to see that
µ∗n
n = µ. That gives the infinite divisibility of µ. Conversely, suppose that ψ = − logLµ

for an infinitely divisible probability measure µ on R+. For n ≥ 1 let µn be the n-th root
of µ. Then

ψ(λ) = lim
n→∞

n[1− e−n
−1ψ(λ)] = lim

n→∞

∫ ∞

0

(
1− e−λx

)
nµn(dx).

By Theorem 1.2.2 we have ψ ∈ I . �
The above theorem gives a complete characterization of infinitely divisible probability

measures on R+. We write µ = I(h, l) if µ is an infinitely divisible probability measure
on R+ with ψ := − logLµ given by (1.2.3).

Theorem 1.2.4 If ψ1, ψ2 ∈ I , then ψ1 ◦ ψ2 ∈ I .

Proof. For every x ≥ 0 we clearly have xψ2 ∈ I , so there is an infinitely divisible prob-
ability measure νx on R+ satisfying − logLνx = xψ2. By a monotone class argument one
can see νx(dy) is a probability kernel on R+. Let µ be the infinitely divisible probability
measure on R+ with − logLµ = ψ1 and define

η(dy) =

∫ ∞

0

µ(dx)νx(dy), y ≥ 0.

It is not hard to show that − logLη = ψ1 ◦ ψ2. By the same reasoning, for each integer
n ≥ 1 there is a probability measure ηn such that − logLηn = n−1ψ1 ◦ ψ2. Then η = η∗nn
and hence η is infinitely divisible. By Theorem 1.2.3 we conclude that ψ1 ◦ ψ2 ∈ I . �

Example 1.2.1 Let b > 0 and α > 0. The Gamma distribution γ on R+ with parameters
(b, α) is defined by

γ(B) =
αb

Γ(b)

∫
B

xb−1e−αxdx, B ∈ B(R+),
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which reduces to the exponential distribution when b = 1. The Laplace transform of γ is

Lγ(λ) =
( α

α+ λ

)b
, λ ≥ 0.

It is easily seen that γ is infinitely divisible and its n-th root is the Gamma distribution
with parameters (b/n, α).

Example 1.2.2 For c > 0 and 0 < α < 1 the function λ 7→ cλα admits the representation
(1.2.3). Indeed, by integration by parts we have∫ ∞

0

(1− e−λu)
du

u1+α
= λα

∫ ∞

0

(1− e−v)
dv

v1+α

= λα
[
− (1− e−v)

1

αvα

∣∣∣∞
0
+

∫ ∞

0

e−v
dv

αvα

]
=

1

α
Γ(1− α)λα.

It follows that

λα =
α

Γ(1− α)

∫ ∞

0

(1− e−λu)
du

u1+α
, λ ≥ 0. (1.2.5)

The infinitely divisible probability measure ν on R+ satisfying − logLν(λ) = cλα is
known as the one-sided stable distribution with index 0 < α < 1. This distribution does
not charge zero and is absolutely continuous with respect to the Lebesgue measure on
(0,∞) with continuous density. For α = 1/2 it has density

q(x) :=
c

2
√
π
x−3/2e−c

2/4x, x > 0.

For a general index the density can be given using an infinite series; see, e.g., Sato (1999,
p.88).

1.3 Lévy–Khintchine type representations

In this section, we give some criteria for continuous functions on [0,∞) to have Lévy–
Khintchine type representations. The results are useful in the study of high-density limits
of discrete branching processes. For u ≥ 0 and λ ≥ 0 let

ξn(u, λ) = e−λu − 1− (1 + un)−1

n−1∑
i=1

(−λu)i

i!
, n = 1, 2, . . . .
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We are interested in functions ϕ on [0,∞) with the representation

ϕ(λ) =
n−1∑
i=0

aiλ
i +

∫ ∞

0

ξn(u, λ)(1− e−u)−nG(du), λ ≥ 0, (1.3.1)

where n ≥ 1 is an integer, {a0, . . . , an−1} is a set of constants and G(du) is a finite
measure on R+. The value at u = 0 of the integrand in (1.3.1) is defined by continuity as
(−λ)n/n!. The following theorem was proved in Li (1991, 2011):

Theorem 1.3.1 A continuous real function ϕ on [0,∞) has the representation (1.3.1) if
and only if for every c ≥ 0 the function

θc(λ) := (−1)n∆n
cϕ(λ), λ ≥ 0 (1.3.2)

is the Laplace transform of a finite measure on R+.

Based on the above theorem we can give canonical representations for the limit func-
tions of some sequences involving probability generating functions. Let {αk} be a se-
quence of positive numbers and let {gk} be a sequence of probability generating functions,
that is,

gk(z) =
∞∑
i=0

pkiz
i, |z| ≤ 1,

where pki ≥ 0 and
∑∞

i=0 pki = 1. We first consider the sequence of functions {ψk}
defined by

ψk(λ) = αk[1− gk(1− λ/k)], 0 ≤ λ ≤ k. (1.3.3)

Theorem 1.3.2 If the sequence {ψk} defined by (1.3.3) converges to a continuous real
function ψ on [0,∞), then the limit function belongs to the class I defined by (1.2.3).

Proof. For any c, λ ≥ 0 and sufficiently large k ≥ 1 we have

∆cψk(λ) = −αk∆cgk(1− ·/k)(λ).

Since for each integer i ≥ 1 the i-th derivative g(i)k is a power series with positive coeffi-
cients, we have

(−1)i
di

dλi
∆cψk(λ) = −k−iαk∆cg

(i)
k (1− ·/k)(λ) ≥ 0.

By the mean-value theorem, one sees inductively (−1)i∆i
h∆cψk(λ) ≥ 0. Letting k → ∞

we obtain (−1)i∆i
h∆cψ(λ) ≥ 0. Then ∆cψ(λ) is a completely monotone function of
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λ ≥ 0, so by Theorem 1.1.4 it is the Laplace transform of a finite measure on R+. Since
ψ(0) = limk→∞ ψk(0) = 0, by Theorem 1.3.1 there is a finite measure F on R+ so that

ψ(λ) =

∫ ∞

0

(1− e−λu)(1− e−u)−1F (du),

where the value of the integrand at u = 0 is defined as λ by continuity. Then (1.2.3)
follows with β = F ({0}) and n(du) = (1− e−u)−1F (du) for u > 0. �

Example 1.3.1 Suppose that g is a probability generating function so that β := g′(1−) <
∞. Let αk = k and gk(z) = g(z). Then the sequence ψk(λ) defined by (1.3.3) converges
to βλ as k → ∞.

Example 1.3.2 For any 0 < α ≤ 1 the function ψ(λ) = λα has the representation (1.2.3).
For α = 1 that is trivial, and for 0 < α < 1 that follows from (1.2.5). Let ψk(λ) be defined
by (1.3.3) with αk = kα and gk(z) = 1− (1− z)α. Then ψk(λ) = λα for 0 ≤ λ ≤ k.

In the study of limit theorems of branching models, we shall also need to consider
the limit of another function sequence defined as follows. Let {αk} and {gk} be given as
above and let

ϕk(λ) = αk[gk(1− λ/k)− (1− λ/k)], 0 ≤ λ ≤ k. (1.3.4)

Theorem 1.3.3 If the sequence {ϕk} defined by (1.3.4) converges to a continuous real
function ϕ on [0,∞), then the limit function has the representation

ϕ(λ) = aλ+ cλ2 +

∫ ∞

0

(
e−λu − 1 +

λu

1 + u2

)
m(du), (1.3.5)

where c ≥ 0 and a are constants, and m(du) is a σ-finite measure on (0,∞) satisfying∫ ∞

0

(1 ∧ u2)m(du) <∞. (1.3.6)

Proof. Since ϕ(0) = limk→∞ ϕk(0) = 0, arguing as in the proof of Theorem 1.3.2 we see
that ϕ has the representation (1.3.1) with n = 2 and a0 = 0, which can be rewritten into
the equivalent form (1.3.5). �

As observed in the above proof, the representation (1.3.5) is essentially a special form
of (1.3.1). For computational convenience we may rewrite (1.3.5) as

ϕ(λ) = b1λ+ cλ2 +

∫ ∞

0

(
e−λu − 1 + λu1{u≤1}

)
m(du), (1.3.7)
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where

b1 := a+

∫ ∞

0

( u

1 + u2
− u1{u≤1}

)
m(du).

If the measure m(du) satisfies the integrability condition∫ ∞

0

(u ∧ u2)m(du) <∞, (1.3.8)

we have

ϕ(λ) = bλ+ cλ2 +

∫ ∞

0

(
e−λu − 1 + λu

)
m(du), (1.3.9)

where

b = a−
∫ ∞

0

u3

1 + u2
m(du).

Proposition 1.3.4 A function ϕ with the representation (1.3.5) is locally Lipschitz if and
only if (1.3.8) holds.

Proof. By applying dominated convergence to (1.3.7), for each λ > 0 we have

ϕ′(λ) = b1 + 2cλ+

∫
(0,1]

u
(
1− e−λu

)
m(du)−

∫
(1,∞)

ue−λum(du).

Then we use monotone convergence to the two integrals to get

ϕ′(0+) = b1 −
∫
(1,∞)

um(du).

If ϕ is locally Lipschitz, we have ϕ′(0+) > −∞ and the integral on the right-hand side
is finite. This together with (1.3.6) implies (1.3.8). Conversely, if (1.3.8) holds, then ϕ′ is
bounded on each bounded interval and so ϕ is locally Lipschitz. �

Corollary 1.3.5 If the sequence {ϕk} defined by (1.3.4) is uniformly Lipschitz on each
bounded interval and ϕk(λ) → ϕ(λ) for all λ ≥ 0 as k → ∞, then the limit function has
the representation (1.3.9).

Example 1.3.3 Suppose that g is a probability generating function so that g′(1−) = 1 and
c := g′′(1−)/2 < ∞. Let αk = k2 and gk(z) = g(z). By Taylor’s expansion it is easy to
show that the sequence ϕk(λ) defined by (1.3.4) converges to cλ2 as k → ∞.
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Example 1.3.4 For 0 < α < 1 the function ϕ(λ) = −λα has the representation (1.3.5).
That follows from (1.2.5) as we notice∫ ∞

0

( u

1 + u2

) du

u1+α
=

∫ ∞

0

( 1

1 + u2

)du
uα

<∞.

The function is the limit of the sequence ϕk(λ) defined by (1.3.4) with αk = kα and
gk(z) = 1− (1− z)α.

Example 1.3.5 The function ϕ(λ) = λ log λ can be represented in the form of (1.3.7). In
fact, we have∫ ∞

0

(e−λu − 1 + λu1{u≤1})
du

u2
= λ

∫ ∞

0

(e−v − 1 + v1{v≤λ})
dv

v2

= hλ+ λ

∫ λ

1

dv

v
= hλ+ λ log λ,

where

h =

∫ ∞

0

(e−v − 1 + v1{v≤1})
dv

v2
.

It follows that

λ log λ = −hλ+

∫ ∞

0

(e−λu − 1 + λu1{u≤1})
du

u2
, λ ≥ 0.

For k ≥ 1 sufficiently large, let ϕk(λ) be defined by (1.3.4) with αk = k(log k − 1) and

gk(z) = z + kα−1
k (1− z) log[k(1− z)].

Then we have ϕk(λ) = λ log λ for 0 ≤ λ ≤ k.

Example 1.3.6 For any 1 ≤ α ≤ 2 the function ϕ(λ) = λα can be represented in the form
of (1.3.9). In particular, for 1 < α < 2 we can use integration by parts to see∫ ∞

0

(e−λu − 1 + λu)
du

u1+α
= λα

∫ ∞

0

(e−v − 1 + v)
dv

v1+α

= λα
[
− (e−v − 1 + v)

1

αvα

∣∣∣∞
0
+

∫ ∞

0

(1− e−v)
dv

αvα

]
=

Γ(2− α)

α(α− 1)
λα,

where the last equality follows by the calculations in Example 1.2.2. Thus we have

λα =
α(α− 1)

Γ(2− α)

∫ ∞

0

(e−λu − 1 + λu)
du

u1+α
, λ ≥ 0.

Let ϕk(λ) be defined by (1.3.4) with αk = αkα and gk(z) = z + α−1(1 − z)α. Then
ϕk(λ) = λα for 0 ≤ λ ≤ k.



Chapter 2

Continuous-state branching processes

In this chapter, we first give a construction of CB-processes as the scaling limits of discrete
Galton–Watson branching processes. This approach also gives the interpretations of the
CB-processes. We shall study some basic properties of the CB-processes. In particular,
some conditional limit theorems will be given. We also give a reconstruction of the sample
paths of the CB-processes in terms of excursions.

2.1 Construction by scaling limits

Suppose that {ξn,i : n, i = 1, 2, . . .} is a family of positive integer-valued i.i.d. random
variables with distribution given by the probability generating function g. Given the pos-
itive integer x(0) = m, we define inductively

x(n) =

x(n−1)∑
i=1

ξn,i, n = 1, 2, . . . . (2.1.1)

It is easy to show that {x(n) : n = 0, 1, 2, . . .} is a discrete-time positive integer-valued
Markov chain with transition matrix P (i, j) defined by

∞∑
j=0

P (i, j)zj = g(z)i, i = 0, 1, 2, . . . , |z| ≤ 1. (2.1.2)

The random variable x(n) can be thought of as the number of individuals in generation
n ≥ 0 of an evolving particle system. After one unit time, each of the x(n) particles splits
independently of others into a random number of offspring according to the distribution
given by g; see, e.g., Athreya and Ney (1972). For n ≥ 0 the n-step transition matrix

13
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P n(i, j) is determined by
∞∑
j=0

P n(i, j)zj = gn(z)i, i = 0, 1, 2, . . . , |z| ≤ 1, (2.1.3)

where gn(z) is defined by gn(z) = g(gn−1(z)) successively with g0(z) = z. We call any
positive integer-valued Markov chain with transition matrix given by (2.1.2) or (2.1.3) a
Galton–Watson branching process (GW-process). If g′(1−) <∞, the first moment of the
discrete distribution {P n(i, j); j = 0, 1, 2, . . .} is given by

∞∑
j=1

jP n(i, j) = ig′(1−)n, (2.1.4)

which can be obtained by differentiating both sides of (2.1.3).

Now suppose we have a sequence of GW-processes {xk(n) : n ≥ 0} with offspring
distribution given by the sequence of probability generating functions {gk}. Let zk(n) =
xk(n)/k for n ≥ 0. Then {zk(n) : n ≥ 0} is a Markov chain with state space Ek :=
{0, 1/k, 2/k, . . .} and n-step transition probability P n

k (x, dy) determined by∫
Ek

e−λyP n
k (x, dy) = gnk (e

−λ/k)kx, λ ≥ 0. (2.1.5)

Suppose that {γk} is a positive sequence so that γk → ∞ as k → ∞. Let [γkt] denote the
integer part of γkt ≥ 0. We are interested in the asymptotic behavior of the sequence of
continuous time processes {zk([γkt]) : t ≥ 0}. By (2.1.5) we have∫

Ek

e−λyP
[γkt]
k (x, dy) = exp{−xvk(t, λ)}, (2.1.6)

where

vk(t, λ) = −k log g[γkt]k (e−λ/k), λ ≥ 0. (2.1.7)

Clearly, if zk(0) = x ∈ Ek, then the probability P
[γkt]
k (x, ·) gives the distribution of

zk([γkt]) on R+. Let us consider the function sequences

Gk(z) = kγk[gk(e
−z/k)− e−z/k], z ≥ 0, (2.1.8)

and

ϕk(z) = kγk[gk(1− z/k)− (1− z/k)], 0 ≤ z ≤ k. (2.1.9)

Proposition 2.1.1 The sequence {Gk} is uniformly Lipschitz on each bounded interval if
and only if so is {ϕk}. In this case, we have limk→∞ |ϕk(z) − Gk(z)| = 0 uniformly on
each bounded interval.
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Proof. From (2.1.8) and (2.1.9) it is simple to see that

G′
k(z) = γke

−z/k[1− g′k(e
−z/k)], z ≥ 0, (2.1.10)

and

ϕ′
k(z) = γk[1− g′k(1− z/k)], 0 ≤ z ≤ k. (2.1.11)

Clearly, the sequence {G′
k} is uniformly bounded on each bounded interval if and only

if so is {ϕ′
k}. Then the first assertion is immediate. We next assume {Gk} is uniformly

Lipschitz on each bounded interval. Let a ≥ 0. By the mean-value theorem, for k ≥ a
and 0 ≤ z ≤ a we have

Gk(z)− ϕk(z) = kγk
[
gk(e

−z/k)− gk(1− z/k)− e−z/k + (1− z/k)
]

= kγk[g
′
k(ηk)− 1](e−z/k − 1 + z/k), (2.1.12)

where

1− a/k ≤ 1− z/k ≤ ηk ≤ e−z/k ≤ 1.

Choose k0 ≥ a so that e−2a/k0 ≤ 1− a/k0. Then e−2a/k ≤ 1− a/k for k ≥ k0 and hence

γk|g′k(ηk)− 1| ≤ sup
0≤z≤2a

γk|g′k(e−z/k)− 1|, k ≥ k0.

Since {Gk} is uniformly Lipschitz on each bounded interval, the sequence (2.1.10) is
uniformly bounded on [0, 2a]. Then {γk|g′k(ηk) − 1| : k ≥ k0} is a bounded sequence.
Now the desired result follows from (2.1.12). �

By the above proposition, if either {Gk} or {ϕk} is uniformly Lipschitz on each
bounded interval, then they converge or diverge simultaneously and in the convergent
case they have the same limit. For the convenience of statement of the results, we formu-
late the following conditions:

Condition 2.1.2 The sequence {Gk} is uniformly Lipschitz on [0, a] for every a ≥ 0 and
there is a function ϕ on [0,∞) so that Gk(z) → ϕ(z) uniformly on [0, a] for every a ≥ 0
as k → ∞.

Proposition 2.1.3 Suppose that Condition 2.1.2 is satisfied. Then the function ϕ has
representation

ϕ(z) = bz + cz2 +

∫ ∞

0

(
e−zu − 1 + zu

)
m(du), z ≥ 0, (2.1.13)

where c ≥ 0 and b are constants and (u ∧ u2)m(du) is a finite measure on (0,∞).
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Proof. By Proposition 2.1.1, the sequence {ϕk} is uniformly Lipschitz on [0, a] and
ϕk(z) → ϕ(z) uniformly on [0, a] for every a ≥ 0. Then the result follows by Corol-
lary 1.3.5. �

Proposition 2.1.4 For any function ϕ with representation (2.1.13) there is a sequence
{Gk} in the form of (2.1.8) satisfying Condition 2.1.2.

Proof. By Proposition 2.1.1 it suffices to construct a sequence {ϕk} in the form of (2.1.9)
uniformly Lipschitz on [0, a] and ϕk(z) → ϕ(z) uniformly on [0, a] for every a ≥ 0.
To simplify the formulations we decompose the function ϕ into two parts. Let ϕ0(z) =
ϕ(z)− bz. We first define

γ0,k = (1 + 2c)k +

∫ ∞

0

u(1− e−ku)m(du)

and

g0,k(z) = z + k−1γ−1
0,kϕ0(k(1− z)), |z| ≤ 1.

It is easy to see that z 7→ g0,k(z) is an analytic function in (−1, 1) satisfying g0,k(1) = 1
and

dn

dzn
g0,k(0) ≥ 0, n ≥ 0.

Therefore g0,k(·) is a probability generating function. Let ϕ0,k be defined by (2.1.9) with
(γk, gk) replaced by (γ0,k, g0,k). Then ϕ0,k(z) = ϕ0(z) for 0 ≤ z ≤ k. That completes the
proof if b = 0. In the case b ̸= 0, we set

g1,k(z) =
1

2

(
1 +

b

|b|

)
+

1

2

(
1− b

|b|

)
z2.

Let γ1,k = |b| and let ϕ1,k(z) be defined by (2.1.9) with (γk, gk) replaced by (γ1,k, g1,k).
Thus we have

ϕ1,k(z) = bz +
1

2k
(|b| − b)z2.

Finally, let γk = γ0,k + γ1,k and gk = γ−1
k (γ0,kg0,k + γ1,kg1,k). Then the sequence ϕk(z)

defined by (2.1.9) is equal to ϕ0,k(z) + ϕ1,k(z) which satisfies the required condition. �

Lemma 2.1.5 Suppose that the sequence {Gk} defined by (2.1.8) is uniformly Lipschitz
on [0, 1]. Then there are constants B,N ≥ 0 such that vk(t, λ) ≤ λeBt for every t, λ ≥ 0
and k ≥ N .
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Proof. Let bk := G′
k(0+) for k ≥ 1. Since {Gk} is uniformly Lipschitz on [0, 1], the

sequence {bk} is bounded. From (2.1.8) we have bk = γk[1− g′k(1−)]. By (2.1.4) it is not
hard to obtain ∫

Ek

yP
[γkt]
k (x, dy) = xg′k(1−)[γkt] = x

(
1− bk

γk

)[γkt]

.

Let B ≥ 0 be a constant such that 2|bk| ≤ B for all k ≥ 1. Since γk → ∞ as k → ∞,
there is N ≥ 1 so that

0 ≤
(
1− bk

γk

) γk
B ≤

(
1 +

B

2γk

) γk
B ≤ e, k ≥ N.

It follows that, for t ≥ 0 and k ≥ N ,∫
Ek

yP
[γkt]
k (x, dy) ≤ x exp

{B
γk

[γkt]
}
≤ xeBt. (2.1.14)

Then the desired estimate follows from (2.1.6), (2.1.14) and Jensen’s inequality. �

Theorem 2.1.6 Suppose that Condition 2.1.2 holds. Then for every a ≥ 0 we have
vk(t, λ) → some vt(λ) uniformly on [0, a]2 as k → ∞ and the limit function solves the
integral equation

vt(λ) = λ−
∫ t

0

ϕ(vs(λ))ds, λ, t ≥ 0. (2.1.15)

Proof. The following argument is a modification of that of Aliev and Shchurenkov (1982)
and Aliev (1985). For any n ≥ 0 we may write

log gn+1
k (e−λ/k) = log

[
gk(g

n
k (e

−λ/k))gnk (e
−λ/k)−1

]
+ log gnk (e

−λ/k)

= (kγk)
−1Ḡk

(
− k log gnk (e

−λ/k)
)
+ log gnk (e

−λ/k),

where

Ḡk(z) = kγk log
[
gk(e

−z/k)ez/k
]
.

From this and (2.1.7) it follows that

vk(t+ γ−1
k , λ) = vk(t, λ)− γ−1

k Ḡk(vk(t, λ)).

By applying the above equation to t = 0, 1/γk, . . . , ([γkt]−1)/γk and adding the resulting
equations we obtain

vk(t, λ) = λ−
[γkt]∑
i=1

γ−1
k Ḡk(vk(γ

−1
k (i− 1), λ)).
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Then we can write

vk(t, λ) = λ+ εk(t, λ)−
∫ t

0

Ḡk(vk(s, λ))ds, (2.1.16)

where

εk(t, λ) =
(
t− γ−1

k [γkt]
)
Ḡk

(
vk(γ

−1
k [γkt], λ)

)
.

It is not hard to see

Ḡk(z) = kγk log
[
1 + (kγk)

−1Gk(z)e
z/k

]
.

By Condition 2.1.2, for any 0 < ε ≤ 1 we can enlarge N ≥ 1 so that

|Ḡk(z)− ϕ(z)| ≤ ε, 0 ≤ z ≤ aeBa, k ≥ N. (2.1.17)

It then follows that

|εk(t, λ)| ≤ γ−1
k M, 0 ≤ t, λ ≤ a, (2.1.18)

where

M = 1 + sup
0≤z≤aeBa

|ϕ(z)|.

For n ≥ k ≥ N let

Kk,n(t, λ) = sup
0≤s≤t

|vn(s, λ)− vk(s, λ)|.

By (2.1.16), (2.1.17) and (2.1.18) we obtain

Kk,n(t, λ) ≤ 2(γ−1
k M + εa) + L

∫ t

0

Kk,n(s, λ)ds, 0 ≤ t, λ ≤ a,

where L = sup0≤s≤aeBa |ϕ′(z)|. By Gronwall’s inequality,

Kk,n(t, λ) ≤ 2(γ−1
k M + εa) exp{Lt}, 0 ≤ t, λ ≤ a.

Then vk(t, λ) → some vt(λ) uniformly on [0, a]2 as k → ∞ for every a ≥ 0. From
(2.1.16) we get (2.1.15). �

Theorem 2.1.7 Suppose that ϕ is given by (2.1.13). Then for any λ ≥ 0 there is a unique
locally bounded positive solution t 7→ vt(λ) to (2.1.15). Moreover, the solution satisfies
the semigroup property

vr+t(λ) = vr ◦ vt(λ) = vr(vt(λ)), r, t, λ ≥ 0. (2.1.19)
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Proof. By Propositions 2.1.4 and 2.1.6 there is a locally bounded positive solution to
(2.1.15). The proof of the uniqueness of the solution is a standard application of Gron-
wall’s inequality. The relation (2.1.19) follows from the uniqueness of the solution to
(2.1.15). �

Theorem 2.1.8 Suppose that ϕ is given by (2.1.13). Then there is a Feller transition
semigroup (Qt)t≥0 on R+ defined by∫ ∞

0

e−λyQt(x, dy) = e−xvt(λ), λ ≥ 0, x ≥ 0. (2.1.20)

Moreover, if Ek ∋ xk → x ≥ 0, we have P [γkt]
k (xk, ·) → Qt(x, ·) weakly.

Proof. By Proposition 2.1.4 and Theorems 1.1.2 and 2.1.6 there is a probability kernel
Qt(x, dy) on R+ defined by (2.1.20). Moreover, we have P [γkt]

k (xk, ·) → Qt(x, ·) weakly
if xk → x. The semigroup property of the family of kernels (Qt)t≥0 follows from (2.1.19)
and (2.1.20). For λ > 0 and x ≥ 0 set eλ(x) = e−λx. We denote by D1 the linear span of
{eλ : λ > 0}. Clearly, the operator Qt preserves D1 for every t ≥ 0. By the continuity
of t 7→ vt(λ) it is easy to show that t 7→ Qteλ(x) is continuous for λ > 0 and x ≥ 0.
Then t 7→ Qtf(x) is continuous for every f ∈ D1 and x ≥ 0. Let C0(R+) be the space
of continuous functions on R+ vanishing at infinity. By the Stone–Weierstrass theorem,
the set D1 is uniformly dense in C0(R+); see, e.g., Hewitt and Stromberg (1965, pp.98-
99). Then each operator Qt preserves C0(R+) and t 7→ Qtf(x) is continuous for every
f ∈ C0(R+) and x ≥ 0. That gives the Feller property of the semigroup (Qt)t≥0. �

A Markov process is called a continuous-state branching process (CB-process) with
branching mechanism ϕ if it has transition semigroup (Qt)t≥0 defined by (2.1.20). It is
simple to see that

Qt(x1 + x2, ·) = Qt(x1, ·) ∗Qt(x2, ·), t, x1, x2 ≥ 0, (2.1.21)

which is called the branching property of (Qt)t≥0. The family of functions (vt)t≥0 is
called the cumulant semigroup of the CB-process. By Theorem 2.1.8 the process has
a càdlàg realization. Let Ω = D([0,∞),R+) denote the space of càdlàg paths from
[0,∞) to R+ furnished with the Skorokhod topology. The following theorem gives an
interpretation of the CB-process as the approximation of the GW-process.

Theorem 2.1.9 Suppose that Condition 2.1.2 holds. Let {x(t) : t ≥ 0} be a CB-process
with transition semigroup (Qt)t≥0 defined by (2.1.20). If zk(0) converges to x(0) in
distribution, then {zk([γkt]) : t ≥ 0} converges to {x(t) : t ≥ 0} in distribution on
D([0,∞),R+).
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Proof. For λ > 0 and x ≥ 0 set eλ(x) = e−λx. Let C0(R+) be the space of continuous
functions on R+ vanishing at infinity. By Theorem 2.1.6 it is easy to show

lim
k→∞

sup
x∈Ek

∣∣P [γkt]
k eλ(x)−Qteλ(x)

∣∣ = 0, λ > 0.

Then the Stone–Weierstrass theorem implies

lim
k→∞

sup
x∈Ek

∣∣P [γkt]
k f(x)−Qtf(x)

∣∣ = 0, f ∈ C0(R+).

By Ethier and Kurtz (1986, p.226 and pp.233-234) we conclude that {zk([γkt]) : t ≥ 0}
converges to the CB-process {x(t) : t ≥ 0} in distribution on D([0,∞),R+). �

The convergence of rescaled Galton–Watson branching processes to diffusion pro-
cesses was first studied by Feller (1951). Jiřina (1958) introduced CB-processes in both
discrete and continuous times. Lamperti (1967a) showed that the continuous-time pro-
cesses are weak limits of rescaled Galton–Watson branching processes. We have followed
Aliev and Shchurenkov (1982) and Li (2006) in some of the above calculations; see also
Li (2011).

2.2 Simple properties of CB-processes

In this section we prove some basic properties of CB-processes. Most of the results pre-
sented here can be found in Grey (1974) and Li (2000). We shall follow the treatments
in Li (2011). Suppose that ϕ is a branching mechanism defined by (2.1.13). Then a CB-
process has transition semigroup (Qt)t≥0 defined by (2.1.15) and (2.1.20). It is easy to
see for each x ≥ 0, the probability measure Qt(x, ·) is infinitely divisible. Then (vt)t≥0

can be expressed canonically as

vt(λ) = htλ+

∫ ∞

0

(1− e−λu)lt(du), t ≥ 0, λ ≥ 0, (2.2.1)

where ht ≥ 0 and ult(du) is a finite measure on (0,∞). From (2.1.15) we see that
t 7→ vt(λ) is first continuous and then continuously differentiable. Moreover, we have the
backward differential equation:

∂

∂t
vt(λ) = −ϕ(vt(λ)), v0(λ) = λ. (2.2.2)

By (2.2.2) and the semigroup property vr ◦vt = vr+t for r, t ≥ 0 we also have the forward
differential equation

∂

∂t
vt(λ) = −ϕ(λ) ∂

∂λ
vt(λ), v0(λ) = λ. (2.2.3)
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By differentiating both sides of (2.1.15) it is easy to find

∂

∂λ
vt(0+) = e−bt, t ≥ 0, (2.2.4)

which together with (2.1.20) yields∫ ∞

0

yQt(x, dy) = xe−bt, t ≥ 0, x ≥ 0. (2.2.5)

We say the CB-process is critical, subcritical or supercritical according as b = 0, ≥ 0 or
≤ 0.

Proposition 2.2.1 For every t ≥ 0 the function λ 7→ vt(λ) is strictly increasing on [0,∞).

Proof. By the continuity of t 7→ vt(λ), for any λ0 > 0 there is t0 > 0 so that vt(λ0) > 0
for 0 ≤ t ≤ t0. Then (2.1.20) implies Qt(x, {0}) < 1 for x > 0 and 0 ≤ t ≤ t0, and so
λ 7→ vt(λ) is strictly increasing for 0 ≤ t ≤ t0. By the semigroup property of (vt)t≥0 we
infer λ 7→ vt(λ) is strictly increasing for all t ≥ 0. �

Corollary 2.2.2 The transition semigroup (Qt)t≥0 defined by (2.1.20) is a Feller semi-
group.

Proof. By Proposition 2.2.1 for t ≥ 0 and λ > 0 we have vt(λ) > 0. From (2.1.20)
we see the operator Qt maps {x 7→ e−λx : λ > 0} to itself. By the Stone–Weierstrass
theorem, the linear span of {x 7→ e−λx : λ > 0} is dense in C0(R+) in the supremum
norm. Then Qt maps C0(R+) to itself. The Feller property of (Qt)t≥0 follows by the
continuity of t 7→ vt(λ). �

Proposition 2.2.3 Suppose that λ > 0 and ϕ(λ) ̸= 0. Then the equation ϕ(z) = 0 has no
root between λ and vt(λ). Moreover, we have∫ λ

vt(λ)

ϕ(z)−1dz = t, t ≥ 0. (2.2.6)

Proof. By (2.1.13) we see ϕ(0) = 0 and z 7→ ϕ(z) is a convex function. Since ϕ(λ) ̸= 0
for some λ > 0 according to the assumption, the equation ϕ(z) = 0 has at most one root
in (0,∞). Suppose that λ0 ≥ 0 is a root of ϕ(z) = 0. Then (2.2.3) implies vt(λ0) = λ0
for all t ≥ 0. By Proposition 2.2.1 we have vt(λ) > λ0 for λ > λ0 and 0 < vt(λ) < λ0
for 0 < λ < λ0. Then λ > 0 and ϕ(λ) ̸= 0 imply there is no root of ϕ(z) = 0 between λ
and vt(λ). From (2.2.2) we get (2.2.6). �
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Proposition 2.2.4 For any t ≥ 0 and λ ≥ 0 let v′t(λ) = (∂/∂λ)vt(λ). Then we have

v′t(λ) = exp
{
−

∫ t

0

ϕ′(vs(λ))ds
}
, (2.2.7)

where

ϕ′(z) = b+ 2cz +

∫ ∞

0

u
(
1− e−zu

)
m(du). (2.2.8)

Proof. Based on (2.1.15) and (2.2.2) it is elementary to see that

∂

∂t
v′t(λ) = −ϕ′(vt(λ))v

′
t(λ) =

∂

∂λ

∂

∂t
vt(λ).

It follows that

∂

∂t

[
log v′t(λ)

]
= v′t(λ)

−1 ∂

∂t
v′t(λ) = −ϕ′(vt(λ)).

Then we have (2.2.7) since v′0(λ) = 1. �
Since (Qt)t≥0 is a Feller semigroup by Corollary 2.2.2, the CB-process has a Hunt

realization X = (Ω,F ,Ft, x(t),Qx). Let τ0 := inf{s ≥ 0 : x(s) = 0} denote the
extinction time of the CB-process.

Theorem 2.2.5 For every t ≥ 0 the limit v̄t =↑limλ→∞ vt(λ) exists in (0,∞]. Moreover,
the mapping t 7→ v̄t is decreasing and for any t ≥ 0 and x > 0 we have

Qx{τ0 ≤ t} = Qx{x(t) = 0} = exp{−xv̄t}. (2.2.9)

Proof. By Proposition 2.2.1 the limit v̄t =↑limλ→∞ vt(λ) exists in (0,∞] for every t ≥ 0.
For t ≥ r ≥ 0 we have

v̄t =↑ lim
λ→∞

vr(vt−r(λ)) = vr(v̄t−r) ≤ v̄r. (2.2.10)

Since zero is a trap for the CB-process, we get (2.2.9) by letting λ→ ∞ in (2.1.20). �
For the convenience of statement of the results in the sequel, we formulate the follow-

ing condition on the branching mechanism:

Condition 2.2.6 There is some constant θ > 0 so that

ϕ(z) > 0 for z ≥ θ and
∫ ∞

θ

ϕ(z)−1dz <∞.
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Theorem 2.2.7 We have v̄t < ∞ for some and hence all t > 0 if and only if Condi-
tion 2.2.6 holds.

Proof. By (2.2.10) it is simple to see that v̄t =↑limλ→∞ vt(λ) < ∞ for all t > 0 if and
only if this holds for some t > 0. If Condition 2.2.6 holds, we can let λ → ∞ in (2.2.6)
to obtain ∫ ∞

v̄t

ϕ(z)−1dz = t (2.2.11)

and hence v̄t < ∞ for t > 0. For the converse, suppose that v̄t < ∞ for some t > 0. By
(2.2.2) there exists some θ > 0 so that ϕ(θ) > 0, for otherwise we would have vt(λ) ≥ λ,
yielding a contradiction. Then ϕ(z) > 0 for all z ≥ θ by the convexity of the branching
mechanism. As in the above we see that (2.2.11) still holds, so Condition 2.2.6 is satisfied.
�

Theorem 2.2.8 Let v̄ =↓limt→∞ v̄t ∈ [0,∞]. Then for any x > 0 we have

Qx{τ0 <∞} = exp{−xv̄}. (2.2.12)

Moreover, we have v̄ < ∞ if and only if Condition 2.2.6 holds, and in this case v̄ is the
largest root of ϕ(z) = 0.

Proof. The first assertion follows immediately from Theorem 2.2.5. By Theorem 2.2.7
we have v̄t < ∞ for some and hence all t > 0 if and only if Condition 2.2.6 holds. This
is clearly equivalent to v̄ < ∞. From (2.2.11) it is easy to see that v̄ is the largest root of
ϕ(z) = 0. �

Corollary 2.2.9 Suppose that Condition 2.2.6 holds. Then for any x > 0 we have
Qx{τ0 <∞} = 1 if and only if b ≥ 0.

Let (Q◦
t )t≥0 be the restriction to (0,∞) of the semigroup (Qt)t≥0. A family of σ-finite

measures (Ht)t>0 on (0,∞) is called an entrance law for (Q◦
t )t≥0 if HrQ

◦
t = Hr+t for all

r, t > 0. The special case of the canonical representation (2.2.1) with ht = 0 for all t > 0
is particularly interesting. In this case, we have

vt(λ) =

∫ ∞

0

(1− e−λu)lt(du), t > 0, λ ≥ 0. (2.2.13)

Theorem 2.2.10 The cumulant semigroup admits representation (2.2.13) if and only if

ϕ′(∞) := b+ 2c · ∞+

∫ ∞

0

um(du) = ∞ (2.2.14)

with 0 ·∞ = 0 by convention. If condition (2.2.14) is satisfied, then (lt)t>0 is an entrance
law for the restricted semigroup (Q◦

t )t≥0.
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Proof. From (2.2.8) it is clear that the limit ϕ′(∞) = limz→∞ ϕ′(z) always exists in
(−∞,∞]. By (2.2.1) we have

v′t(λ) = ht +

∫ ∞

0

ue−λult(du), t ≥ 0, λ ≥ 0. (2.2.15)

From (2.2.7) and (2.2.15) it follows that

ht = v′t(∞) = exp
{
−

∫ t

0

ϕ′(v̄s)ds
}
. (2.2.16)

Then ht = 0 for any t > 0 implies ϕ′(∞) = ∞. For the converse, assume that ϕ′(∞) =
∞. If Condition 2.2.6 holds, by Theorem 2.2.7 for every t > 0 we have v̄t <∞, so ht = 0
by (2.2.1). If Condition 2.2.6 does not hold, then v̄t = ∞ for t > 0 by Theorem 2.2.7.
Then (2.2.16) implies ht = 0 for t > 0. That proves the first assertion of the theorem. If
(vt)t>0 admits the representation (2.2.13), we can use the semigroup property of (vt)t≥0

to see ∫ ∞

0

(1− e−λu)lr+t(du) =

∫ ∞

0

(1− e−uvt(λ))lr(du)

=

∫ ∞

0

lr(dx)

∫ ∞

0

(1− e−λu)Q◦
t (x, du)

for r, t > 0 and λ ≥ 0. Then (lt)t>0 is an entrance law for (Q◦
t )t≥0. �

Corollary 2.2.11 If Condition 2.2.6 holds, the cumulant semigroup admits the represen-
tation (2.2.13) and t 7→ v̄t = lt(0,∞) is the minimal solution of the differential equation

d

dt
v̄t = −ϕ(v̄t), t > 0 (2.2.17)

with singular initial condition v̄0+ = ∞.

Proof. Under Condition 2.2.6, for every t > 0 we have v̄t < ∞ by Theorem 2.2.7.
Moreover, the condition and the convexity of z 7→ ϕ(z) imply ϕ′(∞) = ∞. Then we
have the representation (2.2.13) by Theorem 2.2.10. The semigroup property of (vt)t≥0

implies v̄t+s = vt(v̄s) for t > 0 and s > 0. Then t 7→ v̄t satisfies (2.2.17). From (2.2.11)
it is easy to see v̄0+ = ∞. Using the relation v̄t = limλ→∞ vt(λ) it is easy to show that
any solution t 7→ ut of (2.2.17) with u0+ = ∞ satisfies ut ≥ v̄t for t > 0. �

Corollary 2.2.12 Suppose that Condition 2.2.6 holds. Then for any t > 0 the function
λ 7→ vt(λ) is strictly increasing and concave on [0,∞), and v̄ is the largest solution of
the equation vt(λ) = λ. Moreover, we have v̄ =↑ limt→∞ vt(λ) for 0 < λ < v̄ and
v̄ =↓limt→∞ vt(λ) for λ > v̄.
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Proof. By Corollary 2.2.11 we have the canonical representation (2.2.13) for every t > 0.
Since λ 7→ vt(λ) is strictly increasing by Proposition 2.2.1, the measure lt(du) is non-
trivial, so λ 7→ vt(λ) is strictly concave. The equality v̄ = vt(v̄) follows by letting s→ ∞
in v̄t+s = vt(v̄s), where v̄t+s ≤ v̄s. Then v̄ is clearly the largest solution to vt(λ) = λ.
When b ≥ 0, we have v̄ = 0 by Theorem 2.2.8 and Corollary 2.2.9. Furthermore, since
ϕ(z) ≥ 0, from (2.2.2) we see t 7→ vt(λ) is decreasing, and hence ↓ limt→∞ vt(λ) =↓
limt→∞ v̄t = 0. If b < 0 and 0 < λ < v̄, we have λ ≤ vt(λ) < vt(v̄) = v̄ for all t ≥ 0.
Then the limit v∞(λ) =↑ limt↑∞ vt(λ) exists. From the relation vt(vs(λ)) = vt+s(λ)
we have vt(v∞(λ)) = v∞(λ), and hence v∞(λ) = v̄ since v̄ is the unique solution to
vt(λ) = λ in (0,∞). The assertion for b < 0 and λ > v̄ can be proved similarly. �

Let us consider the entrance law (lt)t>0 for (Q◦
t )t≥0 defined by (2.2.13). In view of

(2.1.20), for any t > 0 we have∫ ∞

0

(1− e−yλ)lt(dy) = lim
x→0

x−1

∫
R+

(1− e−yλ)Q◦
t (x, dy), λ ≥ 0.

Then we formally have

lt = lim
x→0

x−1Qt(x, ·) t > 0. (2.2.18)

Under Condition 2.2.6, the above relation holds rigorously by the convergence of finite
measures on (0,∞). In Theorem 2.2.10 one usually cannot extend (lt)t>0 to a σ-finite en-
trance law for the semigroup (Qt)t≥0 on R+. For example, let us assume Condition 2.2.6
holds and (l̄t)t>0 is such an extension. For any 0 < r < ε < t we have

l̄t({0}) ≥
∫ ∞

0

Q◦
t−r(x, {0})lr(dx) ≥

∫ ∞

0

e−xv̄t−εlr(dx)

= v̄r −
∫ ∞

0

(1− e−uv̄t−ε)lr(du) = v̄r − vr(v̄t−ε).

The right-hand side tends to infinity as r → 0. Then l̄t(dx) cannot be a σ-finite measure
on R+.

Example 2.2.1 Suppose that there are constants c > 0, 0 < α ≤ 1 and b so that ϕ(z) =
cz1+α + bz. Then Condition 2.2.6 is satisfied. Let q0α(t) = αt and

qbα(t) = b−1(1− e−αbt), b ̸= 0.

By solving the equation

∂

∂t
vt(λ) = −cvt(λ)1+α − bvt(λ), v0(λ) = λ
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we get

vt(λ) =
e−btλ[

1 + cqbα(t)λ
α
]1/α , t ≥ 0, λ ≥ 0. (2.2.19)

Thus v̄t = c−1/αe−btqbα(t)
−1/α for t > 0. In particular, if α = 1, then (2.2.13) holds with

lt(du) =
e−bt

c2qb1(t)
2
exp

{
− u

cqb1(t)

}
du, t > 0, u > 0.

2.3 Conditional limit theorems

Let (Qt)t≥0 denote the transition semigroup of the CB-process with branching mechanism
ϕ given by (2.1.13). Let (Q◦

t )t≥0 be the restriction of (Qt)t≥0 to (0,∞). It is easy to
check that Qb

t(x, dy) := ebtx−1yQ◦
t (x, dy) defines a Markov semigroup on (0,∞). Let

qt(λ) = ebtvt(λ) and let q′t(λ) = (∂/∂λ)qt(λ). Recall that z 7→ ϕ′(z) is defined by (2.2.8).
From (2.2.7) we have

q′t(λ) = exp
{
−
∫ t

0

ϕ′
0(vs(λ))ds

}
, (2.3.1)

where ϕ′
0(z) = ϕ′(z)− b. By differentiating both sides of (2.1.20) we see∫ ∞

0

e−λyQb
t(x, dy) = exp{−xvt(λ)}q′t(λ), λ ≥ 0. (2.3.2)

It follows that∫ ∞

0

e−λyQb
t(x, dy) = exp

{
− xvt(λ)−

∫ t

0

ϕ′
0(vs(λ))ds

}
. (2.3.3)

Using (2.3.3) it is easy to extend (Qb
t)t≥0 to a Feller semigroup on R+. Recall that (vt)t≥0

has the representation (2.2.1).

Theorem 2.3.1 For any t ≥ 0 we have Qb
t(0, du) = ebthtδ0(du) + ebtult(du).

Proof. By (2.2.13) and the definition of qt(λ) we have

qt(λ) = ebthtλ+

∫ ∞

0

(
1− e−λu

)
ebtlt(du), (2.3.4)

and hence

q′t(λ) = ebtht +

∫ ∞

0

ue−λuebtlt(du). (2.3.5)

Then the result follows from (2.3.2) and (2.3.5). �
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Corollary 2.3.2 Suppose that ϕ′(z) → ∞ as z → ∞. Let (lt)t>0 be defined by (2.2.13).
Then for t > 0 the probability measure Qb

t(0, ·) is supported by (0,∞) and Qb
t(0, du) =

uebtlt(du).

Now let X = (Ω,F ,Ft, x(t),Qx) be a Hunt realization of the CB-process with the
augmented natural σ-algebras. Let τ0 := inf{s ≥ 0 : x(s) = 0} denote the extinction
time of X .

Theorem 2.3.3 Suppose that b ≥ 0 and Condition 2.2.6 holds. Let t ≥ 0 and x > 0.
Then the distribution of x(t) under Qx{·|r + t < τ0} converges as r → ∞ to Qb

t(x, ·).

Proof. Since zero is a trap for the CB-process, for any r > 0 we can use the Markov
property of {x(t) : t ≥ 0} to see

Qx

[
e−λx(t)|r + t < τ0

]
=

Qx

[
e−λx(t)1{r+t<τ0}

]
Qx[1{r+t<τ0}]

= lim
θ→∞

Qx

[
e−λx(t)(1− e−θx(r+t))

]
Qx

[
(1− e−θx(r+t))

]
=

Qx

[
e−λx(t)(1− e−x(t)v̄r)

]
1− e−xv̄r+t

. (2.3.6)

Recall that v̄r+t = vt(v̄r) and v′t(0) = e−bt. By Theorem 2.2.8 and Corollary 2.2.9 we
have limr→∞ v̄r = 0. Then

lim
r→∞

Qx

[
e−λx(t)|r + t < τ0

]
= lim

r→∞

Qx

[
e−λx(t)v̄−1

r (1− e−x(t)v̄r)
]

v̄−1
r (1− e−xvt(v̄r))

=
1

x
ebtQx[x(t)e

−λx(t)].

That gives the desired convergence result. �
It is easy to see that t 7→ Z(t) := ebtx(t) is a positive (Ft)-martingale. By the theory

of Markov processes, for each x > 0 there is a unique probability measure Qb
x on (Ω,F )

so that

Qb
x(F ) = Qx[Z(t)F ] (2.3.7)

for any Ft-measurable bounded random variable F . Moreover, under this new probability
measure {x(t) : t ≥ 0} is a Markov process in (0,∞) with transition semigroup (Qb

t)t≥0.
By a modification of the proof of Theorem 2.3.3 we get the following:

Theorem 2.3.4 Suppose that b ≥ 0 and Condition 2.2.6 holds. Let x > 0 and t ≥ 0.
Then for any Ft-measurable bounded random variable F we have

Qb
x[F ] = lim

r→∞
Qx[F |r + t < τ0]. (2.3.8)
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By the above theorem, in the critical and subcritical cases, Qb
x is intuitively the law

of {x(t) : t ≥ 0} conditioned on large extinction times. See Lambert (2007), Li (2000,
2011) and Pakes (1999) for more conditional limit theorems.

2.4 A reconstruction from excursions

In this section, we give a reconstruction of the sample paths of the CB-process from
excursions. Let (Qt)t≥0 denote the transition semigroup of the process with branching
mechanism ϕ given by (2.1.13). Recall that (Q◦

t )t≥0 is the restriction of (Qt)t≥0 to (0,∞).
LetD(0,∞) be the space of càdlàg paths t 7→ wt from (0,∞) to R+ having zero as a trap.
Let (A 0,A 0

t ) be the natural σ-algebras on D(0,∞) generated by the coordinate process.
For any entrance law (Ht)t>0 for (Q◦

t )t≥0 there is a unique σ-finite measure QH(dw) on
A 0 such that QH({0}) = 0 and

QH(wt1 ∈ dx1, wt2 ∈ dx2, . . . , wtn ∈ dxn)

= Ht1(dx1)Q
◦
t2−t1(x1, dx2) · · ·Q

◦
tn−tn−1

(xn−1, dxn) (2.4.1)

for every {t1 < · · · < tn} ⊂ (0,∞) and {x1, . . . , xn} ⊂ (0,∞). See, e.g., Getoor and
Glover (1987) for the proof of the existence of QH in the setting of Borel right processes.
Roughly speaking, the above formula means that {wt : t > 0} under QH is a Markov
process in (0,∞) with transition semigroup (Q◦

t )t≥0 and one-dimensional distributions
(Ht)t>0.

Theorem 2.4.1 Suppose that the condition (2.2.14) is satisfied. Let Q(0) be the σ-finite
measure on D(0,∞) determined by the entrance law (lt)t>0 given by (2.2.13). Then for
Q(0)-a.e. w ∈ D(0,∞) we have wt → 0 as t→ 0.

Proof. Let (Qb
t)t≥0 be the transition semigroup on R+ defined by (2.3.3). Then we have

Qb
t(x, dy) = x−1ebtyQ◦

t (x, dy) for x, y > 0. Observe that∫
D(0,∞)

ebtwtQ(0)(dw) =

∫ ∞

0

ebtylt(dy) = ebt
∂

∂λ
vt(0+) = 1.

Then for fixed u > 0 we can define a probability measure Qu
(0)(dw) := ebuwuQ(0)(dw) on

D(0,∞). Under this measure, the coordinate process {wt : 0 < t ≤ u} is an immigration
process with transition semigroup (Qb

t)t≥0 and one-dimensional distributions

Qb
t(0, dy) = ebtylt(dy), 0 < t ≤ u.

By the uniqueness of the transition law of the immigration process we have wt → 0 as
t → 0 for Qu

(0)-a.e. w ∈ D(0,∞). Note that Qu
(0)(dw) and Q(0)(dw) are absolutely
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continuous with respect to each other on Du(0,∞) := {w ∈ D(0,∞) : wu > 0}. Since
D(0,∞) = {0} ∪ (∪∞

n=1D1/n(0,∞)) and Q(0)({0}) = 0, we have wt → 0 as t → 0 for
Q(0)-a.e. w ∈ D(0,∞). �

Let D0[0,∞) be the set of paths w ∈ D(0,∞) satisfying w(0) = w(t) = 0 for t ≥
τ0(w) := inf{s > 0 : w(s) = 0}. Those paths are called excursions. By Theorem 2.4.1
we can regard Q(0) as a σ-finite measure on D0[0,∞). We call Q(0) an excursion law for
the CB-process. In view of (2.2.18), we can formally write

Q(0) = lim
x→0

x−1Qx, (2.4.2)

which explains why wt → 0 as t→ 0 for Q(0)-a.e. w ∈ D(0,∞).

We can give a reconstruction of the CB-process using a Poisson random measure
based on the excursion law specified above. Let x ≥ 0 and let

N(dw) =

|N |∑
i=1

δwi

be a Poisson random measure on D0[0,∞) with intensity xQ(0)(dw), where |N | =
N(D0[0,∞)). We define the process {Xt : t ≥ 0} by X0 = x and

Xt =

∫
D0[0,∞)

w(t)N(dw) =

|N |∑
i=1

wi(t), t > 0. (2.4.3)

The following theorem shows that (2.4.3) gives a reconstruction of the sample paths of
the CB-process.

Theorem 2.4.2 For t ≥ 0 let Gt be the σ-algebra generated by the collection of random
variables {N(A) : A ∈ A 0

t }. Then {(Xt,Gt) : t ≥ 0} is a realization of the CB-process.

Proof. We first remark that the random variable Xt has distribution Qt(x, ·) on R+. In
fact, for any t > 0 and λ ≥ 0 we have

P
[
exp{−λXt}

]
= exp

{
− x

∫
D0[0,∞)

(1− e−λw(t))Q(0)(dw)
}

= exp
{
− x

∫ ∞

0

(1− e−λz)lt(dz)
}
= exp{−xvt(λ)}.

Let t > r > 0 and let h be a bounded positive function on D0[0,∞) measurable relative
to A 0

r . For any λ ≥ 0 we have

P
[
exp

{
−

∫
D0[0,∞)

h(w)N(dw)− λXt

}]
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= exp
{
− x

∫
D0[0,∞)

(
1− e−h(w)−λw(t)

)
Q(0)(dw)

}
= exp

{
− x

∫
D0[0,∞)

(
1− e−h(w)

)
Q(0)(dw)

}
· exp

{
− x

∫
D0[0,∞)

e−h(w)
(
1− e−λw(t)

)
Q(0)(dw)

}
,

where we made the convention e−∞ = 0. By the Markov property of Q(0) we have∫
D0[0,∞)

e−h(w)
(
1− e−λw(t)

)
Q(0)(dw)

=

∫
D0[0,∞)

e−h(w)Q(0)(dw)

∫ ∞

0

(1− e−λz)Q◦
t−r(w(r), dz)

=

∫
D0[0,∞)

e−h(w)
(
1− e−w(r)vt−r(λ)

)
Q(0)(dw).

It follows that

P
[
exp

{
−

∫
D0[0,∞)

h(w)N(dw)− λXt

}]
= exp

{
−

∫
D0[0,∞)

(
1− e−h(w)e−w(r)vt−r(λ)

)
Q(0)(dw)

}
= P

[
exp

{
−
∫
D0[0,∞)

h(w)N(dw)−Xrvt−r(λ)
}]
.

Then {(Xt,Gt) : t ≥ 0} is a Markov process with transition semigroup (Qt)t≥0. �
The reconstruction (2.4.3) of the CB-process means that the population at time t > 0

consists of the descendants of at most countably many individuals at time zero, which
evolve as the excursions {wi : i = 1, · · · , |N |} selected randomly by the Poisson random
measure N(dw).



Chapter 3

Structures of independent immigration

In this chapter we study independent immigration structures associated with CB-processes.
We first give a formulation of the structures using skew convolution semigroups. Those
semigroups are in one-to-one correspondence with infinitely divisible distributions on R+.
We show the corresponding immigration process arise as scaling limits of Galton–Watson
processes with immigration. We discuss briefly limit theorems and stationary distribu-
tions of the immigration superprocesses. The trajectories of the immigration processes
are constructed using stochastic integrals with respect to Poisson random measures deter-
mined by entrance laws.

3.1 Formulation of immigration processes

In this section, we introduce a generalization of the CB-process. Let (Qt)t≥0 be the tran-
sition semigroup defined by (2.1.15) and (2.1.20). Let (γt)t≥0 be a family of probability
measures on R+. We call (γt)t≥0 a skew convolution semigroup (SC-semigroup) associ-
ated with (Qt)t≥0 provided

γr+t = (γrQt) ∗ γt, r, t ≥ 0. (3.1.1)

It is easy to show that (3.1.1) holds if and only if

ur+t(λ) = ut(λ) + ur(vt(λ)), r, t, λ ≥ 0, (3.1.2)

where

ut(λ) = − log

∫ ∞

0

e−yλγt(dy). (3.1.3)

The concept of SC-semigroup is of interest because of the following:

31
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Theorem 3.1.1 The family of probability measures (γt)t≥0 on R+ is an SC-semigroup if
and only if

Qγ
t (x, ·) := Qt(x, ·) ∗ γt, t, x ≥ 0 (3.1.4)

defines a Markov semigroup (Qγ
t )t≥0 on R+.

Proof. Let (γt)t≥0 probability measures on R+ and let Qγ
t (x, ·) be the probability kernel

defined by (3.1.4). Then we have∫ ∞

0

e−yλQγ
t (x, dy) = exp

{
− xvt(λ)− ut(λ)

}
, t, x, λ ≥ 0. (3.1.5)

Using this relation it is easy to show that (Qγ
t )t≥0 satisfies the Chapman-Kolmogorov

equation if and only if (3.1.2) is satisfied. That proves the result. �
If {y(t) : t ≥ 0} is a positive Markov process with transition semigroup (Qγ

t )t≥0 given
by (3.1.4), we call it an immigration process or a CBI-process associated with (Qt)t≥0.
The intuitive meaning of the model is clear in view of (3.1.1) and (3.1.4). From (3.1.4)
we see that the population at any time t ≥ 0 is made up of two parts; the native part
generated by the mass x ≥ 0 has distribution Qt(x, ·) and the immigration in the time
interval (0, t] gives the distribution γt. In a similar way, the equation (3.1.1) decomposes
the mass immigrating to the population during the time interval (0, r + t] into two parts;
the immigration in the interval (r, r + t] gives the distribution γt while the immigration
in the interval (0, r] generates the distribution γr at time r and gives the distribution γrQt

at time r + t. It is not hard to understand that (3.1.4) gives a general formulation of the
immigration independent of the state of the population.

Theorem 3.1.2 The family of probability measures (γt)t≥0 on R+ is an SC-semigroup if
and only if there exists ψ ∈ I so that∫ ∞

0

e−λyγt(dy) = exp
{
−
∫ t

0

ψ(vs(λ))ds
}
, t, λ ≥ 0. (3.1.6)

Proof. It is easy to check that for any ψ ∈ I the family (γt)t≥0 defined by (3.1.6) is
an SC-semigroup. Conversely, suppose that (γt)t≥0 is an SC-semigroup. For t, λ ≥ 0 let
ut(λ) be defined by (3.1.3). Then t 7→ ut(λ) is increasing. By Lebesgue’s theorem, the
limit

ψt(λ) := lim
s→0+

s−1[ut+s(λ)− ut(λ)] = lim
s→0+

s−1us(vt(λ))

exists for almost all t ≥ 0; see, e.g., Hewitt and Stromberg (1965, p.264). By the con-
tinuity of t 7→ vt(λ), there is a dense subset D of (0,∞) so that the following limits
exist:

ψ0(λ) := lim
s→0+

s−1us(λ) = lim
s→0+

s−1[1− e−us(λ)], λ ∈ D. (3.1.7)
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For u ∈ [0,∞] and λ ∈ (0,∞) let ξ(u, λ) be defined by (1.2.4). Then ξ(u, λ) is jointly
continuous in (u, λ). By (3.1.7) we have

ψ0(λ) = lim
s→0+

s−1us(λ) = lim
s→0+

s−1

∫
[0,∞]

ξ(u, λ)Gs(du) (3.1.8)

for λ ∈ D, where Gs(du) = (1− e−u)γs(du). Then for some δ > 0 we have

sup
0<s<δ

s−1Gs([0,∞]) <∞,

so the family of finite measures {s−1Gs : 0 < s < δ} on [0,∞] is relatively compact.
Suppose that sn → 0 and s−1

n Gsn → some G weakly as n→ ∞. Then

lim
n→∞

s−1
n usn(λ) = lim

n→∞
s−1
n

∫
[0,∞]

ξ(u, λ)Gsn(du) =

∫
[0,∞]

ξ(u, λ)G(du), λ > 0.

Thus we can extend ψ0 to a continuous function on (0,∞) given by

ψ0(λ) =

∫
[0,∞]

ξ(u, λ)G(du) = G({∞}) + hλ+

∫
(0,∞)

(1− e−uλ)l(du),

where h = G({0}) and l(du) = (1 − e−u)−1Gs(du). By a standard argument one sees
that (3.1.8) holds actually for all λ > 0. From (3.1.2) and (3.1.8) it follows that

D+us(λ)
∣∣
s=t

= D+us(vt(λ))
∣∣
s=0

= ψ0(vt(λ)),

where D+ denotes the right derivative relative to s ≥ 0. Here the right-hand side is
continuous in t ≥ 0. Thus t 7→ ut(λ) is continuously differentiable and (3.1.6) holds with
ψ(λ) = ψ0(λ) for λ > 0. By letting λ → 0+ in (3.1.6) one sees G({∞}) = 0. Then
ψ = ψ0 ∈ I . �

By Theorem 3.1.2 there is a 1-1 correspondence between SC-semigroups and in-
finitely divisible distributions on R+. Then the theorem generalizes the 1-1 correspon-
dence between classical convolution semigroups and infinitely divisible distributions. In
fact, from (3.1.1) it is easy to see that (γt)t≥0 reduces to a classical convolution semigroup
if Qt is the identity operator for all t ≥ 0. As a consequence of Theorems 1.2.4 and 3.1.2,
an SC-semigroup (γt)t≥0 always consists of infinitely divisible distributions.

Now let us consider a transition semigroup (Qγ
t )t≥0 defined by (3.1.4) with the SC-

semigroup (γt)t≥0 given by (3.1.6). If an immigration process has transition semigroup
(Qγ

t )t≥0, we say it has branching mechanism ϕ and immigration mechanism ψ. It is easy
to see that ∫ ∞

0

e−λyQγ
t (x, dy) = exp

{
− xvt(λ)−

∫ t

0

ψ(vs(λ))ds
}
. (3.1.9)

The following results are immediate consequences of (3.1.6) and (3.1.9).
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Theorem 3.1.3 Suppose that (γ′t)t≥0 and (γ′′t )t≥0 are two SC-semigroups associated with
(Qt)t≥0. Let γt = γ′t ∗ γ′′t for t ≥ 0. Then (γt)t≥0 is also an SC-semigroup associated with
(Qt)t≥0.

Theorem 3.1.4 Suppose that {(y′(t),G ′
t ) : t ≥ 0} and {(y′′(t),G ′′

t ) : t ≥ 0} are two in-
dependent CBI-processes with the same branching mechanism ϕ and immigration mech-
anisms ψ′ and ψ′′, respectively. Let y(t) = y′(t) + y′′(t) and Gt = σ(G ′

t ∪ G ′′
t ) for t ≥ 0.

Then {(y(t),Gt) : t ≥ 0} is a CBI-process with branching mechanism ϕ and immigration
mechanism ψ := ψ′ + ψ′′.

Corollary 3.1.5 Suppose that {(y′(t),G ′
t ) : t ≥ 0} is a CB-processes with branching

mechanism ϕ and {(y′′(t),G ′′
t ) : t ≥ 0} is a CBI-processes with branching mechanism ϕ

and immigration mechanism ψ. In addition, we assume the two process are independent.
Let y(t) = y′(t) + y′′(t) and Gt = σ(G ′

t ∪ G ′′
t ) for t ≥ 0. Then {(y(t),Gt) : t ≥ 0} is a

CBI-process with branching mechanism ϕ and immigration mechanism ψ.

Let us give a useful moment formula for the transition semigroup (Qγ
t )t≥0. Recall that

the function ψ ∈ I has the representation

ψ(z) = βz +

∫ ∞

0

(
1− e−zu

)
n(du), z ≥ 0, (3.1.10)

where β ≥ 0 is a constant and (1∧ u)n(du) is a finite measure on (0,∞). In particular, if
un(du) is a finite measure on (0,∞), by (3.1.9) and (2.2.4) one can show∫ ∞

0

yQγ
t (x, dy) = xe−bt + ψ′(0)

∫ t

0

e−bsds, (3.1.11)

where

ψ′(0) = β +

∫ ∞

0

un(du). (3.1.12)

From (3.1.11) we have∫ ∞

0

yQγ
t (x, dy) = xe−bt + ψ′(0)b−1(1− e−bt) (3.1.13)

with the convention b−1(1− e−bt) = t for b = 0.

The following theorem gives a necessary and sufficient condition for the ergodicity of
the semigroup (Qγ

t )t≥0.
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Theorem 3.1.6 Suppose that b ≥ 0 and ϕ(z) ̸= 0 for every z > 0. Then Qγ
t (x, ·)

converges to a probability measure η on R+ as t→ ∞ if and only if∫ λ

0

ψ(z)

ϕ(z)
dz <∞ for some λ > 0. (3.1.14)

If (3.1.14) holds, the Laplace transform of η is given by

Lη(λ) = exp
{
−

∫ ∞

0

ψ(vs(λ))ds
}
, λ ≥ 0. (3.1.15)

Proof. Since ϕ(z) ≥ 0 for all z ≥ 0, from (2.2.2) we see t 7→ vt(λ) is decreasing. Then
(2.2.6) implies limt→∞ vt(λ) = 0. By (3.1.9) we have

lim
t→∞

∫ ∞

0

e−λyQγ
t (x, dy) = exp

{
−
∫ ∞

0

ψ(vs(λ))ds
}

(3.1.16)

for every λ ≥ 0. A further application of (2.2.2) gives∫ t

0

ψ(vs(λ))ds =

∫ λ

vt(λ)

ψ(z)

ϕ(z)
dz.

It follows that ∫ ∞

0

ψ(vs(λ))ds =

∫ λ

0

ψ(z)

ϕ(z)
dz,

which is a continuous function of λ ≥ 0 if and only if (3.1.14) holds. Then the result
follows by (3.1.16) and Theorem 1.1.2. �

Corollary 3.1.7 Suppose that b > 0. Then Qγ
t (x, ·) converges to a probability measure η

on R+ as t → ∞ if and only if
∫∞
1

log un(du) < ∞. In this case, the Laplace transform
of η is given by (3.1.15).

Proof. We have ϕ(z) = bz + o(z) as z → 0. Thus (3.1.14) holds if and only if∫ λ

0

ψ(z)

z
dz <∞ for some λ > 0,

which is equivalent to∫ λ

0

dz

z

∫ ∞

0

(
1− e−zu

)
n(du) =

∫ ∞

0

n(du)

∫ λu

0

1− e−y

y
dy <∞
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for some λ > 0. The latter holds if and only if
∫∞
1

log un(du) < ∞. Then we have the
result by Theorem 3.1.6. �

In the situation of Theorem 3.1.6, it is easy to show that η is a stationary distribution
for (Qγ

t )t≥0. The fact that the CBI-process may have a non-trivial stationary distribution
makes it a more interesting model in many respects than the CB-process without immi-
gration. Note also that the transition semigroup (Qb

t)t≥0 given by (2.3.3) is a special case
of the one defined by (3.1.9).

Theorem 3.1.8 Suppose that b > 0 and let q′t(λ) be defined by (2.3.1). Then for every
λ ≥ 0 the limit q′(λ) :=↓limt→∞ q′t(λ) exists and is given by

q′(λ) = exp
{
−
∫ ∞

0

ϕ′
0(vs(λ))ds

}
, λ ≥ 0. (3.1.17)

Moreover, we have q′(0+) = q′(0) = 1 if and only if
∫∞
1
u log um(du) < ∞. The last

condition is also equivalent to q′(λ) > 0 for some and hence all λ > 0.

Proof. The first assertion is easy in view of (2.3.1). By Corollary 3.1.7, we have∫∞
1
u log um(du) < ∞ if and only if λ 7→ q′(λ) is the Laplace transform of a proba-

bility η on R+. Then the other two assertions hold obviously. �

Theorem 3.1.9 Suppose that b > 0 and ϕ′(z) → ∞ as z → ∞. Then Qb
t(x, ·) converges

as t → ∞ to a probability η on (0,∞) if and only if
∫∞
1
u log um(du) < ∞. If the

condition holds, then η has Laplace transform Lη = q′ given by (3.1.17).

Proof. By Corollary 3.1.7 and Theorem 3.1.8 we have the results with η being a prob-
ability measure on R+. By Theorem 2.3.1 the measure Qb

t(0, ·) is supported by (0,∞),
hence Qb

t(x, ·) is supported by (0,∞) for every x ≥ 0. From (2.3.5) we have Lη(∞) ≤
q′t(∞) = 0 for t > 0. That implies η({0}) = 0. �

Example 3.1.1 Suppose that c > 0, 0 < α ≤ 1 and b are constants and let ϕ(z) =
cz1+α + bz for z ≥ 0. In this case the cumulant semigroup (vt)t≥0 is given by (2.2.19).
Let β ≥ 0 and let ψ(z) = βzα for z ≥ 0. We can use (3.1.9) to define the transition
semigroup (Qγ

t )t≥0. It is easy to show that∫ ∞

0

e−λyQγ
t (x, dy) =

1[
1 + cqbα(t)λ

α
]β/cα e−xvt(λ), λ ≥ 0. (3.1.18)

The concept of SC-semigroup associated with branching processes was introduced in
Li (1995/6, 1996). Theorem 3.1.2 can be regarded as a special form of main theorem of Li
(1995/6). Theorem 3.1.6 and Corollary 3.1.7 were given in Pinsky (1972). Other results
in this section can be found in Li (2000).
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3.2 Stationary immigration distributions

In this section, we give a brief discussion of the structures of stationary distributions of
the CBI-processes. The results here were first given in Li (2002) in the setting of measure-
valued processes. Given two probability measures η1 and η2 on R+, we write η1 ≼ η2 if
η1 ∗ γ = η2 for another probability measure γ on R+. Clearly, the measure γ is unique if
it exists. Let (Qt)t≥0 be the transition semigroup defined by (2.1.15) and (2.1.20), where
(vt)t≥0 has the representation (2.2.1). Let (Q◦

t )t≥0 be the restriction of (Qt)t≥0 to (0,∞).
Let E ∗(Q) denote the set of probabilities η on R+ satisfying ηQt ≼ η for all t ≥ 0.

Theorem 3.2.1 For each η ∈ E ∗(Q) there is a unique SC-semigroup (γt)t≥0 associated
with (Qt)t≥0 such that ηQt ∗ γt = η for t ≥ 0 and η = limt→∞ γt.

Proof. By the definition of E ∗(Q), for each t ≥ 0 there is a unique probability measure
γt on R+ satisfying η = (ηQt) ∗ γt. By the branching property of (Qt)t≥0 one can show
(µ1 ∗ µ2)Qt = (µ1Qt) ∗ (µ2Qt) for any t ≥ 0 and any probability measures µ1 and µ2 on
R+. Then for r, t ≥ 0 we have

(ηQr+t) ∗ γr+t = (ηQt) ∗ γt = {[(ηQr) ∗ γr]Qt} ∗ γt = (ηQr+t) ∗ (γrQt) ∗ γt.

A cancelation gives (3.1.1), so (γt)t≥0 is an SC-semigroup associated with (Qt)t≥0. Now
for every λ ≥ 0 the function t 7→ Lγt(λ) is decreasing. By the relation η = (ηQt) ∗ γt
one can see t 7→ LηQt(λ) is increasing. Then there are probability measures ηi and ηp on
R+ so that ηi ∗ ηp = η and

Lηi(λ) = lim
t→∞

LηQt(λ), Lηp(λ) = lim
t→∞

Lγt(λ).

These imply ηi = limt→∞ ηQt and ηp = limt→∞ γt. It follows that ηi is a stationary
distribution of (Qt)t≥0, so we must have ηi = δ0 and ηp = η. �

In the situation of Theorem 3.2.1, it is easy to see the measure η ∈ E ∗(Q) is the unique
stationary distribution of the transition semigroup (Qγ

t )t≥0 defined by (3.1.4). Then we
can identify E ∗(Q) with the set of stationary distributions of immigration processes asso-
ciated with (Qt)t≥0. As a consequence of Theorem 3.1.6 and 3.2.1, every µ ∈ E ∗(Q) is
infinitely divisible. Recall that we write µ = I(h, l) if µ is an infinitely divisible proba-
bility measure on R+ with ψ := − logLµ given by (1.2.3). Let E (Q◦) denote the set of
excessive measures ν for (Q◦

t )t≥0 satisfying∫ ∞

0

(1 ∧ u)ν(du) <∞.

The following result gives some characterizations of the set E ∗(Q).
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Theorem 3.2.2 Let η = I(β, ν) be an infinitely divisible probability measure on R+.
Then η ∈ E ∗(Q) if and only if (β, ν) satisfy

βht ≤ β and βlt + νQ◦
t ≤ ν, t ≥ 0. (3.2.1)

In particular, if ν ∈ E (Q◦), then η = I(0, ν) ∈ E ∗(Q).

Proof. It is easy to show that ηQt = I(βt, νt), where βt = βht and νt = βlt+ νQ◦
t . Then

ηQt ≼ η holds if and only if (3.2.1) is satisfied. The second assertion is immediate. �

3.3 Scaling limits of discrete immigration models

In this section, we prove a limit theorem of rescaled Galton–Watson branching processes
with immigration, which leads to the CBI-processes. This kind of limit theorems were
studied in Aliev and Shchurenkov (1982), Kawazu and Watanabe (1971) and Li (2006)
among many others.

Let g and h be two probability generating functions. Suppose that {ξn,i : n, i =
1, 2, . . .} and {ηn : n = 1, 2, . . .} are independent families of positive integer-valued
i.i.d. random variables with distributions given by g and h, respectively. Given another
positive integer-valued random variable y(0) independent of {ξn,i} and {ηn}, we define
inductively

y(n) =

y(n−1)∑
i=1

ξn,i + ηn, n = 1, 2, . . . . (3.3.1)

Then {y(n) : n = 0, 1, 2, . . .} is a discrete-time positive integer-valued Markov chain
with transition matrix Q(i, j) determined by

∞∑
j=0

Q(i, j)zj = g(z)ih(z), |z| ≤ 1. (3.3.2)

The random variable y(n) can be thought of as the number of individuals in generation
n ≥ 0 of an evolving particle system. After one unit time, each of the y(n) particles splits
independently of others into a random number of offspring according to the distribution
given by g and a random number of immigrants are added to the system according to
the probability law given by h. The n-step transition matrix Qn(i, j) of {y(n) : n =
0, 1, 2, . . .} is given by

∞∑
j=0

Qn(i, j)zj = gn(z)i
n∏
j=1

h(gj−1(z)), |z| ≤ 1, (3.3.3)
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where gn(z) is defined by gn(z) = g(gn−1(z)) successively with g0(z) = z. We call
any positive integer-valued Markov chain with transition probabilities given by (3.3.2) or
(3.3.3) a Galton–Watson branching process with immigration (GWI-process) with param-
eters (g, h). When h ≡ 1, this reduces to the GW-process defined in the first section.

Suppose that for each integer k ≥ 1 we have a GWI-process {yk(n) : n ≥ 0} with
parameters (gk, hk). Let zk(n) = yk(n)/k. Then {zk(n) : n ≥ 0} is a Markov chain
with state space Ek := {0, 1/k, 2/k, . . .} and n-step transition probability Qn

k(x, dy) de-
termined by∫

Ek

e−λyQn
k(x, dy) = gnk (e

−λ/k)kx
n∏
j=1

h(gj−1
k (e−λ/k)), λ ≥ 0. (3.3.4)

Suppose that {γk} is a positive real sequence so that γk → ∞ increasingly as k → ∞.
Let [γkt] denote the integer part of γkt ≥ 0. In view of (3.3.4), given zk(0) = x the
conditional distribution Q[γkt]

k (x, ·) of zk([γkt]) on Ek is determined by∫
Ek

e−λyQ
[γkt]
k (x, dy)

= exp
{
− xvk(t, λ)−

∫ [γkt]

γk

0

H̄k(vk(s, λ))ds
}
, (3.3.5)

where vk(t, λ) is given by (2.1.7) and

H̄k(λ) = −γk log hk(e−λ/k), λ ≥ 0.

For any z ≥ 0 let Gk(z) be defined by (2.1.8) and let

Hk(z) = γk[1− hk(e
−z/k)]. (3.3.6)

Condition 3.3.1 There is a function ψ on [0,∞) such that Hk(z) → ψ(z) uniformly on
[0, a] for every a ≥ 0 as k → ∞.

It is simple to see that Hk ∈ I . By Theorem 1.2.2, if the above condition is satisfied,
the limit function ψ has the representation (3.1.10). A different of proof of the following
theorem was given in Li (2006).

Theorem 3.3.2 Suppose that Conditions 2.1.2 and 3.3.1 are satisfied. Let {y(t) : t ≥ 0}
be a CBI-process with transition semigroup (Qγ

t )t≥0 defined by (3.1.9). If zk(0) converges
to y(0) in distribution, then {zk([γkt]) : t ≥ 0} converges to {y(t) : t ≥ 0} in distribution
on D([0,∞),R+).
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Proof. By Theorem 2.1.6 for every a ≥ 0 we have vk(t, λ) → vt(λ) uniformly on [0, a]2

as k → ∞. For λ > 0 and x ≥ 0 set eλ(x) = e−λx. In view of (3.3.5) we have

lim
k→∞

sup
x∈Ek

∣∣Q[γkt]
k eλ(x)−Qγ

t eλ(x)
∣∣ = 0

for every t ≥ 0. Then the result follows as in the proof of Theorem 2.1.9. �

Example 3.3.1 In a special case, we can give a characterization for the CBI-process in
terms of a stochastic differential equation. Let m = E[ξ1,1]. From (3.3.1) we have

y(n)− y(n− 1) =
√
y(n− 1)

y(n−1)∑
i=1

ξn,i −m√
y(n− 1)

− (1−m)y(n− 1) + ηn.

Then it is natural to expect that a typical CBI-process would solve the stochastic differen-
tia equation

dy(t) =
√
2cy(t)dB(t)− by(t)dt+ βdt, t ≥ 0, (3.3.7)

where {B(t) : t ≥ 0} is a Brownian motion. The above equation has a unique positive
strong solution; see Ikeda and Watanabe (1989, pp.235–236). In fact, the solution {y(t) :
t ≥ 0} has transition semigroup given by (3.1.18) with α = 1. Let C2(R+) denote the set
of bounded continuous real functions on R+ with bounded continuous derivatives up to
the second order. Then {y(t) : t ≥ 0} has generator A given by

Af(x) = c
d2

dx2
f(x) + (β − bx)

d

dx
f(x), f ∈ C2(R+).

In particular, for β = 0 the solution of (3.3.7) is called Feller’s branching diffusion.

3.4 A reconstruction of the sample path

In this section, we give a reconstruction of the sample path of the CBI-process using a
Poisson random measure. Suppose that (Ht)t>0 is an entrance law for (Q◦

t )t≥0 and QH

is the σ-finite measure on D(0,∞) determined by (2.4.1). Let {Xt : t ≥ 0} be a CB-
process with transition semigroup (Qt)t≥0 and N(ds, dw) a Poisson random measure on
(0,∞)×D(0,∞) with intensity dsQH(dw). Suppose that {Xt : t ≥ 0} and N(ds, dw)
are independent. We define the measure-valued process

Yt = Xt +

∫
(0,t)

∫
D(0,∞)

wt−sN(ds, dw), t ≥ 0. (3.4.1)

The following theorem generalizes a result of Pitman and Yor (1982).
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Theorem 3.4.1 For t ≥ 0 let Gt be the σ-algebra generated by the collection of random
variables {N((0, u] × A) : A ∈ A 0

t−u, 0 ≤ u < t}. Then {(Yt,Gt) : t ≥ 0} is an
immigration process with transition semigroup (QH

t )t≥0 given by∫ ∞

0

e−λyQH
t (x, dy) = exp

{
− xvt(λ)−

∫ t

0

ds

∫ ∞

0

(1− e−λy)Hs(dy)
}
. (3.4.2)

Proof. By Corollary 3.1.5, we only need to consider the special case with Xt = 0 for
all t ≥ 0. In this case, it is easy to show that Yt has distribution QH

t (0, ·) on R+. Let
t ≥ r > u ≥ 0 and let h be a bounded positive function on D(0,∞) measurable relative
to A 0

r−u. For λ ≥ 0 we can see as in the proof of Theorem 2.4.2 that

P
[
exp

{
−

∫ u

0

∫
D(0,∞)

h(w)N(ds, dw)− λYt

}]
= P

[
exp

{
−

∫ t

0

∫
D(0,∞)

[
h(w)1{s≤u} + λwt−s

]
N(ds, dw)

}]
= exp

{
−
∫ t

0

ds

∫
D(0,∞)

(
1− e−h(w)1{s≤u}e−λwt−s

)
QH(dw)

}
= exp

{
−
∫ u

0

ds

∫
D(0,∞)

(
1− e−h(w)e−vt−r(λ)wr−s

)
QH(dw)

}
· exp

{
−

∫ r

u

ds

∫
D(0,∞)

(
1− e−vt−r(λ)wr−s

)
QH(dw)

}
· exp

{
−

∫ t

r

ds

∫
D(0,∞)

(
1− e−λwt−s

)
QH(dw)

}
= P

[
exp

{
−

∫ u

0

∫
D(0,∞)

h(w)N(ds, dw)− Yrvt−r(λ)
}]

· exp
{
−

∫ t

r

ds

∫ ∞

0

(1− e−λy)Ht−s(dy)
}
,

where we have used the Markov property (2.4.1) for the third equality. That shows
{(Yt,Gt) : t ≥ 0} is a Markov process in R+ with transition semigroup (QH

t )t≥0. �
Let Px(dw) denote the distribution on D[0,∞) of the CB-process {x(t) : t ≥ 0} with

x(0) = x. Suppose that ψ ∈ I be given by (3.1.10). If the condition (2.2.14) is satisfied,
we can define a σ-finite measure QH(dw) on D[0,∞) by

QH(dw) = βQ(0)(dw) +

∫ ∞

0

n(dx)Px(dw). (3.4.3)

This corresponds to the entrance law (Ht)t>0 for (Q◦
t )t≥0 defined by

Ht = βlt +

∫ ∞

0

n(dx)Qt(x, ·), t > 0. (3.4.4)
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In this case, it is easy to show that∫ ∞

0

(1− e−λy)Ht(dy) = ψ(vt(λ)), t > 0, λ ≥ 0. (3.4.5)

Then from Theorem 3.4.1 we obtain

Corollary 3.4.2 Suppose that (2.2.14) is satisfied and (Ht)t>0 is given by (3.4.4). Then
{(Yt,Gt) : t ≥ 0} is an immigration process with transition semigroup (Qγ

t )t≥0 given by
(3.1.9).

The reconstruction (3.4.1) of the immigration process can be interpreted similarly as
(2.4.3). Here the Poisson random measure N(ds, dw) determines both the immigration
times and the evolutions of the descendants of the immigrants.



Chapter 4

Martingale problems and stochastic
equations

Martingale problems play a very important role in the study of Markov processes. In this
chapter we prove the equivalence of a number of martingale problems for CBI-processes.
From the martingale problems we derive some stochastic equations. Using the stochastic
equations, we give simple proofs of Lamperti’s transformations on CB-processes and
spectrally positive Lévy processes.

4.1 Martingale problem formulations

In this section we give some formulations of the CBI-process in terms of martingale prob-
lems and prove their equivalence. Suppose that (ϕ, ψ) are given respectively by (2.1.13)
and (3.1.10) with un(du) being a finite measure on (0,∞). For f ∈ C2(R+) define

Lf(x) = cxf ′′(x) + x

∫ ∞

0

[
f(x+ z)− f(x)− zf ′(x)

]
m(dz)

+ (β − bx)f ′(x) +

∫ ∞

0

[
f(x+ z)− f(x)

]
n(dz). (4.1.1)

We shall identify the operator L as the generator of the CBI-process. For this purpose we
need the following:

Proposition 4.1.1 Let (Qγ
t )t≥0 be the transition semigroup defined by (2.1.20) and (3.1.9).

Then for any t ≥ 0 and λ ≥ 0 we have∫ ∞

0

e−λyQγ
t (x, dy) = e−xλ +

∫ t

0

ds

∫ ∞

0

[yϕ(λ)− ψ(λ)]e−yλQγ
s (x, dy). (4.1.2)

43
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Proof. Recall that v′t(λ) = (∂/∂λ)vt(λ). By differentiating both sides of (3.1.9) we get∫ ∞

0

ye−yλQγ
t (x, dy) =

∫ ∞

0

e−yλQγ
t (x, dy)

[
xv′t(λ) +

∫ t

0

ψ′(vs(λ))v
′
s(λ)ds

]
.

From this and (2.2.3) it follows that

∂

∂t

∫ ∞

0

e−yλQγ
t (x, dy) = −

[
x
∂

∂t
vt(λ) + ψ(vt(λ))

] ∫ ∞

0

e−yλQγ
t (x, dy)

=
[
xϕ(λ)v′t(λ)− ψ(λ)

] ∫ ∞

0

e−yλQγ
t (x, dy)

−
∫ t

0

ψ′(vs(λ))
∂

∂s
vs(λ)ds

∫ ∞

0

e−yλQγ
t (x, dy)

=
[
xϕ(λ)v′t(λ)− ψ(λ)

] ∫ ∞

0

e−yλQγ
t (x, dy)

+ϕ(λ)

∫ t

0

ψ′(vs(λ))v
′
s(λ)ds

∫ ∞

0

e−yλQγ
t (x, dy)

=

∫ ∞

0

[xϕ(λ)− ψ(λ)]e−yλQγ
t (x, dy).

That gives (4.1.2). �
Suppose that (Ω,G ,Gt,P) is a filtered probability space satisfying the usual hypothe-

ses and {y(t) : t ≥ 0} is a càdlàg process in R+ that is adapted to (Gt)t≥0 and satisfies
P[y(0)] <∞. Let us consider the following properties:

(1) For every T ≥ 0 and λ ≥ 0,

exp
{
− vT−t(λ)y(t)−

∫ T−t

0

ψ(vs(λ))ds
}
, 0 ≤ t ≤ T,

is a martingale.

(2) For every λ ≥ 0,

Ht(λ) := exp
{
− λy(t) +

∫ t

0

[ψ(λ)− y(s)ϕ(λ)]ds
}
, t ≥ 0,

is a local martingale.

(3) (a) The process {y(t) : t ≥ 0} has no negative jumps. LetN(ds, dz) be the optional
random measure on (0,∞)2 defined by

N(ds, dz) =
∑
s>0

1{∆y(s)̸=0}δ(s,∆y(s))(ds, dz),
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where ∆y(s) = y(s) − y(s−), and let N̂(ds, dz) denote the predictable compen-
sator of N(ds, dz). Then N̂(ds, dz) = y(s−)dsm(dz) + dsn(dz).

(b) If we let Ñ(ds, dz) = N(ds, dz)− N̂(ds, dz), then

y(t) = y(0) +M c
t +Md

t +

∫ t

0

[
β +

∫ ∞

0

zn(dz)− by(s)
]
ds,

where t 7→M c
t is a continuous local martingale with quadratic variation 2cy(t−)dt

= 2cy(t)dt and

t 7→Md
t =

∫ t

0

∫ ∞

0

zÑ(ds, dz)

is a purely discontinuous local martingale.

(4) For every f ∈ C2(R+) we have

f(y(t)) = f(y(0)) +

∫ t

0

Lf(y(s))ds+ local mart.

Theorem 4.1.2 The above properties (1), (2), (3) and (4) are equivalent to each other.
Those properties hold if and only if {(y(t),Gt) : t ≥ 0} is a CBI-process with parameters
(ϕ, ψ).

Proof. Clearly, (1) holds if and only if {y(t) : t ≥ 0} is a Markov process relative to
(Gt)t≥0 with transition semigroup (Qγ

t )t≥0 defined by (3.1.9). Then we only need to prove
the equivalence of the four properties.

(1)⇒(2): Suppose that (1) holds. Then {y(t) : t ≥ 0} is a CBI-process with transition
semigroup (Qγ

t )t≥0 given by (3.1.9). By (4.1.2) and the Markov property it is easy to see
that

Yt(λ) := e−λy(t) +

∫ t

0

[ψ(λ)− y(s)ϕ(λ)]e−λy(s)ds

is a martingale. By integration by parts applied to

Zt(λ) := e−λy(t) and Wt(λ) := exp
{∫ t

0

[ψ(λ)− y(s)ϕ(λ)]ds
}

(4.1.3)

we obtain

dHt(λ) = e−λy(t−)dWt(λ) +Wt(λ)de
−λy(t) =Wt(λ)dYt(λ).

Then {Ht(λ)} is a local martingale.
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(2)⇒(3): For any λ ≥ 0 define Zt(λ) and Wt(λ) by (4.1.3). We have Zt(λ) =
Ht(λ)Wt(λ)

−1 and so

dZt(λ) = Wt(λ)
−1dHt(λ)− Zt−(λ)[ψ(λ)− y(t−)ϕ(λ)]dt (4.1.4)

by integration by parts. Then {Zt(λ)} is a special semi-martingale; see, e.g., Dellacherie
and Meyer (1982, p.213). By Itô’s formula we find the {y(t)} is also a special semi-
martingale. We define the optional random measure N(ds, dz) on [0,∞)× R by

N(ds, dz) =
∑
s>0

1{∆y(s) ̸=0}δ(s,∆y(s))(ds, dz),

where ∆y(s) = y(s) − y(s−). Let N̂(ds, dz) denote the predictable compensator of
N(ds, dz) and let Ñ(ds, dz) denote the compensated random measure; see Dellacherie
and Meyer (1982, pp.371–374). It follows that

y(t) = y(0) + Ut +M c
t +Md

t , (4.1.5)

where {Ut} is a predictable process with locally bounded variations, {M c
t } is a continuous

local martingale and

Md
t =

∫ t

0

∫
R
zÑ(ds, dz), t ≥ 0, (4.1.6)

is a purely discontinuous local martingale; see Dellacherie and Meyer (1982, p.353 and
p.376) or Jacod and Shiryaev (2003, p.84). Let {Ct} denote the quadratic variation pro-
cess of {M c

t }. By Itô’s formula,

Zt(λ) = Z0(λ)− λ

∫ t

0

Zs−(λ)dUs +
1

2
λ2

∫ t

0

Zs−(λ)dCs

+

∫ t

0

∫
R
Zs−(λ)

(
e−zλ − 1 + zλ

)
N̂(ds, dz) + local mart. (4.1.7)

In view of (4.1.4) and (4.1.7) we get

[y(t)ϕ(λ)− ψ(λ)]dt =
1

2
λ2dCt − λdUt +

∫
R

(
e−zλ − 1 + zλ

)
N̂(dt, dz)

by the uniqueness of canonical decompositions of special semi-martingales; see Del-
lacherie and Meyer (1982, p.213). By substituting the representation (2.1.13) of ϕ into
the above equation and comparing both sides it is easy to find that (3.a) and (3.b) hold.

(3)⇒(4): This follows by Itô’s formula.
(4)⇒(1): Let G = G(t, x) ∈ C1,2([0, T ]× R+). For 0 ≤ t ≤ T and k ≥ 1 we have

G(t, y(t)) = G(0, y(0)) +
∞∑
j=0

[
G(t ∧ j/k, y(t ∧ (j + 1)/k))−G(t ∧ j/k, y(t ∧ j/k))

]
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+

∞∑
j=0

[
G(t ∧ (j + 1)/k, y(t ∧ (j + 1)/k))−G(t ∧ j/k, y(t ∧ (j + 1)/k))

]
,

where the summations only consist of finitely many non-trivial terms. By applying (4)
term by term we obtain

G(t, y(t)) = G(0, y(0)) +
∞∑
j=0

∫ t∧(j+1)/k

t∧j/k

{
[β − by(s)]G′

y(t ∧ j/k, y(s))

+ cy(s)G′′
xx(t ∧ j/k, y(s)) + y(s)

∫ ∞

0

[
G(t ∧ j/k, y(s) + z)

−G(t ∧ j/k, y(s))− zG′
y(t ∧ j/k, y(s))

]
m(dz)

+

∫ ∞

0

[
G(t ∧ j/k, y(s) + z)−G(t ∧ j/k, y(s))

]
n(dz)

}
ds

+
∞∑
j=0

∫ t∧(j+1)/k

t∧j/k
G′
t(s, y(t ∧ (j + 1)/k))ds+Mk(t),

where {Mk(t)} is a local martingale. Since {y(t)} is a càdlàg process, letting k → ∞ in
the equation above gives

G(t, y(t)) = G(0, y(0)) +

∫ t

0

{
G′
t(s, y(s))− by(s)G′

y(s, y(s))

+ cy(s)G′′
xx(s, y(s)) + y(s)

∫ ∞

0

[
G(s, y(s) + z)

−G(s, y(s))− zG′
x(s, y(s))

]
m(dz)

+

∫ ∞

0

[
G(s, y(s) + z)−G(s, y(s))

]
n(dz)

}
ds+M(t),

where {M(t)} is a local martingale. For any T ≥ 0 and λ ≥ 0 we may apply the above to

G(t, x) = exp
{
− vT−t(λ)x−

∫ T−t

0

ψ(vs(λ))ds
}

to see t 7→ G(t, y(t)) is a local martingale. �
The above property (4) implies that the generator of the CBI-process is the closure of

the generator L in the sense of Ethier and Kurtz (1986). This explicit form of the generator
was first given in Kawazu and Watanabe (1971).

4.2 Stochastic equations of CBI-processes

In this section we establish some stochastic equations for the CBI-processes. The reader
may refer to Dawson and Li (2006, 2010), Fu and Li (2010) and Li and Ma (2008) for
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more results on this topic. Suppose that (ϕ, ψ) are given respectively by (2.1.13) and
(3.1.10) with un(du) being a finite measure on (0,∞). Let (Qγ

t )t≥0 be the transition
semigroup defined by (2.1.20) and (3.1.9). In this section, we derive some stochastic
equations for the CBI-processes.

Suppose that (Ω,F ,Ft,P) is a filtered probability space satisfying the usual hy-
potheses. Let {B(t) : t ≥ 0} be an (Ft)-Brownian motion and let {p0(t) : t ≥ 0} and
{p1(t) : t ≥ 0} be (Ft)-Poisson point processes on (0,∞)2 with characteristic measures
m(dz)du and n(dz)du, respectively. We assume that the white noise and the Poisson pro-
cesses are independent of each other. Let N0(ds, dz, du) and N1(ds, dz, du) denote the
Poisson random measures on (0,∞)3 associated with {p0(t)} and {p1(t)}, respectively.
Let Ñ0(ds, dz, du) denote the compensated measure of N0(ds, dz, du). Let us consider
the stochastic integral equation

y(t) = y(0) +

∫ t

0

√
2cy(s)dB(s) +

∫ t

0

∫ ∞

0

∫ y(s−)

0

zÑ0(ds, dz, du)

+

∫ t

0

(β − by(s))ds+

∫ t

0

∫ ∞

0

zN1(ds, dz), (4.2.1)

where Ñ0(ds, dz, du) = N0(ds, dz, du) − dsm(dz)du. We understand the last term on
the right-hand side as an integral over the set {(s, z, u) : 0 < s ≤ t, 0 < z <∞, 0 < u ≤
y(s−)} and give similar interpretations for other integrals with respect to Poisson random
measures in this section.

Theorem 4.2.1 There is a unique positive weak solution to (4.2.1) and the solution is a
CBI-process with transition semigroup (Qγ

t )t≥0.

Proof. Suppose that {y(t)} is a càdlàg realization of the CBI-process with transition
semigroup given by (2.1.20) and (3.1.9). By Theorem 4.1.2 the process has no negative
jumps and the random measure

N(ds, dz) :=
∑
s>0

1{y(s)̸=y(s−)}δ(s,y(s)−y(s−))(ds, dz)

has predictable compensator

N̂(ds, dz) = y(s−)dsm(dz) + dsn(dz)

and

y(t) = y(0) + t
[
β +

∫ ∞

0

un(du)
]
−
∫ t

0

by(s−)ds

+M c(t) +

∫ t

0

∫ ∞

0

zÑ(ds, dz), (4.2.2)



4.2. STOCHASTIC EQUATIONS OF CBI-PROCESSES 49

where Ñ(ds, dz) = N(ds, dz)− N̂(ds, dz) and t 7→M c(t) is a continuous local martin-
gale with quadratic variation 2cy(t−)dt. By representation theorems for semimartingales,
we have equation (4.2.1) on an extension of the original probability space; see, e.g., Ikeda
and Watanabe (1989, p.90 and p.93). That proves the existence of a weak solution to
(4.2.1). Conversely, if {y(t)} is a positive solution to (4.2.1), one can use Itô’s formula
to see the process is a solution of the martingale problem associated with the generator
L defined by (4.1.1). By Theorem 4.2.1 we see {y(t)} is a CBI-process with transition
semigroup (Qγ

t )t≥0. That implies the weak uniqueness of the solution to (4.2.1). �

Theorem 4.2.2 Suppose that m(dz) = qz−1−αdz for constants q ≥ 0 and 1 < α <
2. Then the CBI-process with transition semigroup (Qγ

t )t≥0 is the unique positive weak
solution of

dy(t) =
√
2cy(t)dB(t) + α

√
qy(t−)dz0(t)− by(t)dt+ dz1(t), (4.2.3)

where {B(t)} is a Brownian motion, {z0(t)} is a one-sided α-stable process with Lévy
measure z−1−αdz, {z1(t)} is an increasing Lévy process defined by (β, n), and {B(t)},
{z0(t)} and {z1(t)} are independent of each other.

Proof. We assume q > 0, for otherwise the proof is easier. Let us consider the CBI-
process {y(t)} given by (4.2.1) with {N0(ds, dz, du)} being a Poisson random measure
on (0,∞)3 with intensity qz−1−αdsdzdu. We define the random measure {N(ds, dz)}
on (0,∞)2 by

N((0, t]×B) =

∫ t

0

∫ ∞

0

∫ y(s−)

0

1{y(s−)>0}1B

( z
α
√
qy(s−)

)
N0(ds, dz, du)

+

∫ t

0

∫ ∞

0

∫ 1/q

0

1{y(s−)=0}1B(z)N0(ds, dz, du).

It is easy to compute that {N(ds, dz)} has predictable compensator

N̂((0, t]×B) =

∫ t

0

∫ ∞

0

1{y(s−)>0}1B

( z
α
√
qy(s−)

)qy(s−)dsdz

z1+α

+

∫ t

0

∫ ∞

0

1{y(s−)=0}1B(z)
dsdz

z1+α

=

∫ t

0

∫ ∞

0

1B(z)
dsdz

z1+α
.

Thus {N(ds, dz)} is a Poisson random measure with intensity z−1−αdsdz; see, e.g., Ikeda
and Watanabe (1989, p.93). Now define the Lévy processes

z0(t) =

∫ t

0

∫ ∞

0

zÑ(ds, dz) and z1(t) = βt+

∫ t

0

∫ ∞

0

zN1(ds, dz),
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where Ñ(ds, dz) = N(ds, dz)− N̂(ds, dz). It is easy to see that∫ t

0

α
√
qy(s−)dz0(s) =

∫ t

0

∫ ∞

0

α
√
qy(s−) zÑ(ds, dz)

=

∫ t

0

∫ ∞

0

∫ y(s−)

0

zÑ0(ds, dz, du).

Then we get (4.2.3) from (4.2.1). Conversely, if {y(t)} is a solution of (4.2.3), one can
use Itô’s formula to see that {y(t)} solves the martingale problem associated with the
generator L defined by (4.1.1) with m(dz) = qz−1−αdz. Then {y(t)} is a CBI-process
with transition semigroup (Qγ

t )t≥0 and the solution of (4.2.3) is unique in law. �

Theorem 4.2.3 The pathwise uniqueness holds for positive solutions to (4.2.1).

Proof. For each integer n ≥ 0 define an = exp{−n(n+1)/2}. Then an → 0 decreasingly
as n→ ∞ and ∫ an−1

an

z−1dz = n, n ≥ 1.

Let x 7→ gn(x) be a positive continuous function supported by (an, an−1) so that∫ an−1

an

gn(x)dx = 1

and gn(x) ≤ 2(nx)−1 for every x > 0. For n ≥ 0 let

fn(z) =

∫ |z|

0

dy

∫ y

0

gn(x)dx, z ∈ R.

It is easy to see that |f ′
n(z)| ≤ 1 and

0 ≤ |z|f ′′
n(z) = |z|gn(|z|) ≤ 2n−1, z ∈ R.

Moreover, we have fn(z) → |z| increasingly as n→ ∞. Suppose that {y(t) : t ≥ 0} and
{z(t) : t ≥ 0} are both positive solutions of (4.2.1). Let αt = z(t)− y(t) for t ≥ 0. From
(4.2.1) we have

αt = α0 − b

∫ t

0

αs−ds+
√
2c

∫ t

0

(√
z(s)−

√
y(s)

)
dB(s)

+

∫ t

0

∫ ∞

0

∫ z(s−)

y(s−)

zÑ0(ds, dz, du).



4.3. LAMPERTI’S TRANSFORMATIONS BY TIME CHANGES 51

By this and Itô’s formula,

fn(αt) = fn(α0)− b

∫ t

0

f ′
n(αs)αsds+ c

∫ t

0

f ′′
n(αs)

(√
z(s)−

√
y(s)

)2
ds

+

∫ t

0

αs1{αs>0}ds

∫ ∞

0

[fn(αs + z)− fn(αs)− zf ′
n(αs)]m(dz)

−
∫ t

0

αs1{αs<0}ds

∫ ∞

0

[fn(αs − z)− fn(αs) + zf ′
n(αs)]m(dz)

+martingale. (4.2.4)

It is easy to see that |fn(a+ x)− fn(a)| ≤ |x| for any a, x ∈ R. If ax ≥ 0, we have

|fn(a+ x)− fn(a)− xf ′
n(a)| ≤ (2|ax|) ∧ (n−1|x|2).

Taking the expectation in both sides of (4.2.4) gives

P[fn(αt)] ≤ P[fn(α0)] + |b|
∫ t

0

P[|αs|]ds+ c

∫ t

0

P[f ′′
n(αs)|αs|]ds

+

∫ t

0

ds

∫ ∞

0

{(2zP[|αs|]) ∧ (n−1z2)}m(dz).

Then letting n→ ∞ we get

P[|z(t)− y(t)|] ≤ P[|z(0)− y(0)|] + |b|
∫ t

0

P[|z(s)− y(s)|]ds.

By this and Gronwall’s inequality one can see the pathwise uniqueness holds for (4.2.1).
�

Theorem 4.2.3 was first proved in Dawson and Li (2006), see also Fu and Li (2010)
and Li and Ma (2008). By Theorems 4.2.1 and 4.2.3 there is a unique positive strong
solution to (4.2.1); see, e.g., Situ (2005, p.76 and p.104). The pathwise uniqueness of
(4.2.3) was proved in Fu and Li (2010).

4.3 Lamperti’s transformations by time changes

The results of Lamperti (1967b) assert that CB-processes are in one-to-one correspon-
dence with spectrally positive Lévy processes via simple random time changes. Caballero
et al. (2009) recently gave proofs of those results using the approach of stochastic equa-
tions; see also Helland (1978) and Silverstein (1968). Suppose that ϕ is a branching
mechanism given by (2.1.13). Let {x(t) : t ≥ 0} be a CB-process with x(0) = x ≥ 0
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and with branching mechanism ϕ is given by (2.1.13). Let {Yt : t ≥ 0} be a spectrally
positive Lévy process such that Y0 = x and

logP exp{iλ(Yt − Yr)} = (t− r)ϕ(−iλ), λ ∈ R, t ≥ r ≥ 0. (4.3.1)

Let τ = inf{s ≥ 0 : Ys = 0} be its first hitting time at zero and let Zt = Yt∧τ for t ≥ 0.
The proofs of the following two theorems were essentially adopted from Caballero et al.
(2009).

Theorem 4.3.1 For any t ≥ 0 let z(t) = x(κ(t)), where

κ(t) = inf
{
u ≥ 0 :

∫ u

0

x(s−)ds =

∫ u

0

x(s)ds ≥ t
}
. (4.3.2)

Then {z(t) : t ≥ 0} is distributed identically on D[0,∞) with {Zt : t ≥ 0}.

Proof. By the result of Theorem 4.2.1, we may assume {x(t)} solves the stochastic
integral equation

x(t) = x+

∫ t

0

√
2cx(s−)dB(s)−

∫ t

0

bx(s−)ds

+

∫ t

0

∫ ∞

0

∫ x(s−)

0

zÑ0(ds, dz, du), (4.3.3)

where {B(t)} is a Brownian motion, {N0(ds, dz, du)} is a Poisson random measures on
(0,∞)3 with intensity dsm(dz)du and Ñ0(ds, dz, du) = N0(ds, dz, du) − dsm(dz)du.
It follows that

z(t) = x+

∫ κ(t)

0

√
2cx(s−)dB(s)−

∫ κ(t)

0

bx(s−)ds

+

∫ κ(t)

0

∫ ∞

0

∫ x(s−)

0

zÑ0(ds, dz, du)

= x+
√
2cW (t)− b

∫ t

0

z(s−)dκ(s)

+

∫ t

0

∫ ∞

0

∫ x(κ(s)−)

0

zÑ0(dκ(s), dz, du), (4.3.4)

where

W (t) =

∫ κ(t)

0

√
x(s−)dB(s) =

∫ t

0

√
z(s−)dB(κ(s))

is a continuous martingale. From (4.3.2) we have

1{z(s−)>0}dκ(s) = 1{z(s−)>0}z(s−)−1ds.



4.3. LAMPERTI’S TRANSFORMATIONS BY TIME CHANGES 53

Let τ0 = inf{t ≥ 0 : z(t) = 0}. Since zero is a trap for {z(t)}, we have∫ t

0

z(s−)dκ(s) =

∫ t

0

1{z(s−)>0}ds = t ∧ τ0.

Then {W (t)} has quadratic variation process ⟨W ⟩(t) = t∧ τ0, so it is a Brownian motion
stopped at τ0. It is easy to extend {W (t)} to a Brownian motion with infinite time. Now
define the random measure {N(ds, dz)} on (0,∞)2 by

N((0, t]× (a, b]) =

∫ t

0

∫ b

a

∫ z(s−)

0

1{z(s−)>0}N0(dκ(s), dz, du),

where t ≥ 0 and b ≥ a > 0. It is easy to compute that {N((0, t] × (a, b]) : t ≥ 0} has
predictable compensator

N̂((0, t]× (a, b]) =

∫ t

0

m(a, b]z(s−)dκ(s) =

∫ t

0

m(a, b]1{s≤τ0}ds.

Then we can extend {N(ds, dz)} is a Poisson random measure on (0,∞)2 with intensity
dsm(dz); see, e.g., Ikeda and Watanabe (1989, p.93). From (4.3.4) we conclude that
{z(t)} is distributed on D[0,∞) identically with {Zt : t ≥ 0}. �

Theorem 4.3.2 For any t ≥ 0 let Xt = Zθ(t), where

θ(t) = inf
{
u ≥ 0 :

∫ u

0

Z−1
s−ds =

∫ u

0

Z−1
s ds ≥ t

}
. (4.3.5)

Then {Xt : t ≥ 0} is distributed identically on D[0,∞) with {x(t) : t ≥ 0}.

Proof. By the Lévy–Itô decomposition, up to an extension of the original probability
space we may assume {Yt} is given by

Yt = x+
√
2cW (t)− bt+

∫ t

0

∫ ∞

0

∫ 1

0

zM̃0(ds, dz, du),

where {W (t)} is a Brownian motion, {M0(ds, dz, du)} is a Poisson random measures on
(0,∞)3 with intensity dsm(dz)du and M̃0(ds, dz, du) =M0(ds, dz, du)− dsm(dz)du.
It follows that

Xt = x+
√
2cW (θ(t))− bθ(t) +

∫ t

0

∫ ∞

0

∫ 1

0

zM̃0(dθ(s), dz, du). (4.3.6)

From (4.3.5) we have

θ(t) =

∫ t

0

Zθ(s)ds =

∫ t

0

Xsds.
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Then the continuous martingale {W (θ(t))} has the representation

W (θ(t)) =

∫ t

0

√
XsdB(s), t ≥ 0

for another Brownian motion {B(t)}. Now we take an independent Poisson random
measure {M1(ds, dz, du)} on (0,∞)3 with intensity dsm(dz)du and define the random
measure

N0(ds, dz, du) = 1{u≤Xs−}M0(dθ(s), dz,X
−1
s−du) + 1{u>Xs−}M1(ds, dz, du).

It is easy to see that {N0(ds, dz, du)} has deterministic compensator dsm(dz)du, so it is
a Poisson random measures. From (4.3.6) we see that {Xt} is a weak solution of (4.3.3).
That gives the desired result. �



Chapter 5

State-dependent immigration structures

In this chapter we investigate the structures of state-dependent immigration associated
with CB-processes. For simplicity, we only consider interactive immigration rates. The
models are defined in terms of some stochastic integral equations generalizing (4.2.1).
We prove the existence and pathwise uniqueness of solutions to the stochastic integral
equations. Similar immigration structures were studied in Li (2011) in the setting of
superprocesses by considering different types of stochastic equations. We shall deal with
processes with càdlàg paths as in Li (2011). Let ϕ is a branching mechanism given by
(2.1.13). For notational convenience, we defined the constant σ =

√
2c, which will be

used throughout this chapter.

5.1 Time-dependent immigration

In this section, we introduce a generalization of the CBI-process. Let (Qt)t≥0 be the
transition semigroup defined by (2.1.15) and (2.1.20). We consider a set of functions
{ψs : s ≥ 0} ⊂ I given by

ψs(z) = βsz +

∫ ∞

0

(
1− e−zu

)
ns(du), z ≥ 0, (5.1.1)

where βs ≥ 0 and (1 ∧ u)ns(du) is a finite measure on (0,∞). We assume s 7→ ψs(z) is
locally bounded and measurable on [0,∞) for each z ≥ 0. By Theorems 1.2.3 and 1.2.4,
for any t ≥ r ≥ 0 there is an infinitely divisible probability measure γr,t on [0,∞) defined
by ∫ ∞

0

e−λyγr,t(dy) = exp
{
−
∫ t

r

ψs(vt−s(λ))ρ(s)ds
}
, λ ≥ 0. (5.1.2)

Then we can define the probability kernels (Qγ
r,t : t ≥ r ≥ 0) by

Qγ
r,t(x, ·) := Qt−r(x, ·) ∗ γr,t(·), x ≥ 0. (5.1.3)

55



56 CHAPTER 5. STATE-DEPENDENT IMMIGRATION STRUCTURES

It is easily seen that∫ ∞

0

e−λyQγ
r,t(x, dy) = exp

{
− xvt−r(λ)−

∫ t

r

ψs(vt−s(λ))ds
}
. (5.1.4)

Moreover, the kernels (Qγ
r,t : t ≥ r ≥ 0) form a transition semigroup on R+. A Markov

process with transition semigroup (Qγ
r,t : t ≥ r ≥ 0) is called a special inhomogeneous

CBI-process with branching mechanism ϕ and time-dependent immigration mechanism
{ψs : s ≥ 0}. One can see that the time-space homogeneous transition semigroup associ-
ated with (Qγ

r,t : t ≥ r ≥ 0) is a Feller semigroup. Then (Qγ
r,t : t ≥ r ≥ 0) has a càdlàg

realization X = (Ω,F ,Ft, y(t),Q
γ
r,x). In particular, if uns(du) is a locally bounded

kernel from [0,∞) to (0,∞), one can derive from (2.2.4) and (5.1.4) that∫ ∞

0

yQγ
r,t(x, dy) = xe−b(t−r) +

∫ t

r

e−b(t−s)ψ′
s(0)ds. (5.1.5)

where

ψ′
s(0) = βs +

∫ ∞

0

zns(dz).

The reader may refer to Li (2002) for the discussions of general inhomogeneous immi-
gration processes in the setting of measure-valued processes.

5.2 Predictable immigration rates

Let ϕ be a branching mechanism given by (2.1.13) and ψ an immigration mechanism
given by (3.1.10). In this section, we give a construction of CBI-processes with ran-
dom immigration rates given by predictable processes. Suppose that (Ω,F ,Ft,P) is
a filtered probability space satisfying the usual hypotheses. Let {B(t) : t ≥ 0} be an
(Ft)-Brownian motion and let {p0(t) : t ≥ 0} and {p1(t) : t ≥ 0} be (Ft)-Poisson
point processes on (0,∞)2 with characteristic measures m(dz)du and n(dz)du, respec-
tively. We assume that the white noise and the Poisson processes are independent of each
other. Let N0(ds, dz, du) and N1(ds, dz, du) denote the Poisson random measures on
(0,∞)3 associated with {p0(t)} and {p1(t)}, respectively. Let Ñ0(ds, dz, du) denote the
compensated measure of N0(ds, dz, du). Suppose that ρ = {ρ(t) : t ≥ 0} is a positive
(Ft)-predictable process such that t 7→ P[ρ(t)] is locally bounded. We are interested in
positive càdlàg solutions of the stochastic equation

Yt = Y0 + σ

∫ t

0

√
Ys−dB(s) +

∫ t

0

∫ ∞

0

∫ Ys−

0

zÑ0(ds, dz, du)

+

∫ t

0

(βρ(s)− bYs−)ds+

∫ t

0

∫ ∞

0

∫ ρ(s)

0

zN1(ds, dz, du). (5.2.1)
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Clearly, the above equation is a generalization of (4.2.1). For any positive càdlàg
solution {Yt : t ≥ 0} of (5.2.1) satisfying P[Y0] < ∞, one can use a standard stopping
time argument to show that t 7→ P[Yt] is locally bounded and

P[Yt] = P[Y0] + ψ′(0)

∫ t

0

P[ρ(s)]ds− b

∫ t

0

P[Ys]ds, (5.2.2)

where ψ′(0) is defined by (3.1.12). By Itô’s formula, it is easy to see that {Yt : t ≥ 0}
solves the following martingale problem: For every f ∈ C2(R+),

f(Yt) = f(Y0) + local mart. − b

∫ t

0

f ′(Ys)Ysds+
1

2
σ2

∫ t

0

f ′′(Ys)Ysds

+

∫ t

0

Ysds

∫ ∞

0

[f(Ys + z)− f(Ys)− zf ′(Ys)]m(dz)

+

∫ t

0

ρ(s)
{
βf ′(Ys) +

∫ ∞

0

[f(Ys + z)− f(Ys)]n(dz)
}
ds. (5.2.3)

Proposition 5.2.1 Suppose that {Yt : t ≥ 0} is a positive càdlàg solution of (5.2.1) and
{Zt : t ≥ 0} is a positive càdlàg solution of the equation with ρ = {ρ(t) : t ≥ 0}
replaced by η = {η(t) : t ≥ 0}. Then for any t ≥ 0 we have

P[|Zt − Yt|] ≤ e|b|t
{
P[|Z0 − Y0|] + ψ′(0)

∫ t

0

P[|η(s)− ρ(s)|]ds
}
, (5.2.4)

where ψ′(0) is defined by (3.1.12).

Proof. The following arguments are modifications of those in the proof of Theorem 4.2.3.
Let {fn} be the function sequence defined there. Write αt = Zt − Yt for t ≥ 0. From
(5.2.1) we have

αt = α0 + β

∫ t

0

[η(s)− ρ(s)]ds+ σ

∫ t

0

(
√
Zs− −

√
Ys−)dB(s)

− b

∫ t

0

αs−ds+

∫ t

0

∫ ∞

0

∫ Zs−

Ys−

zÑ0(ds, dz, du)

+

∫ t

0

∫ ∞

0

∫ η(s)

ρ(s)

zN1(ds, dz, du). (5.2.5)

By this and Itô’s formula,

fn(αt) = fn(α0) + β

∫ t

0

f ′
n(αs)[η(s)− ρ(s)]ds− b

∫ t

0

f ′
n(αs)αsds

+
1

2
σ2

∫ t

0

f ′′
n(αs)(

√
Zs− −

√
Ys−)

2ds
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+

∫ t

0

αs1{αs>0}ds

∫ ∞

0

[fn(αs + z)− fn(αs)− zf ′
n(αs)]m(dz)

−
∫ t

0

αs1{αs<0}ds

∫ ∞

0

[fn(αs − z)− fn(αs) + zf ′
n(αs)]m(dz)

+

∫ t

0

[η(s)− ρ(s)]1{η(s)>ρ(s)}ds

∫ ∞

0

[fn(αs + z)− fn(αs)]n(dz)

−
∫ t

0

[ρ(s)− η(s)]1{ρ(s)>η(s)}ds

∫ ∞

0

[fn(αs − z)− fn(αs)]n(dz)

+martingale. (5.2.6)

It is easy to see that |fn(a+ x)− fn(a)| ≤ |x| for any a, x ∈ R. If ax ≥ 0, we have

|fn(a+ x)− fn(a)− xf ′
n(a)| ≤ (2|ax|) ∧ (n−1|x|2).

Taking the expectation in both sides of (5.2.6) gives

P[fn(αt)] ≤ P[fn(α0)] + β

∫ t

0

P[|η(s)− ρ(s)|]ds+ |b|
∫ t

0

P[|αs|]ds

+

∫ t

0

P[|η(s)− ρ(s)|]ds
∫ ∞

0

zn(dz) + n−1σ2t

+

∫ t

0

ds

∫ ∞

0

{(2zP[|αs|]) ∧ (n−1z2)}m(dz).

By letting n→ ∞ we get

P[|Zt − Yt|] ≤ P[|Z0 − Y0|] + |b|
∫ t

0

P[|Zs − Ys|]ds

+ψ′(0)

∫ t

0

P[|η(s)− ρ(s)|]ds. (5.2.7)

Then we get the desired estimate follows by Gronwall’s inequality. �

Proposition 5.2.2 Suppose that {Yt : t ≥ 0} is a positive càdlàg solution of (5.2.1) and
{Zt : t ≥ 0} is a positive càdlàg solution of the equation with (b, ρ) replaced by (c, η).
Then for any t ≥ 0 we have

P
[
sup
0≤s≤t

|Zs − Ys|
]
≤ P[|Z0 − Y0|] + ψ′(0)

∫ t

0

P[|η(s)− ρ(s)|]ds

+
(
|b|+ 2

∫ ∞

1

zm(dz)
)∫ t

0

P[|Zs − Ys|]ds

+2σ
(∫ t

0

P[|Zs − Ys|]ds
) 1

2

+2
(∫ t

0

P[|Zs − Ys|]ds
∫ 1

0

z2m(dz)
) 1

2
,

where ψ′(0) is defined by (3.1.12).
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Proof. This follows by applying Doob’s martingale inequality to (5.2.5). �

Theorem 5.2.3 For any Y0 ≥ 0 there is a pathwise unique positive càdlàg solution {Yt :
t ≥ 0} of (5.2.1).

Proof. The pathwise uniqueness of the solution follows by Proposition 5.2.1 and Gron-
wall’s inequality. Without loss of generality, we may assume Y0 ≥ 0 is deterministic in
proving the existence of the solution. We give the proof in two steps.

Step 1. Let 0 = r0 < r1 < r2 < · · · be an increasing sequence. For each i ≥ 1
let ηi be a positive integrable random variable measurable with respect to Fri−1

. Let
ρ = {ρ(t) : t ≥ 0} be the positive (Ft)-predictable step process given by

ρ(t) =
∞∑
i=1

ηi1(ri−1,ri](t), t ≥ 0.

By Theorem 4.2.1, on each interval (ri−1, ri] there is a pathwise unique solution {Yt :
ri−1 < t ≤ ri} to

Yt = Yri−1
+ σ

∫ t

ri−1

√
Ys−dB(s) +

∫ t

ri−1

∫ ∞

0

∫ Ys−

0

zÑ0(ds, dz, du)

+

∫ t

ri−1

(βηi − bYs−)ds+

∫ t

ri−1

∫ ∞

0

∫ ηi

0

zN1(ds, dz, du).

Then {Yt : t ≥ 0} is a solution to (5.2.1).

Step 2. Suppose that ρ = {ρ(t) : t ≥ 0} is general positive (Ft)-predictable process
such that t 7→ P[ρ(t)] is locally bounded. Take a sequence of positive predictable step
processes ρk = {ρk(t) : t ≥ 0} so that

P
[ ∫ t

0

|ρk(s)− ρ(s)|ds
]
→ 0 (5.2.8)

for every t ≥ 0 as k → ∞. Let {Yk(t) : t ≥ 0} be the solution to (5.2.1) with ρ = ρk. By
Proposition 5.2.1, Gronwall’s inequality and (5.2.8) one sees

sup
0≤s≤t

P[|Yk(s)− Yi(s)|] → 0

for every t ≥ 0 as i, k → ∞. Then Proposition 5.2.2 implies

P
[
sup
0≤s≤t

|Yk(s)− Yi(s)|
]
→ 0
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for every t ≥ 0 as i, k → ∞. Thus there is a subsequence {ki} ⊂ {k} and a càdlàg
process {Yt : t ≥ 0} so that

sup
0≤s≤t

|Yki(s)− Ys| → 0

almost surely for every t ≥ 0 as i → ∞. It is routine to show that {Yt : t ≥ 0} is a
solution to (5.2.1). �

Theorem 5.2.4 If ρ = {ρ(t) : t ≥ 0} is a deterministic locally bounded positive Borel
function, the solution {Yt : t ≥ 0} of (5.2.1) is a special inhomogeneous CBI-process with
branching mechanism ϕ and time-dependent immigration mechanisms {ρ(t)ψ : t ≥ 0}.

Proof. By Theorem 4.2.1, when ρ(t) = ρ is a deterministic constant function, the process
{Yt : t ≥ 0} is a CBI-process with branching mechanism ϕ and immigration mechanisms
ρψ. If ρ = {ρ(t) : t ≥ 0} is a general deterministic locally bounded positive Borel
function, we can take each step function ρk = {ρk(t) : t ≥ 0} in the last proof to be
deterministic. Then the solution {Yk(t) : t ≥ 0} of (5.2.1) with ρ = ρk is a special inho-
mogeneous CBI-process with branching mechanism ϕ and time-dependent immigration
mechanisms {ρk(t)ψ : t ≥ 0}. In other words, for any λ ≥ 0, t ≥ r ≥ 0 and G ∈ Fr we
have

P[1Ge
−λYk(t)] = P

[
1G exp

{
− Yk(r)vt−r(λ)−

∫ t

r

ρk(s)ψ(vt−s(λ))ds
}]
.

Letting k → ∞ along the sequence {ki} mentioned in the last proof gives

P[1Ge
−λYt ] = P

[
1G exp

{
− Yrvt−r(λ)−

∫ t

r

ρ(s)ψ(vt−s(λ))ds
}]
.

Then {Yt : t ≥ 0} is a CBI-process with immigration rate ρ = {ρ(t) : t ≥ 0}. �
In view of the result of Theorem 5.2.4, the solution {Yt : t ≥ 0} to (5.2.1) can be called

an inhomogeneous CBI-process with branching mechanism ϕ, immigration mechanism ψ
and predictable immigration rate ρ = {ρ(t) : t ≥ 0}. The results in this section are slight
modifications of those in Li (2011+), where some path-valued branching processes were
introduced.

5.3 Interactive immigration rates

In this section, we give a construction of CBI-processes with interactive immigration
rates. We shall use the set up of the second section. Suppose that z 7→ q(z) is a positive
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Lipschitz function on [0,∞). We consider the stochastic equation

Yt = Y0 + σ

∫ t

0

√
Ys−dB(s) +

∫ t

0

∫ ∞

0

∫ Ys−

0

zÑ0(ds, dz, du)

+

∫ t

0

[βq(Ys−)− bYs−]ds+

∫ t

0

∫ ∞

0

∫ q(Ys−)

0

zN1(ds, dz, du). (5.3.1)

This reduces to (4.2.1) when q is a constant function. We may interpret the solution
{Yt : t ≥ 0} of (5.3.1) as a CBI-process with interactive immigration rate given by the
process s 7→ q(Ys−).

Theorem 5.3.1 There is a pathwise unique solution {Yt : t ≥ 0} of (5.3.1).

Proof. Suppose that {Yt : t ≥ 0} and {Zt : t ≥ 0} are two solutions to this equation. Let
K ≥ 0 be a Lipschitz constant for the function z 7→ q(z). By (5.2.4) we have

P[|Zt − Yt|] ≤ ψ′(0)e|b|t
∫ t

0

P[|q(Zs)− q(Ys)|]ds ≤ Kψ′(0)e|b|t
∫ t

0

P[|Zs − Ys|]ds.

Then the pathwise uniqueness for (5.3.1) follows by Gronwall’s inequality. We next
prove the existence of the solution using an approximating argument. Let Y0(t) ≡ 0.
By Theorem 5.2.3 we can define inductively the sequence of processes {Yk(t) : t ≥ 0},
k = 1, 2, . . . as pathwise unique solutions of the stochastic equations

Yk(t) = Y0 − b

∫ t

0

Yk(s−)ds+ σ

∫ t

0

√
Yk(s−)dB(s)

+ β

∫ t

0

q(Yk−1(s−))ds+

∫ t

0

∫ ∞

0

∫ Yk(s−)

0

zÑ0(ds, dz, du)

+

∫ t

0

∫ ∞

0

∫ q(Yk−1(s−))

0

zN1(ds, dz, du). (5.3.2)

Let Zk(t) = Yk(t)− Yk−1(t). By (5.2.4) we have

P[|Zk(t)|] ≤ ψ′(0)e|b|t
∫ t

0

P[|q(Yk−1(s))− q(Yk−2(s))|]ds

≤ Kψ′(0)e|b|t
∫ t

0

P[|Zk−1(s)|]ds.

By (5.3.2) one sees that {Z1(t) : t ≥ 0} is a CBI-process with branching mechanism ϕ
and immigration mechanism q(0)ψ. In view of (3.1.13), we have

P[|Z1(t)|] = e−btP[Y0] + ψ′(0)b−1(1− e−bt).
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By a standard argument, one shows

∞∑
k=1

sup
0≤s≤t

P[|Yk(s)− Yk−1(s)|] <∞,

so the Lipschitz property of z 7→ q(z) implies

∞∑
k=1

sup
0≤s≤t

P[|q(Yk(s))− q(Yk−1(s))|] <∞.

It follows that

lim
k,l→∞

∫ t

0

P[|q(Yk(s))− q(Yl(s))|]ds = 0.

Then there exists a predictable process ρ = {ρ(s) : s ≥ 0} so that

lim
k→∞

∫ t

0

P[|q(Yk(s))− ρ(s)|]ds = 0. (5.3.3)

Let {Yt : t ≥ 0} be the positive càdlàg process defined by (5.2.1). By Proposition 5.2.2,
there is a subsequence {kn} ⊂ {k} so that a.s.

lim
n→∞

sup
0≤s≤t

|Ykn(s)− Ys| = 0, t ≥ 0.

By the continuity of z 7→ q(z) we get a.s.

lim
n→∞

q(Ykn(s−)) = q(Y (s−)), t ≥ 0.

This and (5.3.3) imply that∫ t

0

P[|q(Y (s−))− ρ(s)|]ds = 0.

Then letting k → ∞ along {kn+1} in (5.3.2) we see {Yt : t ≥ 0} is a solution of (5.3.1).
�

By Itô’s formula, it is easy to see that the solution {Yt : t ≥ 0} of (5.3.1) solves the
following martingale problem: For every f ∈ C2(R+),

f(Yt) = f(Y0) + local mart. − b

∫ t

0

f ′(Ys)Ysds+
1

2
σ2

∫ t

0

f ′′(Ys)Ysds

+

∫ t

0

Ysds

∫ ∞

0

[f(Ys + z)− f(Ys)− zf ′(Ys)]m(dz)
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+

∫ t

0

q(Ys)
{
βf ′(Ys) +

∫ ∞

0

[f(Ys + z)− f(Ys)]n(dz)
}
ds. (5.3.4)

By Theorem 5.3.1, the solution is a strong Markov process with generator given by

Af(x) =
1

2
σ2xf ′′(x) + x

∫ ∞

0

[f(x+ z)− f(x)− zf ′(x)]m(dz)

− bxf ′(x) + q(x)
{
βf ′(x) +

∫ ∞

0

[f(x+ z)− f(x)]n(dz)
}
. (5.3.5)

We can also consider two Lipschitz functions z 7→ q1(z) and z 7→ q2(z) on [0,∞).
By slightly modifying the arguments, one can show there is a pathwise unique solution to

Yt = Y0 + σ

∫ t

0

√
Ys−dB(s) +

∫ t

0

∫ ∞

0

∫ Ys−

0

zÑ0(ds, dz, du)

+

∫ t

0

[βq1(Ys−)− bYs−]ds+

∫ t

0

∫ ∞

0

∫ q2(Ys−)

0

zN1(ds, dz, du). (5.3.6)

The solution of this equation can be understood as a CBI-process with interactive im-
migration rates given by the processes s 7→ q1(Ys−) and s 7→ q2(Ys−). This type of
immigration structures were studied in Li (2011) in the setting of superprocesses by con-
sidering a different type of stochastic equations.
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