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problems and stochastic equations of the continuous-state processes. The proofs here
are more elementary than those appearing in the literature before. We have made them
readable without requiring too much preliminary knowledge on branching processes and
stochastic analysis. Using the stochastic equations, we give characterizations of the local
and global maximal jumps of the processes. Under suitable conditions, their strong Feller
property and exponential ergodicity are studied by a coupling method based on one of the
stochastic equations.
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Introduction

Continuous-state branching processes (CB-processes) and continuous-state branching pro-
cesses with immigration (CBI-processes) constitute important classes of Markov process-
es taking values in the positive (= nonnegative) half line. They were introduced as prob-
abilistic models describing the evolution of large populations with small individuals. The
study of CB-processes was initiated by Feller (1951), who noticed that a diffusion pro-
cess may arise in a limit theorem of Galton–Watson discrete branching processes; see also
Aliev and Shchurenkov (1982), Grimvall (1974) and Lamperti (1967a). A characteriza-
tion of CB-processes by random time changes of Lévy processes was given by Lamperti
(1967b). The convergence of rescaled discrete branching processes with immigration to
CBI-processes was studied in Aliev (1985), Kawazu and Watanabe (1971) and Li (2006).
From a mathematical point of view, the continuous-state processes are usually easier to
deal with because both their time and state spaces are smooth, and the distributions that
appear are infinitely divisible. For general treatments and backgrounds of CB- and CBI-
processes, the reader may refer to Kyprianou (2014) and Li (2011). In the recent work of
Pardoux (2016), more complicated probabilistic population models involving competition
were studied, which extend the stochastic logistic growth model of Lambert (2005).

A continuous CBI-process with subcritical branching mechanism was used by Cox et
al. (1985) to describe the evolution of interest rates and has been known in mathematical
finance as the Cox–Ingersoll–Ross model (CIR-model). Compared with other financial
models introduced before, the CIR-model is more appealing as it is positive and mean-
reverting. The asymptotic behavior of the estimators of the parameters in this model was
studied by Overbeck and Rydén (1997); see also Li and Ma (2015). Applications of
stochastic calculus to finance including those of the CIR-model were discussed system-
atically in Lamberton and Lapeyre (1996). A natural generalization of the CBI-process
is the so-called affine Markov process, which has also been used a lot in mathematical
finance; see, e.g., Duffie et al. (2003) and the references therein.

A strong stochastic equation for general CBI-processes was first established in Daw-
son and Li (2006). A flow of discontinuous CB-processes was constructed in Bertoin and
Le Gall (2006) by weak solutions to a stochastic equation. Their results were extended
to flows of CBI-processes in Dawson and Li (2012) using strong solutions; see also Li
(2014) and Li and Ma (2008). For the stable branching CBI-process, a strong stochastic
differential equation driven by Lévy processes was established in Fu and Li (2010). The
approach of stochastic equations has played an important role in recent developments of
the theory and applications of CB- and CBI-processes.

The purpose of these notes is to provide a brief introduction to CB- and CBI-processes
accessible to graduate students with reasonable background in probability theory and s-
tochastic processes. In particular, we give a quick development of the stochastic equa-
tions of the processes and some immediate applications. The proofs given here are more
elementary than those appearing in the literature before. We have made them readable
without requiring too much preliminary knowledge on branching processes and stochas-
tic analysis.

In Section 1, we review some properties of Laplace transforms of finite measures on
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the positive half line. In Section 2, a construction of CB-processes is given as rescaling
limits of Galton–Watson branching processes. This approach also gives the physical in-
terpretation of the CB-processes. Some basic properties of the processes are developed
in Section 3. The Laplace transforms of some positive integral functionals are calculat-
ed explicitly in Section 4. In Section 5, the CBI-processes are constructed as rescaling
limits of Galton–Watson branching processes with immigration. In Section 6, we present
reconstructions of the CB- and CBI-processes by Poisson random measures determined
by entrance laws, which reveal the structures of the trajectories of the processes. Several
equivalent formulations of martingale problems for CBI-processes are given in Section 7.
From those we derive the stochastic equations of the processes in Section 8. Using the s-
tochastic equations, some characterizations of local and global maximal jumps of the CB-
and CBI-processes are given in Section 9. In Section 10, we prove the strong Feller prop-
erty and the exponential ergodicity of the CBI-process under suitable conditions using a
coupling based on one of the stochastic equations.

These lecture notes originated from graduate courses I gave at Beijing Normal Uni-
versity in the past years. They were also used for mini courses at Peking University in
2017 and at the University of Verona in 2018. I would like to thank Professors Ying Jiao
and Simone Scotti, who invited me to give the mini courses. I am grateful to the partic-
ipants of all those courses for their helpful comments. I would also like to thank NSFC
for the financial supports. I am indebted to the Laboratory of Mathematics and Complex
Systems (Ministry of Education) for providing me the research facilities.
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1 Laplace transforms of measures

Let B[0,∞) be the Borel σ-algebra on the positive half line [0,∞). Let B[0,∞) =
bB[0,∞) be the set of bounded Borel functions on [0,∞). Given a finite measure µ on
[0,∞), we define the Laplace transform Lµ of µ by

Lµ(λ) =

∫
[0,∞)

e−λx µ(dx), λ ≥ 0. (1.1)

Theorem 1.1 A finite measure on [0,∞) is uniquely determined by its Laplace transform.

Proof. Suppose that µ1 and µ2 are finite measures on [0,∞) and Lµ1(λ) = Lµ2(λ) for all
λ ≥ 0. Let K = {x 7→ e−λx : λ ≥ 0} and let L be the class of functions F ∈ B[0,∞)
so that ∫

[0,∞)

F (x)µ1(dx) =

∫
[0,∞)

F (x)µ2(dx).

Then K is closed under multiplication and L is a monotone vector space containing
K . It is easy to see σ(K ) = B[0,∞). Then the monotone class theorem implies
L ⊃ bσ(K ) = B[0,∞). That proves the desired result. �

Theorem 1.2 Let {µn} be a sequence of finite measures on [0,∞) and λ 7→ L(λ) a
continuous function on [0,∞). If limn→∞ Lµn(λ) = L(λ) for every λ ≥ 0, then there is a
finite measure µ on [0,∞) such that Lµ = L and limn→∞ µn = µ by weak convergence.

Proof. We can regard each µn as a finite measure on [0,∞], the one-point compactification
of [0,∞). Let Fn denote the distribution function of µn. By Helly’s theorem we infer that
{Fn} contains a subsequence {Fnk} that converges weakly on [0,∞] to some distribution
function F . Then the corresponding subsequence {µnk} converges weakly on [0,∞] to
the finite measure µ determined by F . It follows that

µ[0,∞] = lim
k→∞

µnk [0,∞] = lim
k→∞

µnk [0,∞) = lim
k→∞

Lµnk (0) = L(0). (1.2)

Moreover, for λ > 0 we have∫
[0,∞]

e−λx µ(dx) = lim
k→∞

∫
[0,∞]

e−λx µnk(dx)

= lim
k→∞

∫
[0,∞)

e−λx µnk(dx) = L(λ), (1.3)

where e−λ·∞ = 0 by convention. By letting λ → 0+ in (1.3) and using the continuity of
L at λ = 0 we find µ[0,∞) = L(0). From this and (1.2) we see µ is supported by [0,∞).
By Theorem 1.7 of Li (2011, p.4) we have limn→∞ µnk = µ weakly on [0,∞). It follows
that, for λ ≥ 0,∫

[0,∞)

e−λx µ(dx) = lim
k→∞

∫
[0,∞)

e−λx µnk(dx) = L(λ).
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Then Lµ = L. If µn does not converge weakly to µ, then Fn does not converge weakly
to F , so there is a subsequence {Fn′k} ⊂ {Fn} that converges weakly to a limit G 6= F .
The above arguments show that G corresponds to a finite measure on [0,∞) with Laplace
transform L = Lµ, yielding a contradiction. Then limn→∞ µn = µ weakly on [0,∞). �

Corollary 1.3 Let µ1, µ2, . . . and µ be finite measures on [0,∞). Then µn → µ weakly if
and only if Lµn(λ)→ Lµ(λ) for every λ ≥ 0.

Proof. If µn → µ weakly, we have limn→∞ Lµn(λ) = Lµ(λ) for every λ ≥ 0. The
converse assertion is a consequence of Theorem 1.2. �

Given two probability measures µ1 and µ2 on [0,∞), we denote by µ1 × µ2 their
product measure on [0,∞)2. The image of µ1×µ2 under the mapping (x1, x2) 7→ x1 +x2

is called the convolution of µ1 and µ2 and is denoted by µ1 ∗ µ2, which is a probability
measure on [0,∞). According to the definition, for any F ∈ B[0,∞) we have∫

[0,∞)

F (x)(µ1 ∗ µ2)(dx) =

∫
[0,∞)

µ1(dx1)

∫
[0,∞)

F (x1 + x2)µ2(dx2). (1.4)

Clearly, if ξ1 and ξ2 are independent random variables with distributions µ1 and µ2 on
[0,∞), respectively, then the random variable ξ1 + ξ2 has distribution µ1 ∗ µ2. It is easy
to show that

Lµ1∗µ2(λ) = Lµ1(λ)Lµ2(λ), λ ≥ 0. (1.5)

Let µ∗0 = δ0 and define µ∗n = µ∗(n−1) ∗ µ inductively for integers n ≥ 1.

We say a probability distribution µ on [0,∞) is infinitely divisible if for each integer
n ≥ 1, there is a probability µn such that µ = µ∗nn . In this case, we call µn the n-th root of
µ. A positive random variable ξ is said to be infinitely divisible if it has infinitely divisible
distribution on [0,∞). Write ψ ∈ I if λ 7→ ψ(λ) is a positive function on [0,∞) with
the Lévy–Khintchine representation:

ψ(λ) = hλ+

∫
(0,∞)

(1− e−λu)l(du), (1.6)

where h ≥ 0 and l(du) is a σ-finite measure on (0,∞) satisfying∫
(0,∞)

(1 ∧ u)l(du) <∞.

The relation ψ = − logLµ establishes a one-to-one correspondence between the functions
ψ ∈ I and infinitely divisible probability measures µ on [0,∞); see, e.g., Theorem 1.39
in Li (2011, p.20).
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2 Construction of CB-processes

Let {p(j) : j ∈ N} be a probability distribution on the space of positive integers N :=
{0, 1, 2, . . .}. It is well-known that {p(j) : j ∈ N} is uniquely determined by its generat-
ing function g defined by

g(z) =
∞∑
j=0

p(j)zj, |z| ≤ 1.

Suppose that {ξn,i : n, i = 1, 2, . . .} is a family of N-valued i.i.d. random variables with
distribution {p(j) : j ∈ N}. Given an N-valued random variable x(0) independent of
{ξn,i}, we define inductively

x(n) =

x(n−1)∑
i=1

ξn,i, n = 1, 2, . . . . (2.1)

Here we understand
∑0

i=1 = 0. For i ∈ N let {Q(i, j) : j ∈ N} denote the i-fold
convolution of {p(j) : j ∈ N}, that is, Q(i, j) = p∗i(j) for i, j ∈ N. For any n ≥ 1 and
{i0, i1, · · · , in−1 = i, j} ⊂ N it is easy to see that

P
(
x(n) = j

∣∣x(0) = i0, x(1) = i1, · · · , x(n− 1) = in−1

)
= P

( x(n−1)∑
i=1

ξn,i = j
∣∣∣x(n− 1) = in−1

)
= P

( i∑
k=1

ξn,k = j

)
= Q(i, j).

Then {x(n) : n ≥ 0} is an N-valued Markov chain with one-step transition matrix
Q = (Q(i, j) : i, j ∈ N). The random variable x(n) can be thought of as the number
of individuals in generation n of an evolving population system. After one unit time,
each individual in the population splits independently of others into a random number of
offspring according to the distribution {p(j) : j ∈ N}. Clearly, we have, for i ∈ N and
|z| ≤ 1,

∞∑
j=0

Q(i, j)zj =
∞∑
j=0

p∗i(j)zj = g(z)i. (2.2)

Clearly, the transition matrix Q satisfies the branching property:

Q(i1 + i2, ·) = Q(i1, ·) ∗Q(i2, ·), i1, i2 ∈ N. (2.3)

This means that different individuals in the population propagate independently each oth-
er.

A Markov chain in N with one-step transition matrix defined by (2.2) is called a
Galton–Watson branching process (GW-process) or a Bienaymé–Galton–Watson branch-
ing process (BGW-process) with branching distribution given by g; see, e.g., Athreya and
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Ney (1972) and Harris (1963). The study of the model goes back to Bienaymé (1845) and
Galton and Watson (1874).

By a general result in the theory of Markov chains, for any n ≥ 1 the n-step transition
matrix of the GW-process is just the n-fold product matrix Qn = (Qn(i, j) : i, j ∈ N).

Proposition 2.1 For any n ≥ 1 and i ∈ N we have

∞∑
j=0

Qn(i, j)zj = g◦n(z)i, |z| ≤ 1, (2.4)

where g◦n(z) is defined by g◦n(z) = g ◦ g◦(n−1)(z) = g(g◦(n−1)(z)) successively with
g◦0(z) = z by convention.

Proof. From (2.2) we know (2.4) holds for n = 1. Now suppose that (2.4) holds for some
n ≥ 1. We have

∞∑
j=0

Qn+1(i, j)zj =
∞∑
j=0

∞∑
k=0

Q(i, k)Qn(k, j)zj

=
∞∑
k=0

Q(i, k)g◦n(z)k = g◦(n+1)(z)i.

Then (2.4) also holds when n is replaced by n+ 1. That proves the result by induction. �

It is easy to see that zero is a trap for the GW-process. If g′(1−) < ∞, by differenti-
ating both sides of (2.4) we see the first moment of the distribution {Qn(i, j) : j ∈ N} is
given by

∞∑
j=1

jQn(i, j) = ig′(1−)n. (2.5)

Example 2.1 Given a GW-process {x(n) : n ≥ 0}, we can define its extinction time
τ0 = inf{n ≥ 0 : x(n) = 0}. In view of (2.1), we have x(n) = 0 on the event {n ≥ τ0}.
Let q = P(τ0 < ∞|x(0) = 1) be the extinction probability. By the independence of
the propagation of different individuals we have P(τ0 < ∞|x(0) = i) = qi for any
i = 0, 1, 2, . . . . By the total probability formula,

q =
∞∑
j=0

P(x(1) = j|x(0) = 1)P(τ0 <∞|x(0) = 1, x(1) = j)

=
∞∑
j=0

P(ξ1,1 = j)P(τ0 <∞|x(1) = j) =
∞∑
j=0

p(j)qj = g(q).

Then the extinction probability q is a solution to the equation z = g(z) on [0, 1]. Clearly,
in the case of p(1) < 1 we have q = 1 if and only if

∑∞
j=1 jp(j) ≤ 1.
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Now suppose we have a sequence of GW-processes {xk(n) : n ≥ 0}, k = 1, 2, . . .
with branching distributions given by the probability generating functions gk, k = 1, 2, . . . .
Let zk(n) = k−1xk(n). Then {zk(n) : n ≥ 0} is a Markov chain with state space
Ek := {0, k−1, 2k−1, . . .} and n-step transition probability Qn

k(x, dy) determined by∫
Ek

e−λyQn
k(x, dy) = g◦nk (e−λ/k)kx, λ ≥ 0. (2.6)

Suppose that {γk} is a positive sequence so that γk → ∞ increasingly as k → ∞. Let
bγktc denote the integer part of γkt. Clearly, given zk(0) = x ∈ Ek, for any t ≥ 0 the
random variable zk(bγktc) = k−1xk(bγktc) has distributionQbγktck (x, ·) onEk determined
by ∫

Ek

e−λyQ
bγktc
k (x, dy) = exp{−xvk(t, λ)}, (2.7)

where

vk(t, λ) = −k log g
◦bγktc
k (e−λ/k). (2.8)

We are interested in the asymptotic behavior of the sequence of continuous time pro-
cesses {zk(bγktc) : t ≥ 0} as k →∞. By (2.8), for γ−1

k (i− 1) ≤ t < γ−1
k i we have

vk(t, λ) = vk(γ
−1
k bγktc, λ) = vk(γ

−1
k (i− 1), λ).

It follows that

vk(t, λ) = vk(0, λ) +

bγktc∑
j=1

[vk(γ
−1
k j, λ)− vk(γ−1

k (j − 1), λ)]

= λ− k
bγktc∑
j=1

[log g◦jk (e−λ/k)− log g
◦(j−1)
k (e−λ/k)]

= λ− k
bγktc∑
j=1

log
[
gk(g

◦(j−1)
k (e−λ/k))g

◦(j−1)
k (e−λ/k)−1

]
= λ− γ−1

k

bγktc∑
j=1

φ̄k(−k log g
◦(j−1)
k (e−λ/k))

= λ− γ−1
k

bγktc∑
j=1

φ̄k(vk(γ
−1
k (j − 1), λ))

= λ−
∫ γ−1

k bγktc

0

φ̄k(vk(s, λ))ds, (2.9)

where

φ̄k(z) = kγk log
[
gk(e

−z/k) ez/k
]
, z ≥ 0. (2.10)
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It is easy to see that

φ̄k(z) = kγk log
[
1 + (kγk)

−1φ̃k(z) ez/k
]
, (2.11)

where

φ̃k(z) = kγk[gk(e
−z/k)− e−z/k]. (2.12)

The sequence {φ̃k} is sometimes easier to handle than the original sequence {φ̄k}. The
following lemma shows that the two sequences are really not very different.

Lemma 2.2 Suppose that either {φ̄k} or {φ̃k} is uniformly bounded on each bounded
interval. Then we have: (i) limk→∞ |φ̄k(z) − φ̃k(z)| = 0 uniformly on each bounded
interval; (ii) {φ̄k} is uniformly Lipschitz on each bounded interval if and only if so is
{φ̃k}.

Proof. The first assertion follows immediately from (2.11). By the same relation we have

φ̄′k(z) =
[φ̃′k(z) + k−1φ̃k(z)] ez/k

1 + (kγk)−1φ̃k(z) ez/k
, z ≥ 0.

Then {φ̄′k} is uniformly bounded on each bounded interval if and only if so is {φ̃′k}. That
gives the second assertion. �

By the above lemma, if either {φ̃k} or {φ̄k} is uniformly Lipschitz on each bounded
interval, then they converge or diverge simultaneously and in the convergent case they
have the same limit. For the convenience of statement of the results, we formulate the
following condition:

Condition 2.3 The sequence {φ̃k} is uniformly Lipschitz on [0, a] for every a ≥ 0 and
there is a function φ on [0,∞) so that φ̃k(z) → φ(z) uniformly on [0, a] for every a ≥ 0
as k →∞.

Proposition 2.4 Suppose that Condition 2.3 is satisfied. Then the limit function φ has
representation

φ(z) = bz + cz2 +

∫
(0,∞)

(
e−zu−1 + zu

)
m(du), z ≥ 0, (2.13)

where c ≥ 0 and b are constants and m(du) is a σ-finite measure on (0,∞) satisfying∫
(0,∞)

(u ∧ u2)m(du) <∞.

Proof. For each k ≥ 1 let us define the function φk on [0, k] by

φk(z) = kγk[gk(1− z/k)− (1− z/k)]. (2.14)
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From (2.12) and (2.14) we have

φ̃′k(z) = γk e−z/k[1− g′k(e−z/k)], z ≥ 0,

and

φ′k(z) = γk[1− g′k(1− z/k)], 0 ≤ z ≤ k.

Since {φ̃k} is uniformly Lipschitz on each bounded interval, the sequence {φ̃′k} is u-
niformly bounded on each bounded interval. Then {φ′k} is also uniformly bounded on
each bounded interval, and so the sequence {φk} is uniformly Lipschitz on each bounded
interval. Let a ≥ 0. By the mean-value theorem, for k ≥ a and 0 ≤ z ≤ a we have

φ̃k(z)− φk(z) = kγk
[
gk(e

−z/k)− gk(1− z/k)− e−z/k +(1− z/k)
]

= kγk[g
′
k(ηk)− 1](e−z/k−1 + z/k),

where

1− a/k ≤ 1− z/k ≤ ηk ≤ e−z/k ≤ 1.

Choose k0 ≥ a so that e−2a/k0 ≤ 1− a/k0. Then e−2a/k ≤ 1− a/k for k ≥ k0 and hence

γk|g′k(ηk)− 1| ≤ sup
0≤z≤2a

γk|g′k(e−z/k)− 1| = sup
0≤z≤2a

ez/k |φ̃′k(z)|.

Since {φ̃′k} is uniformly bounded on [0, 2a], the sequence {γk|g′k(ηk) − 1| : k ≥ k0}
is bounded. Then limk→∞ |φk(z) − φ̃k(z)| = 0 uniformly on each bounded interval. It
follows that limk→∞ φk(z) = φ(z) uniformly on each bounded interval. Then the result
follows by Corollary 1.46 in Li (2011, p.26). �

Proposition 2.5 For any function φ with representation (2.13) there is a sequence {φ̃k}
in the form of (2.12) satisfying Condition 2.3.

Proof. By the proof of Proposition 2.4 it suffices to construct a sequence {φk} with the
expression (2.14) that is uniformly Lipschitz on [0, a] and φk(z) → φ(z) uniformly on
[0, a] for every a ≥ 0. To simplify the formulations we decompose the function φ into
two parts. Let φ0(z) = φ(z)− bz. We first define

γ0,k = (1 + 2c)k +

∫
(0,∞)

u(1− e−ku)m(du)

and

g0,k(z) = z + k−1γ−1
0,kφ0(k(1− z)), |z| ≤ 1.

It is easy to see that z 7→ g0,k(z) is an analytic function satisfying g0,k(1) = 1 and

dn

dzn
g0,k(0) ≥ 0, n ≥ 0.
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Therefore g0,k(·) is a probability generating function. Let φ0,k be defined by (2.14) with
(γk, gk) replaced by (γ0,k, g0,k). Then φ0,k(z) = φ0(z) for 0 ≤ z ≤ k. That completes the
proof if b = 0. In the case b 6= 0, we set

g1,k(z) =
1

2

(
1 +

b

|b|

)
+

1

2

(
1− b

|b|

)
z2.

Let γ1,k = |b| and let φ1,k(z) be defined by (2.14) with (γk, gk) replaced by (γ1,k, g1,k).
Then

φ1,k(z) = bz +
1

2k
(|b| − b)z2.

Finally, let γk = γ0,k + γ1,k and gk = γ−1
k (γ0,kg0,k + γ1,kg1,k). Then the sequence φk(z)

defined by (2.14) is equal to φ0,k(z) + φ1,k(z) which satisfies the required condition. �

Lemma 2.6 Suppose that the sequence {φ̃k} defined by (2.12) is uniformly Lipschitz on
[0, 1]. Then there are constants B,N ≥ 0 such that vk(t, λ) ≤ λ eBt for every t, λ ≥ 0
and k ≥ N .

Proof. Let bk := φ̃′k(0+) for k ≥ 1. Since {φ̃k} is uniformly Lipschitz on [0, 1], the
sequence {bk} is bounded. From (2.12) we have bk = γk[1−g′k(1−)]. By (2.5) and (2.12)
it is not hard to obtain∫

Ek

yQ
bγktc
k (x, dy) = xg′k(1−)bγktc = x

(
1− bk

γk

)bγktc
.

Let B ≥ 0 be a constant such that 2|bk| ≤ B for all k ≥ 1. Since γk → ∞ as k → ∞,
there is N ≥ 1 so that

0 ≤
(

1− bk
γk

)γk/B
≤
(

1 +
B

2γk

)γk/B
≤ e, k ≥ N.

It follows that, for t ≥ 0 and k ≥ N ,∫
Ek

yQ
bγktc
k (x, dy) ≤ x exp

{
Bbγktc/γk

}
≤ x eBt .

Then the desired estimate follows from (2.5) and Jensen’s inequality. �

Theorem 2.7 Suppose that Condition 2.3 holds. Then for every a ≥ 0 we have vk(t, λ)→
some vt(λ) uniformly on [0, a]2 as k → ∞ and the limit function solves the integral
equation

vt(λ) = λ−
∫ t

0

φ(vs(λ))ds, λ, t ≥ 0. (2.15)
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Proof. The following argument is a modification of that of Aliev and Shchurenkov (1982)
and Aliev (1985). In view of (2.9), we can write

vk(t, λ) = λ+ εk(t, λ)−
∫ t

0

φ̄k(vk(s, λ))ds, (2.16)

where

εk(t, λ) =
(
t− γ−1

k bγktc
)
φ̄k
(
vk(γ

−1
k bγktc, λ)

)
.

By Lemma 2.2 and Condition 2.3, for any 0 < ε ≤ 1 we can choose N ≥ 1 so that
|φ̄k(z) − φ(z)| ≤ ε for k ≥ N and 0 ≤ z ≤ a eBa. It follows that, for 0 ≤ t ≤ a and
0 ≤ λ ≤ a,

|εk(t, λ)| ≤ γ−1
k

∣∣φ̄k(vk(γ−1
k bγktc, λ)

)∣∣ ≤ γ−1
k M, (2.17)

where

M = 1 + sup
0≤z≤a eBa

|φ(z)|.

For n ≥ k ≥ N let

Kk,n(t, λ) = sup
0≤s≤t

|vn(s, λ)− vk(s, λ)|.

By (2.16) and (2.17) we obtain, for 0 ≤ t ≤ a and 0 ≤ λ ≤ a,

Kk,n(t, λ) ≤ (γ−1
k + γ−1

n )M +

∫ t

0

|φ̄k(vk(s, λ))− φ̄n(vn(s, λ))|ds

≤ (γ−1
k + γ−1

n )M + 2εa+

∫ t

0

|φk(vk(s, λ))− φn(vn(s, λ))|ds

≤ (γ−1
k + γ−1

n )M + 2εa+ L

∫ t

0

Kk,n(s, λ)ds,

where L = sup0≤z≤a eBa |φ′(z)|. By Gronwall’s inequality,

Kk,n(t, λ) ≤ [(γ−1
k + γ−1

n )M + 2εa] exp{Lt}, 0 ≤ t, λ ≤ a.

Then vk(t, λ)→ some vt(λ) uniformly on [0, a]2 as k →∞ for every a ≥ 0. From (2.16)
we get (2.15). �

Theorem 2.8 Suppose that φ is a function given by (2.13). Then for any λ ≥ 0 there
is a unique positive solution t 7→ vt(λ) to (2.15). Moreover, the solution satisfies the
semigroup property:

vr+t(λ) = vr ◦ vt(λ) = vr(vt(λ)), r, t, λ ≥ 0. (2.18)
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Proof. By Proposition 2.5 there is a sequence {φ̃k} in form (2.12) satisfying Condi-
tion 2.3. Let vk(t, λ) be given by (2.7) and (2.8). By Theorem 2.7 the limit vt(λ) =
limk→∞ vk(t, λ) exists and solves (2.15). Clearly, any positive solution t 7→ vt(λ) to
(2.15) is locally bounded. The uniqueness of the solution follows by Gronwall’s inequal-
ity. The relation (2.18) is a consequence of the uniqueness of the solution. �

Theorem 2.9 Suppose that φ is a function given by (2.13). For any λ ≥ 0 let t 7→ vt(λ) be
the unique positive solution to (2.15). Then we can define a transition semigroup (Qt)t≥0

on [0,∞) by ∫
[0,∞)

e−λyQt(x, dy) = e−xvt(λ), λ ≥ 0, x ≥ 0. (2.19)

Proof. By Proposition 2.5, there is a sequence {φ̃k} in form (2.12) satisfying Condi-
tion 2.3. By Theorem 2.7 we have vk(t, λ) → vt(λ) uniformly on [0, a]2 as k → ∞ for
every a ≥ 0. Taking xk ∈ Ek satisfying xk → x as k → ∞, we see by Theorem 1.2
that (2.19) defines a probability measure Qt(x, dy) on [0,∞) and limk→∞Q

bγktc
k (xk, ·) =

Qt(x, ·) by weak convergence. By a monotone class argument one can see that Qt(x, dy)
is a kernel on [0,∞). The semigroup property of the family of kernels (Qt)t≥0 follows
from (2.18) and (2.19). �

Proposition 2.10 For every t ≥ 0 the function λ 7→ vt(λ) is strictly increasing on [0,∞).

Proof. By the continuity of t 7→ vt(λ), for any λ0 > 0 there is t0 > 0 so that vt(λ0) > 0
for 0 ≤ t ≤ t0. Then (2.19) implies Qt(x, {0}) < 1 for x > 0 and 0 ≤ t ≤ t0, and so
λ 7→ vt(λ) is strictly increasing for 0 ≤ t ≤ t0. By the semigroup property (2.18) we
infer λ 7→ vt(λ) is strictly increasing for all t ≥ 0. �

Theorem 2.11 The transition semigroup (Qt)t≥0 defined by (2.19) is a Feller semigroup.

Proof. For λ > 0 and x ≥ 0 set eλ(x) = e−λx. We denote by D0 the linear span of
{eλ : λ > 0}. By Proposition 2.10, the operator Qt preserves D0 for every t ≥ 0.
By the continuity of t 7→ vt(λ) it is easy to show that t 7→ Qteλ(x) is continuous for
λ > 0 and x ≥ 0. Then t 7→ Qtf(x) is continuous for every f ∈ D0 and x ≥ 0. Let
C0[0,∞) be the space of continuous functions on [0,∞) vanishing at infinity. By the
Stone–Weierstrass theorem, the set D0 is uniformly dense in C0[0,∞); see, e.g., Hewitt
and Stromberg (1965, pp.98-99). Then each operator Qt preserves C0[0,∞) and t 7→
Qtf(x) is continuous for x ≥ 0 and f ∈ C0[0,∞). That gives the Feller property of the
semigroup (Qt)t≥0. �

A Markov process in [0,∞) is called a continuous-state branching process (CB-
process) with branching mechanism φ if it has transition semigroup (Qt)t≥0 defined by
(2.19). It is simple to see that (Qt)t≥0 satisfies the branching property:

Qt(x1 + x2, ·) = Qt(x1, ·) ∗Qt(x2, ·), t, x1, x2 ≥ 0. (2.20)
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The family of functions (vt)t≥0 is called the cumulant semigroup of the CB-process. Since
(Qt)t≥0 is a Feller semigroup, the process has a Hunt realization; see, e.g., Chung (1982,
p.75). Clearly, zero is a trap for the CB-process.

Proposition 2.12 Suppose that {(x1(t),F 1
t ) : t ≥ 0} and {(x2(t),F 2

t ) : t ≥ 0} are two
independent CB-processes with branching mechanism φ. Let x(t) = x1(t) + x2(t) and
Ft = σ(F 1

t ∪F 2
t ). Then {(x(t),Ft) : t ≥ 0} is also a CB-processes with branching

mechanism φ.

Proof. Let t ≥ r ≥ 0 and for i = 1, 2 let Fi be a bounded F i
r-measurable random

variable. For any λ ≥ 0 we have

P
[
F1F2 e−λx(t)

]
= P

[
F1 e−λx1(t)

]
P
[
F2 e−λx2(t)

]
= P

[
F1 e−x1(r)vt−r(λ)

]
P
[
F2 e−x2(r)vt−r(λ)

]
= P

[
F1F2 e−x(r)vt−r(λ)

]
.

A monotone class argument shows that

P
[
F e−λx(t)

]
= P

[
F e−x(r)vt−r(λ)

]
for any bounded Fr-measurable random variable F . Then {(x(t),Ft) : t ≥ 0} is a
Markov processes with transition semigroup (Qt)t≥0. �

Let D[0,∞) denote the space of positive càdlàg paths on [0,∞) furnished with the
Skorokhod topology. The following theorem is a slight modification of Theorem 2.1 of
Li (2006), which gives a physical interpretation of the CB-process as an approximation
of the GW-process with small individuals.

Theorem 2.13 Suppose that Condition 2.3 holds. Let {x(t) : t ≥ 0} be a càdlàg CB-
process with transition semigroup (Qt)t≥0 defined by (2.19). For k ≥ 1 let {zk(n) : n ≥
0} be a Markov chain with state space Ek := {0, k−1, 2k−1, . . .} and n-step transition
probability Qn

k(x, dy) determined by (2.6). If zk(0) converges to x(0) in distribution, then
{zk(bγktc) : t ≥ 0} converges as k →∞ to {x(t) : t ≥ 0} in distribution on D[0,∞).

Proof. For λ > 0 and x ≥ 0 set eλ(x) = e−λx. Let C0[0,∞) be the space of continuous
functions on [0,∞) vanishing at infinity. By (2.7), (2.19) and Theorem 2.7 it is easy to
show

lim
k→∞

sup
x∈Ek

∣∣Qbγktck eλ(x)−Qteλ(x)
∣∣ = 0, λ > 0.

Then the Stone–Weierstrass theorem implies

lim
k→∞

sup
x∈Ek

∣∣Qbγktck f(x)−Qtf(x)
∣∣ = 0, f ∈ C0[0,∞).

By Ethier and Kurtz (1986, p.226 and pp.233–234) we conclude that {zk(bγktc) : t ≥ 0}
converges to the CB-process {x(t) : t ≥ 0} in distribution on D[0,∞). �
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For any w ∈ D[0,∞) let τ0(w) = inf{s > 0 : w(s) or w(s−) = 0}. Let D0[0,∞)
be the set of paths w ∈ D[0,∞) such that w(t) = 0 for t ≥ τ0(w). Then D0[0,∞) is
a Borel subset of D[0,∞). It is not hard to show that the distributions of the processes
{zk(bγktc) : t ≥ 0} and {x(t) : t ≥ 0} are all supported by D0[0,∞). By Theorem 1.7
of Li (2011, p.4) we have the following:

Corollary 2.14 Under the conditions of Theorem 2.13, the sequence {zk(bγktc) : t ≥ 0}
converges as k →∞ to {x(t) : t ≥ 0} in distribution on D0[0,∞).

The convergence of rescaled GW-processes to diffusion processes was first studied by
Feller (1951). Lamperti (1967a) showed that all CB-processes are weak limits of rescaled
GW-processes. A characterization of CB-processes by random time changes of Lévy
processes was given by Lamperti (1967b); see also Kyprianou (2014). We have followed
Aliev and Shchurenkov (1982) and Li (2006, 2011) in some of the above calculations.

Example 2.2 For any 0 ≤ α ≤ 1 the function φ(λ) = λ1+α can be represented in the
form of (2.13). In particular, for 0 < α < 1 we can use integration by parts to see∫

(0,∞)

(e−λu−1 + λu)
du

u2+α

= λ1+α

∫
(0,∞)

(e−v−1 + v)
dv

v2+α

= λ1+α

[
− e−v−1 + v

(1 + α)v1+α

∣∣∣∣∞
0

+

∫
(0,∞)

(1− e−v)dv

(1 + α)v1+α

]
=

λ1+α

1 + α

[
− (1− e−v)

1

αvα

∣∣∣∣∞
0

+

∫
(0,∞)

e−v
dv

αvα

]
=

Γ(1− α)

α(1 + α)
λ1+α.

Thus we have

λ1+α =
α(1 + α)

Γ(1− α)

∫
(0,∞)

(e−λu−1 + λu)
du

u2+α
, λ ≥ 0. (2.21)

Example 2.3 Suppose that there are constants c > 0, 0 < α ≤ 1 and b so that φ(z) =
cz1+α+ bz. Let q0

α(t) = αt and qbα(t) = b−1(1− e−αbt) for b 6= 0. By solving the equation

∂

∂t
vt(λ) = −cvt(λ)1+α − bvt(λ), v0(λ) = λ

we get

vt(λ) =
e−bt λ[

1 + cqbα(t)λα
]1/α , t ≥ 0, λ ≥ 0. (2.22)
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3 Some basic properties

In this section we prove some basic properties of CB-processes. Most of the results p-
resented here can be found in Grey (1974) and Li (2000). We here use the treatments in
Li (2011). Suppose that φ is a branching mechanism defined by (2.13). This is a convex
function on [0,∞). In fact, it is easy to see that

φ′(z) = b+ 2cz +

∫
(0,∞)

u
(
1− e−zu

)
m(du), z ≥ 0, (3.1)

which is an increasing function. In particular, we have φ′(0) = b. The limit φ(∞) :=
limz→∞ φ(z) exists in [−∞,∞] and φ′(∞) := limz→∞ φ

′(z) exists in (−∞,∞]. In par-
ticular, we have

φ′(∞) := b+ 2c · ∞+

∫
(0,∞)

um(du) (3.2)

with 0 · ∞ = 0 by convention. Observe also that −∞ ≤ φ(∞) ≤ 0 if and only if
φ′(∞) ≤ 0, and φ(∞) =∞ if and only if φ′(∞) > 0.

The transition semigroup (Qt)t≥0 of the CB-process is defined by (2.15) and (2.19).
From the branching property (2.20), we see that the probability measure Qt(x, ·) is in-
finitely divisible. Then (vt)t≥0 has the canonical representation:

vt(λ) = htλ+

∫
(0,∞)

(1− e−λu)lt(du), t ≥ 0, λ ≥ 0, (3.3)

where ht ≥ 0 and lt(du) is a σ-finite measure on (0,∞) satisfying∫
(0,∞)

(1 ∧ u)lt(du) <∞.

The pair (ht, lt) is uniquely determined by (3.3); see, e.g., Proposition 1.30 in Li (2011,
p.16). By differentiating both sides of the equation and using (2.15) it is easy to find

ht +

∫
(0,∞)

ult(du) =
∂

∂λ
vt(0+) = e−bt, t ≥ 0. (3.4)

Then we infer that lt(du) satisfies∫
(0,∞)

ult(du) <∞.

From (2.19) and (3.4) we get∫
[0,∞)

yQt(x, dy) = x e−bt, t ≥ 0, x ≥ 0. (3.5)

We say the branching mechanism φ is critical, subcritical or supercritical according as
b = 0, b ≥ 0 or b ≤ 0, respectively.
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From (2.15) we see that t 7→ vt(λ) is first continuous and then continuously differen-
tiable. Moreover, it is easy to show that

∂

∂t
vt(λ)

∣∣∣
t=0

= −φ(λ), λ ≥ 0.

By the semigroup property vt+s = vs ◦ vt = vt ◦ vs we get the backward differential
equation

∂

∂t
vt(λ) = −φ(vt(λ)), v0(λ) = λ, (3.6)

and forward differential equation

∂

∂t
vt(λ) = −φ(λ)

∂

∂λ
vt(λ), v0(λ) = λ. (3.7)

The corresponding equations for a branching process with continuous time and discrete
state were given in Athreya and Ney (1972, p.106).

Proposition 3.1 Suppose that λ > 0 and φ(λ) 6= 0. Then the equation φ(z) = 0 has no
root between λ and vt(λ) for every t ≥ 0. Moreover, we have∫ λ

vt(λ)

φ(z)−1dz = t, t ≥ 0. (3.8)

Proof. By (2.13) we see φ(0) = 0 and z 7→ φ(z) is a convex function. Since φ(λ) 6= 0
for some λ > 0 according to the assumption, the equation φ(z) = 0 has at most one root
in (0,∞). Suppose that λ0 ≥ 0 is a root of φ(z) = 0. Then (3.7) implies vt(λ0) = λ0 for
all t ≥ 0. By Proposition 2.10 we have vt(λ) > λ0 for λ > λ0 and 0 < vt(λ) < λ0 for
0 < λ < λ0. Then λ > 0 and φ(λ) 6= 0 imply there is no root of φ(z) = 0 between λ and
vt(λ). From (3.6) we get (3.8). �

Corollary 3.2 Suppose that φ(z0) 6= 0 for some z0 > 0. Let θ0 = inf{z > 0 : φ(z) ≥ 0}
with the convention inf ∅ =∞. Then limt→∞ vt(λ) = θ0 increasingly for 0 < λ < θ0 and
decreasingly λ > θ0.

Proof. In the case θ0 = ∞, we have φ(z) < 0 for all z > 0. From (3.6) we see
λ 7→ vt(λ) is increasing. Then (3.6) implies limt→∞ vt(λ) = ∞ for every λ > 0. In the
case θ0 < ∞, we have clearly φ(θ0) = 0. Furthermore, φ(z) < 0 for 0 < z < θ0 and
φ(z) > 0 for z > θ0. From (3.7) we see vt(θ0) = θ0 for all t ≥ 0. Then (3.8) implies that
limt→∞ vt(λ) = θ0 increasingly for 0 < λ < θ0 and decreasingly λ > θ0. �

Corollary 3.3 Suppose that φ(z0) 6= 0 for some z0 > 0. Then for any x > 0 we have

lim
t→∞

Qt(x, ·) = e−xθ0 δ0 + (1− e−xθ0)δ∞

by weak convergence of probability measures on [0,∞].
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Proof. The space of probability measures on [0,∞] endowed the topology of weak con-
vergence is compact and metrizable; see, e.g., Parthasarathy (1967, p.45). Let {tn} be any
positive sequence so that tn →∞ and Qtn(x, ·)→ some Q∞(x, ·) weakly as n→∞. By
(2.19) and Corollary 3.2, for every λ > 0 we have∫

[0,∞]

e−λyQ∞(x, dy) = lim
n→∞

∫
[0,∞]

e−λyQtn(x, dy)

= lim
n→∞

e−xvtn (λ) = e−xθ0 .

It follows that

Q∞(x, {0}) = lim
λ→∞

∫
[0,∞]

e−λyQ∞(x, dy) = e−xθ0

and

Q∞(x, {∞}) = lim
λ→0

∫
[0,∞]

(1− e−λy)Q∞(x, dy) = 1− e−xθ0 .

That shows Q∞(x, ·) = e−xθ0 δ0 + (1− e−xθ0)δ∞, which is independent of the particular
choice of the sequence {tn}. Then we have Qt(x, ·)→ Q∞(x, ·) weakly as t→∞. �

A simple asymptotic behavior of the CB-process is described in Corollary 3.3. Clearly,
we have: (i) θ0 > 0 if and only if b < 0; (ii) θ0 = ∞ if and only if φ′(∞) ≤ 0. The
reader can refer to Grey (1974) and Li (2011, Section 3.2) for more asymptotic results on
the CB-process.

Since (Qt)t≥0 is a Feller transition semigroup, the CB-process has a Hunt process
realization X = (Ω,F ,Ft, x(t),Qx); see, e.g., Chung (1982, p.75). Let τ0 := inf{s ≥
0 : x(s) = 0} denote the extinction time of the CB-process.

Theorem 3.4 For every t ≥ 0 the limit v̄t =↑limλ→∞ vt(λ) exists in (0,∞]. Moreover,
the mapping t 7→ v̄t is decreasing and for any t ≥ 0 and x > 0 we have

Qx{τ0 ≤ t} = Qx{x(t) = 0} = exp{−xv̄t}. (3.9)

Proof. By Proposition 2.10 the limit v̄t =↑limλ→∞ vt(λ) exists in (0,∞] for every t ≥ 0.
For t ≥ r ≥ 0 we have

v̄t =↑ lim
λ→∞

vr(vt−r(λ)) = vr(v̄t−r) ≤ v̄r. (3.10)

Since zero is a trap for the CB-process, we get (3.9) by letting λ→∞ in (2.19). �

For the convenience of statement of the results in the sequel, we formulate the follow-
ing condition on the branching mechanism, which is known as Grey’s condition:

Condition 3.5 There is some constant θ > 0 so that

φ(z) > 0 for z ≥ θ and
∫ ∞
θ

φ(z)−1dz <∞.
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Theorem 3.6 We have v̄t <∞ for some and hence all t > 0 if and only if Condition 3.5
holds.

Proof. By (3.10) it is simple to see that v̄t =↑limλ→∞ vt(λ) <∞ for all t > 0 if and only
if this holds for some t > 0. If Condition 3.5 holds, we can let λ→∞ in (3.8) to obtain∫ ∞

v̄t

φ(z)−1dz = t (3.11)

and hence v̄t < ∞ for t > 0. For the converse, suppose that v̄t < ∞ for some t > 0. By
(3.6) there exists some θ > 0 so that φ(θ) > 0, for otherwise we would have v̄t ≥ vt(λ) ≥
λ for all λ ≥ 0, yielding a contradiction. Then φ(z) > 0 for all z ≥ θ by the convexity of
the branching mechanism. As in the above we see that (3.11) still holds, so Condition 3.5
is satisfied. �

Theorem 3.7 Let v̄ =↓limt→∞ v̄t ∈ [0,∞]. Then for any x > 0 we have

Qx{τ0 <∞} = exp{−xv̄}. (3.12)

Moreover, we have v̄ < ∞ if and only if Condition 3.5 holds, and in this case v̄ is the
largest root of φ(z) = 0.

Proof. The first assertion follows immediately from Theorem 3.4. By Theorem 3.6 we
have v̄t < ∞ for some and hence all t > 0 if and only if Condition 3.5 holds. This is
clearly equivalent to v̄ <∞. From (3.11) we see v̄ is the largest root of φ(z) = 0. �

Corollary 3.8 Suppose that Condition 3.5 holds. Then for any x > 0 we have Qx{τ0 <
∞} = 1 if and only if b ≥ 0.

By Corollary 3.2 and Theorem 3.7 we see 0 ≤ θ0 ≤ v̄ ≤ ∞. In fact, we have
0 ≤ θ0 = v̄ <∞ if Condition 3.5 holds and 0 ≤ θ0 < v̄ =∞ if there is θ > 0 so that

φ(z) > 0 for z ≥ θ and
∫ ∞
θ

φ(z)−1dz =∞.

Proposition 3.9 For any t ≥ 0 and λ ≥ 0 let v′t(λ) = (∂/∂λ)vt(λ). Then we have

v′t(λ) = exp

{
−
∫ t

0

φ′(vs(λ))ds

}
, (3.13)

where φ′ is given by (3.1).

Proof. Based on (2.15) and (3.6) it is elementary to see that

∂

∂t
v′t(λ) =

∂

∂λ

∂

∂t
vt(λ) = −φ′(vt(λ))v′t(λ).

It follows that
∂

∂t

[
log v′t(λ)

]
= v′t(λ)−1 ∂

∂t
v′t(λ) = −φ′(vt(λ)).

Since v′0(λ) = 1, we get (3.13). �
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Theorem 3.10 Let φ′0(z) = φ′(z)− b for z ≥ 0, where φ′ is given by (3.1). We can define
a Feller transition semigroup (Qb

t)t≥0 on [0,∞) by∫
[0,∞)

e−λyQb
t(x, dy) = exp

{
− xvt(λ)−

∫ t

0

φ′0(vs(λ))ds

}
. (3.14)

Moreover, we have Qb
t(x, dy) = ebt x−1yQt(x, dy) for x > 0 and

Qb
t(0, dy) = ebt[htδ0(dy) + ylt(dy)], t, y ≥ 0. (3.15)

Proof. In view of (3.5), it is simple to check that Qb
t(x, dy) := ebt x−1yQt(x, dy) defines

a Markov transition semigroup (Qb
t)t≥0 on (0,∞). Let qt(λ) = ebt vt(λ) and let q′t(λ) =

(∂/∂λ)qt(λ). By differentiating both sides of (2.19) we see∫
(0,∞)

e−λyQb
t(x, dy) = exp{−xvt(λ)}q′t(λ), x > 0, λ ≥ 0.

From (3.3) and (3.13) we have

q′t(λ) = ebt
[
ht +

∫
(0,∞)

e−λu ult(du)

]
= exp

{
−
∫ t

0

φ′0(vs(λ))ds

}
.

Then we can define Qb
t(0, dy) by (3.15) and extend (Qb

t)t≥0 to a Markov transition semi-
group on [0,∞). The Feller property of the semigroup is immediate by (3.14). �

Corollary 3.11 Let (Qb
t)t≥0 be the transition semigroup define by (3.14). Then we have

Qb
t(0, {0}) = ebt ht and Qb

t(x, {0}) = 0 for t ≥ 0 and x > 0.

Theorem 3.12 Suppose that T > 0 and x > 0. Then Pb,T
x (dω) = x−1 ebT x(ω, T )

Qx(dω) defines a probability measure on (Ω,FT ). Moreover, the process {(x(t),Ft) :
0 ≤ t ≤ T} under this measure is a Markov process with transition semigroup (Qb

t)t≥0

given by (3.14).

Proof. Clearly, the probability measure Pb,T
x is carried by {x(T ) > 0} ∈ FT . Then we

have Pb,T
x {x(t) > 0} = 1 for every 0 ≤ t ≤ T . Let 0 ≤ r ≤ t ≤ T . Let F be a bounded

Fr-measurable random variable and f a bounded Borel function on [0,∞). By (3.5) and
the Markov property under Qx,

Pb,T
x [Ff(x(t))] = x−1 ebT Qx

[
Ff(x(t))x(T )

]
= x−1 ebtQx

[
Ff(x(t))x(t)

]
= x−1 ebrQx

[
Fx(r)Qb

t−rf(x(r))
]

= Pb,T
x

[
FQb

t−rf(x(r))
]
,

where we have used the relation Qb
t−r(x, dy) = ebt x−1yQt−r(x, dy) for the third equality.

Then {(x(t),Ft) : 0 ≤ t ≤ T} under Pb,T
x is a Markov process with transition semigroup

(Qb
t)t≥0. �

19



Recall that zero is a trap for the CB-process. Let (Q◦t )t≥0 denote the restriction of its
transition semigroup (Qt)t≥0 to (0,∞). For a σ-finite measure µ on (0,∞) write

µQ◦t (dy) =

∫
(0,∞)

µ(dx)Q◦t (x, dy), t ≥ 0, y > 0.

A family of σ-finite measures (κt)t>0 on (0,∞) is called an entrance rule for (Q◦t )t≥0 if
κrQ

◦
t−r ≤ κt for all t > r > 0 and κrQ◦t−r → κt as r → t. We call (κt)t>0 an entrance

law if κrQ◦t−r = κt for all t > r > 0.

The special case of the canonical representation (3.3) with ht = 0 for all t > 0 is
particularly interesting. In this case, we have

vt(λ) =

∫
(0,∞)

(1− e−λu)lt(du), t > 0, λ ≥ 0. (3.16)

From this and (2.19) we have, for t > 0 and λ ≥ 0,∫
(0,∞)

(1− e−yλ)lt(dy) = lim
x→0

x−1

∫
(0,∞)

(1− e−yλ)Q◦t (x, dy).

Then, formally,

lt = lim
x→0

x−1Qt(x, ·). (3.17)

Theorem 3.13 The cumulant semigroup (vt)t≥0 admits representation (3.16) if and only
if φ′(∞) =∞. In this case, the family (lt)t>0 is an entrance law for (Q◦t )t≥0.

Proof. By differentiating both sides of the general representation (3.3) we get

v′t(λ) = ht +

∫
(0,∞)

u e−λu lt(du), t ≥ 0, λ ≥ 0. (3.18)

From this and (3.13) it follows that

ht = v′t(∞) = exp

{
−
∫ t

0

φ′(v̄s)ds

}
.

Then we have φ′(∞) = ∞ if ht = 0 for any t > 0. For the converse, assume that
φ′(∞) = ∞. If Condition 3.5 holds, we have v̄t < ∞ for t > 0 by Theorem 3.6, so
ht = 0 by (3.3). If Condition 3.5 does not hold, we have v̄t = ∞ by Theorem 3.6. Since
φ′(∞) =∞, by (3.18) and (3.13) we see ht = v′t(∞) = 0 for t > 0. If (vt)t≥0 admits the
representation (3.16), we can use (2.18) to see, for t > r > 0 and λ ≥ 0,∫

(0,∞)

(1− e−λu)lt(du) =

∫
(0,∞)

(1− e−uvt−r(λ))lr(du)

=

∫
(0,∞)

lr(dx)

∫
(0,∞)

(1− e−λu)Q◦t−r(x, du).

Then (lt)t>0 is an entrance law for (Q◦t )t≥0. �
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Corollary 3.14 If Condition 3.5 holds, the cumulant semigroup admits the representation
(3.16) and t 7→ v̄t = lt(0,∞) is the unique solution to the differential equation

d

dt
v̄t = −φ(v̄t), t > 0 (3.19)

with singular initial condition v̄0+ =∞.

Proof. Under Condition 3.5, for every t > 0 we have v̄t <∞ by Theorem 3.6. Moreover,
the condition and the convexity of z 7→ φ(z) imply φ′(∞) = ∞. Then we have the
representation (3.16) by Theorem 3.13. The semigroup property of (vt)t≥0 implies v̄s+t =
vs(v̄t) for s > 0 and t > 0. Then t 7→ v̄t satisfies (3.19). From (3.11) it is easy to see
v̄0+ = ∞. Suppose that t 7→ ut and t 7→ vt are two solutions to (3.19) with u0+ =
v0+ = ∞. For any ε > 0 there exits δ > 0 so that us ≥ vε for every 0 < s ≤ δ. Since
both t 7→ us+t and t 7→ vε+t are solutions to (3.19), we have us+t ≥ vε+t for t ≥ 0 and
0 < s ≤ δ by Proposition 2.10. Then we can let s → 0 and ε → 0 to see ut ≥ vt for
t > 0. By symmetry we get the uniqueness of the solution. �

Theorem 3.15 If δ := φ′(∞) <∞, then we have, for t ≥ 0 and λ ≥ 0,

vt(λ) = e−δt λ+

∫ t

0

e−δs ds

∫
(0,∞)

(1− e−uvt−s(λ))m(du), (3.20)

that is, we have (3.3) with

ht = e−δt, lt =

∫ t

0

e−δsmQ◦t−sds, t ≥ 0. (3.21)

In this case, the family (lt)t>0 is an entrance rule for (Q◦t )t≥0.

Proof. If δ := φ′(∞) < ∞, by (3.2) we must have c = 0. In this case, we can write the
branching mechanism into

φ(λ) = δλ+

∫
(0,∞)

(e−λz −1)m(dz), λ ≥ 0. (3.22)

By (2.15) and integration by parts,

vt(λ) eδt = λ+

∫ t

0

δvs(λ) eδs ds−
∫ t

0

φ(vs(λ)) eδs ds

= λ+

∫ t

0

eδs ds

∫
(0,∞)

(1− e−uvs(λ))m(du).

That gives (3.20) and (3.21). It is easy to see that (lt)t>0 is an entrance rule for (Q◦t )t≥0.
�

Example 3.1 Suppose that there are constants c > 0, 0 < α ≤ 1 and b so that φ(z) =
cz1+α + bz. Then Condition 3.5 is satisfied. Let q0

α(t) be defined as in Example 2.3. By
letting λ → ∞ in (2.22) we get v̄t = c−1/α e−bt qbα(t)−1/α for t > 0. In particular, if
α = 1, then (3.16) holds with

lt(du) =
e−bt

c2qb1(t)2
exp

{
− u

cqb1(t)

}
du, t > 0, u > 0.
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4 Positive integral functionals

In this section, we give characterizations of a class of positive integral functionals of the
CB-process in terms of Laplace transforms. The corresponding results in the measure-
valued setting can be found in Li (2011). For our purpose, it is more convenient to start
the process from an arbitrary initial time r ≥ 0. Let X = (Ω,F ,Fr,t, x(t),Qr,x) a
càdlàg realization of the CB-process with transition semigroup (Qt)t≥0 defined by (2.15)
and (2.19). For any t ≥ r ≥ 0 and λ ≥ 0 we have

Qr,x exp{−λx(t)} = exp{−xur(λ)}, (4.1)

where r 7→ ur(λ) := vt−r(λ) is the unique bounded positive solution to

ur(λ) +

∫ t

r

φ(us(λ))ds = λ, 0 ≤ r ≤ t. (4.2)

Proposition 4.1 For {t1 < · · · < tn} ⊂ [0,∞) and {λ1, . . . , λn} ⊂ [0,∞) we have

Qr,x exp

{
−

n∑
j=1

λjx(tj)1{r≤tj}

}
= exp{−xu(r)}, 0 ≤ r ≤ tn, (4.3)

where r 7→ u(r) is a bounded positive function on [0, tn] solving

u(r) +

∫ tn

r

φ(u(s))ds =
n∑
j=1

λj1{r≤tj}. (4.4)

Proof. We shall give the proof by induction in n ≥ 1. For n = 1 the result follows
from (4.1) and (4.2). Now supposing (4.3) and (4.4) are satisfied when n is replaced by
n − 1, we prove they are also true for n. It is clearly sufficient to consider the case with
0 ≤ r ≤ t1 < · · · < tn. By the Markov property,

Qr,x exp

{
−

n∑
j=1

λjx(tj)

}
= Qr,x

[
Qr,x

(
exp

{
−

n∑
j=1

λjx(tj)

}∣∣∣Fr,t1

)]
= Qr,x

[
e−x(t1)λ1 Qr,x

(
exp

{
−

n∑
j=2

λjx(tj)

}∣∣∣Fr,t1

)]
= Qr,x

[
e−x(t1)λ1 Qt1,x(t1)

(
exp

{
−

n∑
j=2

λjx(tj)

})]
= Qr,x exp

{
− x(t1)λ1 − x(t1)w(t1)

}
,

where r 7→ w(r) is a bounded positive Borel function on [0, tn] satisfying

w(r) +

∫ tn

r

φ(w(s))ds =
n∑
j=2

λj1{r≤tj}. (4.5)
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Then the result for n = 1 implies that

Qr,x exp

{
−

n∑
j=1

λjx(tj)

}
= exp{−xu(r)}

with r 7→ u(r) being a bounded positive Borel function on [0, t1] satisfying

u(r) +

∫ t1

r

φ(u(s))ds = λ1 + w(t1). (4.6)

Setting u(r) = w(r) for t1 < r ≤ tn, from (4.5) and (4.6) one checks that r 7→ u(r) is a
bounded positive solution to (4.4) on [0, tn]. �

Theorem 4.2 Suppose that t ≥ 0 and µ is a finite measure supported by [0, t]. Let s 7→
λ(s) be a bounded positive Borel function on [0, t]. Then we have

Qr,x exp

{
−
∫

[r,t]

λ(s)x(s)µ(ds)

}
= exp{−xu(r)}, 0 ≤ r ≤ t, (4.7)

where r 7→ u(r) is the unique bounded positive solution on [0, t] to

u(r) +

∫ t

r

φ(u(s))ds =

∫
[r,t]

λ(s)µ(ds). (4.8)

Proof. Step 1. We first consider a bounded positive continuous function s 7→ λ(s) on
[0, t]. To avoid triviality we assume t > 0. For any integer n ≥ 1 define the finite measure
µn on [0, t] by

µn(ds) =
2n∑
k=1

µ[(k − 1)t/2n, kt/2n)δkt/2n(ds) + µ({t})δt(ds).

By Proposition 4.1 we see that

Qr,x exp

{
−
∫

[r,t]

λ(s)x(s)µn(ds)

}
= exp{−xun(r)}, (4.9)

where r 7→ un(r) is a bounded positive solution on [0, t] to

un(r) +

∫ t

r

φ(un(s))ds =

∫
[r,t]

λ(s)µn(ds). (4.10)

Let vn(r) = un(t − r) for 0 ≤ r ≤ t. Observe that φ(z) ≥ bz ≥ −|b|z for every z ≥ 0.
From (4.10) we have

vn(r) =

∫
[t−r,t]

λ(s)µn(ds)−
∫ r

0

φ(vn(s))ds
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≤ sup
0≤s≤t

λ(s)µ[0, t] + |b|
∫ r

0

vn(s)ds.

By Gronwall’s inequality it is easy to show that {vn} and hence {un} is uniformly bound-
ed on [0, t]. Let qn(t) = t. For any 0 ≤ s < t let qn(s) = (b2ns/tc + 1)t/2n, where
b2ns/tc denotes the integer part of 2ns/t. Then s ≤ qn(s) ≤ s + t/2n. It is easy to see
that ∫

[r,t]

f(s)µn(ds) =

∫
[r,t]

f(qn(s))µ(ds)

for any bounded Borel function f on [0, t]. By the right-continuity of s 7→ λ(s) and
s 7→ x(s) we have

lim
n→∞

∫
[r,t]

λ(s)µn(ds) =

∫
[r,t]

λ(s)µ(ds)

and

lim
n→∞

∫
[r,t]

λ(s)x(s)µn(ds) =

∫
[r,t]

λ(s)x(s)µ(ds).

From (4.9) we see the limit u(r) = limn→∞ un(r) exists and (4.7) holds for 0 ≤ r ≤ t.
Then we get (4.8) by letting n→∞ in (4.10).

Step 2. Let B0[0,∞) be the set of bounded Borel functions s 7→ λ(s) for which there
exist bounded positive solutions r 7→ u(r) of (4.8) such that (4.7) holds. Then B0[0,∞)
is closed under bounded pointwise convergence. The result of the first step shows that
B0[0,∞) contains all positive continuous functions on [0, t]. By Proposition 1.3 in Li
(2011, p.3) we infer that B0[0,∞) contains all bounded positive Borel functions on [0, t].

Step 3. To show the uniqueness of the solution to (4.8), suppose that r 7→ v(r) is
another bounded positive Borel function on [0, t] satisfying this equation. Since z 7→ φ(z)
is locally Lipschitz, it is easy to find a constant K ≥ 0 such that

|u(r)− v(r)| ≤
∫ t

r

|φ(u(s))− φ(v(s))|ds

≤ K

∫ t

r

|u(s)− v(s)|ds.

Let U(r) = |u(t− r)− v(t− r)| for 0 ≤ r ≤ t. We have

U(r) ≤ K

∫ r

0

U(s)ds, 0 ≤ r ≤ t.

Then Gronwall’s inequality implies U(r) = 0 for every 0 ≤ r ≤ t. �

Suppose that µ(ds) is a locally bounded Borel measure on [0,∞) and s 7→ λ(s)
is a locally bounded positive Borel function on [0,∞). We define the positive integral
functional:

A[r, t] :=

∫
[r,t]

λ(s)x(s)µ(ds), t ≥ r ≥ 0.
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By replacing λ(s) with θλ(s) in Theorem 4.2 for θ ≥ 0 we get a characterization of the
Laplace transform of the random variable A[r, t].

Theorem 4.3 Let t ≥ 0 be given. Let λ ≥ 0 and let s 7→ θ(s) be a bounded positive
Borel function on [0, t]. Then for 0 ≤ r ≤ t we have

Qr,x exp

{
− λx(t)−

∫ t

r

θ(s)x(s)ds

}
= exp{−xu(r)}, (4.11)

where r 7→ u(r) is the unique bounded positive solution on [0, t] to

u(r) +

∫ t

r

φ(u(s))ds = λ+

∫ t

r

θ(s)ds. (4.12)

Proof. This follows by an application of Theorem 4.2 to the measure µ(ds) = ds+δt(ds)
and the function λ(s) = 1{s<t}θ(s) + 1{s=t}λ. �

Corollary 4.4 Let X = (Ω,F ,Ft, x(t),Qx) be a Hunt realization of the CB-process
started from time zero. Then we have, for t, λ, θ ≥ 0,

Qx exp

{
− λx(t)− θ

∫ t

0

x(s)ds

}
= exp{−xv(t)}, (4.13)

where t 7→ v(t) = v(t, λ, θ) is the unique positive solution to

∂

∂t
v(t) = θ − φ(v(t)), v(0) = λ. (4.14)

Proof. By Theorem 4.3 we have (4.13) with v(t) = ut(0), where r 7→ ut(r) is the unique
bounded positive solution on [0, t] to

u(r) +

∫ t

r

φ(u(s))ds = λ+ (t− r)θ.

Then r 7→ v(r) := ut(t− r) is the unique bounded positive solution on [0, t] of

v(r) +

∫ r

0

φ(v(s))ds = λ+ rθ. (4.15)

Clearly, we can extend (4.15) to all r ≥ 0 and the extended equation is equivalent with
the differential equation (4.14). The uniqueness of the solution follows by Gronwall’s
inequality. �

Corollary 4.5 Let X = (Ω,F ,Ft, x(t),Qx) be a Hunt realization of the CB-process
started from time zero. Then we have, for t, θ ≥ 0,

Qx exp

{
− θ

∫ t

0

x(s)ds

}
= exp{−xv(t)}. (4.16)

where t 7→ v(t) = v(t, θ) is the unique positive solution to

∂

∂t
v(t) = θ − φ(v(t)), v(0) = 0. (4.17)
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Corollary 4.6 Let t ≥ 0 be given. Let φ1 and φ2 be two branching mechanisms in form
(2.13) satisfying φ1(z) ≥ φ2(z) for all z ≥ 0. Let t 7→ vi(t) be the solution to (4.14) or
(4.15) with φ = φi. Then v1(t) ≤ v2(t) for all t ≥ 0.

Proof. Fix t ≥ 0 and let ui(r) = vi(t − r) for 0 ≤ r ≤ t. Then r 7→ u1(r) is the unique
bounded positive solution on [0, t] of

u(r) +

∫ t

r

φ1(u(s))ds = λ+ (t− r)θ

and r 7→ u2(r) is the unique bounded positive solution on [0, t] of

u(r) +

∫ t

r

φ1(u(s))ds = λ+

∫ t

r

[θ + g(s)]ds,

where g(s) = φ1(u2(s)) − φ2(u2(s)) ≥ 0. By Theorem 4.3 one can see u1(r) ≤ u2(r)
for all 0 ≤ r ≤ t. �

Recall that φ′(∞) is given by (3.2). Under the condition φ′(∞) > 0, we have φ(z)→
∞ as z →∞, so the inverse φ−1(θ) := inf{z ≥ 0 : φ(z) > θ} is well-defined for θ ≥ 0.

Proposition 4.7 For θ > 0 let t 7→ v(t, θ) be the unique positive solution to (4.17). Then
limt→∞ v(t, θ) =∞ if φ′(∞) ≤ 0, and limt→∞ v(t, θ) = φ−1(θ) if φ′(∞) > 0.

Proof. By Proposition 2.10 we have Qx{x(t) > 0} > 0 for every x > 0 and t ≥ 0. From
(4.16) we see t 7→ v(t, θ) is strictly increasing, so (∂/∂t)v(t, θ) > 0 for all θ > 0. Let
v(∞, θ) = limt→∞ v(t, θ) ∈ (0,∞]. In the case φ′(∞) ≤ 0, we clearly have φ(z) ≤ 0
for all z ≥ 0. Then (∂/∂t)v(t, θ) ≥ θ > 0 and v(∞, θ) =∞. In the case φ′(∞) > 0, we
note

φ(v(t, θ)) = θ − ∂

∂t
v(t, θ) < θ,

and hence v(t, θ) < φ−1(θ), implying v(∞, θ) ≤ φ−1(θ) <∞. It follows that

0 = lim
t→∞

∂

∂t
v(t, θ) = θ − lim

t→∞
φ(v(t, θ)) = θ − φ(v(∞, θ)).

Then we have v(∞, θ) = φ−1(θ). �

Theorem 4.8 Let X = (Ω,F ,Ft, x(t),Qx) be a Hunt realization of the CB-process
started from time zero. If φ′(∞) > 0, then for x > 0 and θ > 0 we have

Qx exp

{
− θ

∫ ∞
0

x(s)ds

}
= exp{−xφ−1(θ)}

and

Qx

{∫ ∞
0

x(s)ds <∞
}

= exp{−xφ−1(0)},

where φ−1(0) = inf{z > 0 : φ(z) ≥ 0}. If φ′(∞) ≤ 0, then for any x > 0 we have

Qx

{∫ ∞
0

x(s)ds <∞
}

= 0.
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Proof. In view of (4.16), we have

Qx exp

{
− θ

∫ ∞
0

x(s)ds

}
= lim

t→∞
exp{−xv(t, θ)}.

Then the result follows from Proposition 4.7. �
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5 Construction of CBI-processes

Let {p(j) : j ∈ N} and {q(j) : j ∈ N} be probability distributions on N := {0, 1, 2, . . .}
with generating functions g and h, respectively. Suppose that {ξn,i : n, i = 1, 2, . . .}
is a family of N-valued i.i.d. random variables with distribution {p(j) : j ∈ N} and
{ηn : n = 1, 2, . . .} is a family of N-valued i.i.d. random variables with distribution
{q(j) : j ∈ N}. We assume the two families are independent of each other. Given an
N-valued random variable y(0) independent of {ξn,i} and {ηn}, we define inductively

y(n) =

y(n−1)∑
i=1

ξn,i + ηn, n = 1, 2, . . . . (5.1)

This is clearly a generalization of (2.1). For i ∈ N let {Q(i, j) : j ∈ N} denote the i-fold
convolution of {p(j) : j ∈ N}. Let

P (i, j) = (Q(i, ·) ∗ q)(j) = (p∗i ∗ q)(j), i, j ∈ N.

For any n ≥ 1 and {i0, · · · , in−1 = i, j} ⊂ N we have

P
(
y(n) = j

∣∣y(0) = i0, y(1) = i1, · · · , y(n− 1) = in−1

)
= P

( y(n−1)∑
k=1

ξn,k + ηn = j
∣∣∣y(n− 1) = in−1

)
= P

( i∑
k=1

ξn,k + ηn = j

)
= P (i, j).

Then {y(n) : n ≥ 0} is a Markov chain with one-step transition matrix P = (P (i, j) :
i, j ∈ N). The random variable y(n) can be thought of as the number of individuals
in generation n of a population system with immigration. After one unit time, each of
the y(n) individuals splits independently of others into a random number of offspring
according to the distribution {p(j) : j ∈ N} and a random number of immigrants are
added to the system according to the distribution {q(j) : j ∈ N}. It is easy to see that

∞∑
j=0

P (i, j)zj = g(z)ih(z), |z| ≤ 1. (5.2)

A Markov chain in N with one-step transition matrix defined by (5.2) is called a
Galton–Watson branching process with immigration (GWI-process) or a Bienaymé–Galton–
Watson branching process with immigration (BGWI-process) with branching distribution
given by g and immigration distribution given by h. When h ≡ 1, this reduces to the GW-
process defined before. For any n ≥ 1 the n-step transition matrix of the GWI-process is
just the n-fold product P n = (P n(i, j) : i, j ∈ N).

Proposition 5.1 For any n ≥ 1 and i ∈ N we have
∞∑
j=0

P n(i, j)zj = g◦n(z)i
n∏
j=1

h(g◦(j−1)(z)), |z| ≤ 1. (5.3)

28



Proof. From (5.2) we see (5.3) holds for n = 1. Now suppose that (5.3) holds for some
n ≥ 1. We have

∞∑
j=0

P n+1(i, j)zj =
∞∑
j=0

∞∑
k=0

P (i, k)P n(k, j)zj

=
∞∑
k=0

P (i, k)g◦n(z)k
n∏
j=1

h(g◦j−1(z))

= g(g◦n(z))ih(g◦n(z))
n∏
j=1

h(g◦j−1(z))

= g◦(n+1)(z)i
n+1∏
j=1

h(g◦j−1(z)).

Then (5.3) also holds when n is replaced by n+ 1. That gives the result by induction. �

Suppose that for each integer k ≥ 1 we have a GWI-process {yk(n) : n ≥ 0} with
branching distribution given by the probability generating function gk and immigration
distribution given by the probability generating function hk. Let zk(n) = yk(n)/k. Then
{zk(n) : n ≥ 0} is a Markov chain with state space Ek := {0, 1/k, 2/k, . . .} and n-step
transition probability P n

k (x, dy) determined by∫
Ek

e−λy P n
k (x, dy) = g◦nk (e−λ/k)kx

n∏
j=1

hk(g
◦(j−1)
k (e−λ/k)). (5.4)

Suppose that {γk} is a positive real sequence so that γk →∞ increasingly as k →∞. Let
bγktc denote the integer part of γkt. In view of (5.4), given zk(0) = x ∈ Ek, the random
variable zk(bγktc) = k−1yk(bγktc) has distribution P bγktck (x, ·) on Ek determined by∫

Ek

e−λy P
bγktc
k (x, dy)

= g
◦bγktc
k (e−λ/k)kx

bγktc∏
j=1

hk(g
j−1
k (e−λ/k))

= exp
{
xk log g

◦bγktc
k (e−λ/k)

}
exp

{ bγktc∑
j=1

log hk(g
j−1
k (e−λ/k))

}
= exp

{
− xvk(t, λ)−

∫ γ−1
k bγktc

0

ψ̄k(vk(s, λ))ds

}
, (5.5)

where vk(t, λ) is given by (2.8) and

ψ̄k(z) = −γk log hk(e
−z/k). (5.6)

For any z ≥ 0 we have

ψ̄k(z) = −γk log
[
1− γ−1

k ψ̃k(z)
]
, (5.7)

where

ψ̃k(z) = γk[1− hk(e−z/k)]. (5.8)
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Lemma 5.2 Suppose that the sequence {ψ̃k} is uniformly bounded on each bounded in-
terval. Then we have limk→∞ |ψ̄k(z)− ψ̃k(z)| = 0 uniformly on each bounded interval.

Proof. This is immediate by the relation (5.7). �

Condition 5.3 There is a function ψ on [0,∞) such that ψ̃k(z) → ψ(z) uniformly on
[0, a] for every a ≥ 0 as k →∞.

Proposition 5.4 Suppose that Condition 5.3 is satisfied. Then the limit function ψ has
representation

ψ(z) = βz +

∫
(0,∞)

(
1− e−zu

)
ν(du), z ≥ 0, (5.9)

where β ≥ 0 is a constant and ν(du) is a σ-finite measure on (0,∞) satisfying∫
(0,∞)

(1 ∧ u)ν(du) <∞.

Proof. It is well-known that ψ has representation (5.9) if and only if e−ψ = Lµ is the
Laplace transform of an infinitely divisible probability distribution µ on [0,∞); see, e.g.,
Theorem 1.39 in Li (2011, p.20). In view of (5.8), the function ψ̃k can be represented
by a special form (5.9), so e−ψ̃k = Lµk is the Laplace transform of an infinitely divisible
distribution µk on [0,∞). By Lemma 5.2 and Condition 5.3 we have ψ̃k(z) → ψ(z)
uniformly on [0, a] for every a ≥ 0 as k → ∞. By Theorem 1.2 there is a probability
distribution µ on [0,∞) so that µ = limk→∞ µk weakly and e−ψ = Lµ. Clearly µ is also
infinitely divisible, so ψ has representation (5.9). �

Proposition 5.5 For any function ψ with representation (5.9) there is a sequence {ψ̃k} in
the form of (5.6) satisfying Condition 5.3.

Proof. This is similar to the proof of Proposition 2.5 and is left to the reader as an exercise.
�

Theorem 5.6 Suppose that φ and ψ are given by (2.13) and (5.9), respectively. For any
λ ≥ 0 let t 7→ vt(λ) be the unique positive solution to (2.15). Then there is a Feller
transition semigroup (Pt)t≥0 on [0,∞) defined by∫

[0,∞)

e−λy Pt(x, dy) = exp

{
− xvt(λ)−

∫ t

0

ψ(vs(λ))ds

}
. (5.10)

Proof. This follows by arguments similar to those in Section 2. �
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If a Markov process in [0,∞) has transition semigroup (Pt)t≥0 defined by (5.10), we
call it a continuous-state branching process with immigration (CBI-process) with branch-
ing mechanism φ and immigration mechanism ψ. In particular, if∫

(0,∞)

uν(du) <∞, (5.11)

one can differentiate both sides of (5.10) and use (3.4) to see∫
[0,∞)

yPt(x, dy) = x e−bt +ψ′(0)

∫ t

0

e−bs ds, (5.12)

where

ψ′(0) = β +

∫
(0,∞)

uν(du). (5.13)

Proposition 5.7 Suppose that {(y1(t),G 1
t ) : t ≥ 0} and {(y2(t),G 2

t ) : t ≥ 0} are two
independent CBI-processes with branching mechanism φ and immigration mechanisms
ψ1 and ψ2, respectively. Let y(t) = y1(t)+y2(t) and Gt = σ(G 1

t ∪G 2
t ). Then {(y(t),Gt) :

t ≥ 0} is a CBI-processes with branching mechanism φ and immigration mechanism
ψ = ψ1 + ψ2.

Proof. Let t ≥ r ≥ 0 and for i = 1, 2 let Fi be a bounded positive G i
r -measurable random

variable. For any λ ≥ 0 we have

P
[
F1F2 e−λy(t)

]
= P

[
F1 e−λy1(t)

]
P
[
F2 e−λy2(t)

]
= P

[
F1 exp

{
− y1(r)vt−r(λ)−

∫ t−r

0

ψ1(vs(λ))ds

}]
·P
[
F2 exp

{
− y2(r)vt−r(λ)−

∫ t−r

0

ψ2(vs(λ))ds

}]
= P

[
F1F2 exp

{
− y(r)vt−r(λ)−

∫ t−r

0

ψ(vs(λ))ds

}]
.

As in the proof of Proposition 2.12, one can see {(y(t),Gt) : t ≥ 0} is a CBI-processes
with branching mechanism φ and immigration mechanism ψ. �

The next theorem follows by a modification of the proof of Theorem 2.13.

Theorem 5.8 Suppose that Conditions 2.3 and 5.3 are satisfied. Let {y(t) : t ≥ 0}
be a CBI-process with transition semigroup (Pt)t≥0 defined by (5.10). For k ≥ 1 let
{zk(n) : n ≥ 0} be a Markov chain with state space Ek := {0, k−1, 2k−1, . . .} and n-
step transition probability P n

k (x, dy) determined by (5.4). If zk(0) converges to y(0) in
distribution, then {zk(bγktc) : t ≥ 0} converges to {y(t) : t ≥ 0} in distribution on
D[0,∞).

The convergence of rescaled GWI-processes to CBI-processes have been studied by
many authors; see, e.g., Aliev (1985), Kawazu and Watanabe (1971) and Li (2006, 2011).
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Example 5.1 The transition semigroup (Qb
t)t≥0 defined by (3.14) corresponds to a CBI-

process with branching mechanism φ and immigration mechanism φ′0.

Example 5.2 Suppose that c > 0, 0 < α ≤ 1 and b are constants and let φ(z) = cz1+α +
bz. Let vt(λ) and q0

α(t) be defined as in Example 2.3. Let β ≥ 0 and let ψ(z) = βzα. We
can use (5.10) to define the transition semigroup (Pt)t≥0. It is easy to show that∫

[0,∞)

e−λy Pt(x, dy) =
1[

1 + cqbα(t)λα
]β/cα e−xvt(λ), λ ≥ 0.
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6 Structures of sample paths

In this section, we give some reconstructions of the type of Pitman and Yor (1982) for the
CB- and CBI-processes, which reveal the structures of their sample paths. Let (Qt)t≥0 be
the transition semigroup of the CB-process with branching mechanism φ given by (2.13).
Let (Q◦t )t≥0 be the restriction of (Qt)t≥0 on (0,∞). Let D[0,∞) denote the space of
positive càdlàg paths on [0,∞). On this space, we define the σ-algebras A = σ({w(s) :
0 ≤ s < ∞}) and At = σ({w(s) : 0 ≤ s ≤ t}) for t ≥ 0. For any w ∈ D[0,∞) let
τ0(w) = inf{s > 0 : w(s) or w(s−) = 0}. Let D0[0,∞) be the set of paths w ∈ D[0,∞)
such that w(t) = 0 for t ≥ τ0(w). Let D1[0,∞) be the set of paths w ∈ D0[0,∞)
satisfying w(0) = 0. Then both D0[0,∞) and D1[0,∞) are A -measurable subsets of
D[0,∞).

Theorem 6.1 Suppose that φ′(∞) = ∞ and let (lt)t>0 be the entrance law for (Q◦t )t≥0

determined by (3.16). Then there is a unique σ-finite measure N0 on (D[0,∞), A )
supported byD1[0,∞) such that, for 0 < t1 < t2 < · · · < tn and x1, x2, . . . , xn ∈ (0,∞),

N0(w(t1) ∈ dx1, w(t2) ∈ dx2, . . . , w(tn) ∈ dxn)

= lt1(dx1)Q◦t2−t1(x1, dx2) · · ·Q◦tn−tn−1
(xn−1, dxn). (6.1)

Proof. Recall that (Qb
t)t≥0 is the transition semigroup on [0,∞) given by (3.14). LetX =

(D[0,∞),A ,At, w(t),Qx) be the canonical realization of (Qt)t≥0 and Y = (D[0,∞),
A ,At, w(t),Qb

x) the canonical realization of (Qb
t)t≥0. For any T > 0 there is a probabil-

ity measure Pb,T
0 on (D[0,∞),A ) supported by D1[0,∞) so that

Pb,T
0 [F ({w(s) : s ≥ 0})G({w(T + s) : s ≥ 0})]

= Qb
0[F ({w(s) : s ≥ 0})Qw(T )G({w(s) : s ≥ 0})],

where F is a bounded AT -measurable function and G is a bounded A -measurable func-
tion. The formula above means that under Pb,T

0 the random path {w(s) : s ∈ [0, T ]}
is a Markov process with initial state w(0) = 0 and transition semigroup (Qb

t)t≥0 and
{w(s) : s ∈ [T,∞)} is a Markov process with transition semigroup (Qt)t≥0. Then
Corollary 3.11 implies Pb,T

0 (w(s) = 0) = Qb
s(0, {0}) = 0 for every 0 < s ≤ T . Let

Nb,T
0 (dw) = e−bT w(T )−11{w(T )>0}P

b,T
0 (dw). We have

Nb,T
0 (w(s1) ∈ dx1, w(s2) ∈ dx2, . . . , w(sm) ∈ dxm, w(T ) ∈ dz,

w(t1) ∈ dy1, w(t2) ∈ dy2, . . . , w(tn) ∈ dyn)

= Qb
s1

(0, dx1)Qb
s2−s1(x1, dx2) · · ·Qb

sm−sm−1
(xm−1, dxm)Qb

T−sm(xm, dz)

e−bT z−1Qt1−T (z, dy1)Qt2−t1(y1, dy2) · · ·Qtn−tn−1(yn−1, dyn)

= Qb
s1

(0, dx1)x−1
1 x1 · · ·Qb

sm−sm−1
(xm−1, dxm)x−1

m xmQ
b
T−sm(xm, dz)

e−bT z−1Qt1−T (z, dy1)Qt2−t1(y1, dy2) · · ·Qtn−tn−1(yn−1, dyn)

= ls1(dx1)Q◦s2−s1(x1, dx2) · · ·Q◦sm−sm−1
(xm−1, dxm)Q◦T−sm(xm, dz)

Qt1−T (z, dy1)Qt2−t1(y1, dy2) · · ·Qtn−tn−1(yn−1, dyn), (6.2)
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where 0 < s1 < · · · < sm < T < t1 < · · · < tn and x1, . . . , xm, z, y1, . . . , yn ∈ (0,∞).
Then for any T1 ≥ T2 > 0 the two measures Nb,T1

0 and Nb,T2
0 coincide on {w ∈ D1[0,∞) :

τ0(w) > T1}, so the increasing limit N0 := limT→0 N
b,T
0 exists and defines a σ-finite

measure supported by D1[0,∞). From (6.2) we get (6.1). The uniqueness of the measure
N0 satisfying (6.1) follows by the measure extension theorem. �

The elements of D1[0,∞) are called excursions and the measure N0 is referred to as
the excursion law for the CB-process. In view of (3.17) and (6.1), we have formally, for
0 < t1 < t2 < · · · < tn and x1, x2, . . . , xn ∈ (0,∞),

N0(w(t1) ∈ dx1, w(t2) ∈ dx2, . . . , w(tn) ∈ dxn)

= lim
x→0

x−1Q◦t1(x, dx1)Q◦t2−t1(x1, dx2) · · ·Q◦tn−tn−1
(xn−1, dxn)

= lim
x→0

x−1Qx(w(t1) ∈ dx1, w(t2) ∈ dx2, . . . , w(tn) ∈ dxn), (6.3)

which explains why N0 is supported by D1[0,∞).

From (6.1) we see that the excursion law is Markovian, namely, the path {w(t) :
t > 0} behaves under this law as a Markov process with transition semigroup (Q◦t )t≥0.
Based on the excursion law, a reconstruction of the CB-process is given in the following
theorem:

Theorem 6.2 Suppose that φ′(∞) = ∞. Let z ≥ 0 and let Nz =
∑∞

i=1 δwi be a Poisson
random measure on D[0,∞) with intensity zN0(dw). Let X0 = z and for t > 0 let

Xz
t =

∫
D[0,∞)

w(t)Nz(dw) =
∞∑
i=1

wi(t). (6.4)

For t ≥ 0 let G z
t be the σ-algebra generated by the collection of random variables

{Nz(A) : A ∈ At}. Then {(Xz
t ,G

z
t ) : t ≥ 0} is a CB-process with branching mech-

anism φ.

Proof. It is easy to see that {Xz
t : t ≥ 0} is adapted relative to the filtration {G z

t : t ≥ 0}.
We claim that the random variable Xz

t has distribution Qt(z, ·) on [0,∞). Indeed, for
t = 0 this is immediate. For any t > 0 and λ ≥ 0 we have

P
[

exp{−λXz
t }
]

= exp

{
− z

∫
D[0,∞)

(1− e−λw(t))N0(dw)

}
= exp

{
− z

∫
(0,∞)

(1− e−λu)lt(du)

}
= exp{−zvt(λ)}.

By the Markov property (6.1), for any t ≥ r > 0 and any bounded Ar-measurable
function H on D[0,∞) we have∫

D[0,∞)

H(w)(1− e−λw(t))N0(dw)

=

∫
D[0,∞)

H(w)(1− e−vt−r(λ)w(r))N0(dw).
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It follows that, for any bounded positive Ar-measurable function F on D[0,∞),

P

[
exp

{
−
∫
D[0,∞)

F (w)Nz(dw)

}
· exp

{
− λXz

t

}]
= P

[
exp

{
−
∫
D[0,∞)

[
F (w) + λw(t)

]
Nz(dw)

}]
= exp

{
− z

∫
D[0,∞)

(
1− e−F (w)−λw(t)

)
N0(dw)

}
= exp

{
− z

∫
D[0,∞)

(
1− e−F (w)

)
N0(dw)

}
· exp

{
− z

∫
D[0,∞)

e−F (w)
(
1− e−λw(t)

)
N0(dw)

}
= exp

{
− z

∫
D[0,∞)

(
1− e−F (w)

)
N0(dw)

}
· exp

{
− z

∫
D[0,∞)

e−F (w)
(
1− e−w(r)vt−r(λ)

)
N0(dw)

}
= exp

{
− z

∫
D[0,∞)

(
1− e−F (w) e−w(r)vt−r(λ)

)
N0(dw)

}
= P

[
exp

{
−
∫
D[0,∞)

[
F (w) + vt−r(λ)w(r)

]
Nz(dw)

}]
= P

[
exp

{
−
∫
D[0,∞)

F (w)Nz(dw)

}
· exp

{
− vt−r(λ)Xz

r

}]
.

Clearly, the σ-algebra G z
r is generated by the collection of random variables

exp

{
−
∫
D[0,∞)

F (w)Nz(dw)

}
,

where F runs over all bounded positive Ar-measurable functions on D[0,∞). Then
{(Xz

t ,G
z
t ) : t ≥ 0} is a Markov process with transition semigroup (Qt)t≥0. �

The above theorem gives a description of the structures of the population represented
by the CB-process. From (6.4) we see that the population at any time t > 0 consists of
at most countably many families, which evolve as the excursions {wi : i = 1, 2, · · · }
selected by the Poisson random measure Nz(dw). Unfortunately, this reconstruction is
only available under the condition φ′(∞) = ∞. To give reconstructions of the CB- and
CBI-processes when this condition is not necessarily satisfied, we need to consider some
inhomogeneous immigration structures and more general Markovian measures on the path
space. As a consequence of Theorem 6.1 we obtain the following:

Proposition 6.3 Let β ≥ 0 be a constant and ν a σ-finite measure on (0,∞) such that∫
(0,∞)

uν(du) < ∞. If β > 0, assume in addition φ′(∞) = ∞. Then we can define a
σ-finite measure N on (D[0,∞),A ) by

N(dw) = βN0(dw) +

∫
(0,∞)

ν(dx)Qx(dw), w ∈ D[0,∞). (6.5)
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Moreover, for 0 < t1 < t2 < · · · < tn and x1, x2, . . . , xn ∈ (0,∞), we have

N(w(t1) ∈ dx1, w(t2) ∈ dx2, . . . , w(tn) ∈ dxn)

= Ht1(dx1)Q◦t2−t1(x1, dx2) · · ·Q◦tn−tn−1
(xn−1, dxn), (6.6)

where

Ht(dy) = βlt(dy) +

∫
(0,∞)

ν(dx)Q◦t (x, dy), y > 0.

Clearly, the measure N defined by (6.5) is actually supported by D0[0,∞). Under
this law, the path {w(t) : t > 0} behaves as a Markov process with transition semigroup
(Q◦t )t≥0 and one-dimensional distributions (Ht)t>0.

Theorem 6.4 Suppose that the conditions of Proposition 6.3 are satisfied and let N be
defined by (6.5). Let ρ be a Borel measure on (0,∞) such that ρ(0, t] < ∞ for each
0 < t < ∞. Suppose that N =

∑∞
i=1 δ(si,wi) is a Poisson random measure on (0,∞) ×

D[0,∞) with intensity ρ(ds)N(dw). For t ≥ 0 let

Yt =

∫
(0,t]

∫
D[0,∞)

w(t− s)N(ds, dw) =
∑

0<si≤t

wi(t− si) (6.7)

and let Gt be the σ-algebra generated by the random variables {N((0, u] × A) : A ∈
At−u, 0 ≤ u ≤ t}. Then {(Yt,Gt) : t ≥ 0} is a Markov process with inhomogeneous
transition semigroup (Pr,t)t≥r≥0 given by∫

[0,∞)

e−λy Pr,t(x, dy) = exp

{
− xvt−r(λ)−

∫
(r,t]

ψ(vt−s(λ))ρ(ds)

}
, (6.8)

where the function ψ is given by (5.9).

Proof. From (6.7) we see that {Yt : t ≥ 0} is adapted to the filtration {Gt : t ≥ 0}. Let
t ≥ r ≥ u ≥ 0 and let F be a bounded positive function on D[0,∞) measurable relative
to Ar−u. For λ ≥ 0, we can use the Markov property (6.6) to see

P

[
exp

{
−
∫

(0,u]

∫
D[0,∞)

F (w)N(ds, dw)− λYt
}]

= P

[
exp

{
−
∫

(0,t]

∫
D[0,∞)

[
F (w)1{s≤u} + λw(t− s)

]
N(ds, dw)

}]
= exp

{
−
∫

(0,t]

ρ(ds)

∫
D[0,∞)

(
1− e−F (w)1{s≤u} e−λw(t−s) )N(dw)

}
= exp

{
−
∫

(0,r]

ρ(ds)

∫
D[0,∞)

(
1− e−F (w)1{s≤u} e−w(t−s) )N(dw)

}
· exp

{
−
∫

(r,t]

ρ(ds)

∫
D[0,∞)

(
1− e−λw(t−s) )N(dw)

}
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= exp

{
−
∫

(0,r]

ρ(ds)

∫
D[0,∞)

(
1− e−F (w)1{s≤u}

)
N(dw)

}
· exp

{
−
∫

(0,r]

ρ(ds)

∫
D[0,∞)

e−F (w)1{s≤u}
(
1− e−w(t−s) )N(dw)

}
· exp

{
−
∫

(r,t]

ρ(ds)

∫
D[0,∞)

(
1− e−λw(t−s) )N(dw)

}
= exp

{
−
∫

(0,r]

ρ(ds)

∫
D[0,∞)

(
1− e−F (w)1{s≤u}

)
N(dw)

}
· exp

{
−
∫

(0,r]

ρ(ds)

∫
D[0,∞)

e−F (w)1{s≤u}
(
1− e−vt−r(λ)w(r−s) )N(dw)

}
· exp

{
−
∫

(r,t]

ρ(ds)

∫
(0,∞)

(
1− e−λy

)
Ht−s(dw)

}
= exp

{
−
∫

(0,r]

ρ(ds)

∫
D[0,∞)

(
1− e−F (w)1{s≤u} e−vt−r(λ)w(r−s) )N(dw)

}
· exp

{
− β

∫
(r,t]

ρ(ds)

∫
(0,∞)

(1− e−λy)lt−s(dy)

−
∫

(r,t]

ρ(ds)

∫
(0,∞)

(1− e−λy)νQ◦t−s(dy)

}
= P

[
exp

{
−
∫

(0,r]

∫
D[0,∞)

[
F (w)1{s≤u} + vt−r(λ)w(r − s)

]
N(ds, dw)

}]
· exp

{
−
∫

(r,t]

[
βvt−s(λ) +

∫
(0,∞)

(1− e−yvt−s(λ))ν(dy)

]
ρ(ds)

}
= P

[
exp

{
−
∫

(0,u]

∫
D[0,∞)

F (w)N(ds, dw)

}
· exp

{
− vt−r(λ)Yr −

∫
(r,t]

ψ(vt−s(λ))ρ(ds)

}]
.

Then {(Yt,Gt) : t ≥ 0} is a Markov process in [0,∞) with inhomogeneous transition
semigroup (Pr,t)t≥r≥0 given by (6.8). �

Corollary 6.5 Suppose that φ′(∞) = ∞. Let β > 0 and let Nβ =
∑∞

i=1 δ(si,wi) be a
Poisson random measure on (0,∞)×D[0,∞) with intensity βdsN0(dw). For t ≥ 0 let

Y β
t =

∫
(0,t]

∫
D[0,∞)

w(t− s)Nβ(ds, dw) =
∑

0<si≤t

wi(t− si)

and let G β
t be the σ-algebra generated by the random variables {Nβ((0, u] × A) : A ∈

At−u, 0 ≤ u ≤ t}. Then {(Y β
t ,G

β
t ) : t ≥ 0} is a CBI-process with branching mechanism

φ and immigration mechanism ψβ defined by ψβ(λ) = βλ, λ ≥ 0.

Corollary 6.6 Let ν be a σ-finite measure on (0,∞) such that
∫

(0,∞)
uν(du) < ∞. Let

Nν =
∑∞

i=1 δ(si,wi) be a Poisson random measure on (0,∞) × D[0,∞) with intensity
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dsNν(dw), where

Nν(dw) =

∫
(0,∞)

ν(dx)Qx(dw). (6.9)

For t ≥ 0 let

Y ν
t =

∫
(0,t]

∫
D[0,∞)

w(t− s)Nν(ds, dw) =
∑

0<si≤t

wi(t− si)

and let G ν
t be the σ-algebra generated by the random variables {Nν((0, u] × A) : A ∈

At−u, 0 ≤ u ≤ t}. Then {(Y ν
t ,G

ν
t ) : t ≥ 0} is a CBI-process with branching mechanism

φ and immigration mechanism ψν defined by

ψν(λ) =

∫
(0,∞)

(1− e−uλ)ν(du), λ ≥ 0. (6.10)

The transition semigroup (Pr,t)t≥r≥0 defined by (6.8) is a generalization of the one
given by (5.10); see also Li (1996, 2003) and Li (2011, p.224). A Markov process with
transition semigroup (Pr,t)t≥r≥0 is naturally called a CBI-process with inhomogeneous
immigration rate ρ. In view of (6.7), the population {Yt : t ≥ 0} consists of a countable
families of immigrants, whose immigration times {si : i = 1, 2, · · · } and evolution trajec-
tories {wi : i = 1, 2, · · · } are both selected by the Poisson random measure N(ds, dw).
The processes constructed in Corollaries 6.5 and 6.6 can be interpreted similarly.

Theorem 6.7 Suppose that δ := φ′(∞) < ∞. Let z > 0 and let Nz =
∑∞

i=1 δ(si,wi) be
a Poisson random measure on (0,∞)×D[0,∞) with intensity z e−δs dsNm(dw), where
Nm is defined by (6.9) with ν = m. For t ≥ 0 let

Xz
t = z e−δt +

∫
(0,t]

∫
D[0,∞)

w(t− s)Nz(ds, dw) (6.11)

and let G z
t be the σ-algebra generated by the random variables {Nz((0, u] × A) : A ∈

At−u, 0 ≤ u ≤ t}. Then {(Xz
t ,G

z
t ) : t ≥ 0} is a CB-process with branching mechanism

φ.

Proof. Let Zt = Xz
t − z e−δt denote the second term on the right-hand side of (6.11). By

Theorem 6.4 we infer that {(Zt,G z
t ) : t ≥ 0} is a Markov process with inhomogeneous

transition semigroup (P z
r,t)t≥r≥0 given by∫

[0,∞)

e−λy P z
r,t(x, dy) = exp

{
− xvt−r(λ)− z

∫ t

r

ψm(vt−s(λ)) e−δs ds

}
,

where ψm is defined by (6.10) with ν = m. Let t ≥ r ≥ u ≥ 0 and let F be a bounded
positive Ar−u-measurable function on D[0,∞). For λ ≥ 0 we have

P

[
exp

{
−
∫

(0,u]

∫
D[0,∞)

F (w)Nz(ds, dw)− λXz
t

}]
38



= P

[
exp

{
−
∫

(0,u]

∫
D[0,∞)

F (w)Nz(ds, dw)− λz e−δt−λZt
}]

= P

[
exp

{
−
∫

(0,u]

∫
D[0,∞)

F (w)Nz(ds, dw)− λz e−δt
}]

· exp

{
− vt−r(λ)Zr − z

∫ t

r

ψm(vt−s(λ)) e−δs ds

}
= P

[
exp

{
−
∫

(0,u]

∫
D[0,∞)

F (w)Nz(ds, dw)− λz e−δt
}]

· exp

{
− vt−r(λ)Zr − e−δr z

∫ t−r

0

ψm(vt−r−s(λ)) e−δs ds

}
= P

[
exp

{
−
∫

(0,u]

∫
D[0,∞)

F (w)Nz(ds, dw)− vt−r(λ)Zr − z e−δr vt−r(λ)

}]
= P

[
exp

{
−
∫

(0,u]

∫
D[0,∞)

F (w)Nz(ds, dw)− vt−r(λ)Xz
r

}]
,

where we have used (3.20). Then {(Xz
t ,G

z
t ) : t ≥ 0} is a CB-process with transition

semigroup (Qt)t≥0 defined by (2.19). �

Theorem 6.8 Suppose that δ := φ′(∞) <∞. Let β > 0 and let Nβ =
∑∞

i=1 δ(si,wi) be a
Poisson random measure on (0,∞)×D[0,∞) with intensity βδ−1(1− e−δs) dsNm(dw),
where Nm is defined by (6.9) with ν = m. For t ≥ 0 let

Y β
t = βδ−1(1− e−δt) +

∫
(0,t]

∫
D[0,∞)

w(t− s)Nβ(ds, dw) (6.12)

and let G β
t be the σ-algebra generated by the random variables {Nβ((0, u] × A) : A ∈

At−u, 0 ≤ u ≤ t}. Then {(Xβ
t ,G

β
t ) : t ≥ 0} is a CBI-process with branching mechanism

φ and immigration mechanism ψβ defined by ψβ(λ) = βλ, λ ≥ 0.

Proof. Let Zt denote the second term on the right-hand side of (6.12). By Theorem 6.4,
the process {(Zt,G β

t ) : t ≥ 0} is a Markov process with inhomogeneous transition semi-
group (P β

r,t)t≥r≥0 given by∫
[0,∞)

e−λy P β
r,t(x, dy) = exp

{
− xvt−r(λ)− βδ−1

∫ t

r

ψm(vt−s(λ))(1− e−δs)ds

}
,

whereψm is defined by (6.10) with ν = m. For t ≥ 0 and λ ≥ 0, we can use Theorem 3.15
to see ∫ t

0

vs(λ)ds = λ

∫ t

0

e−δs ds+

∫ t

0

ds

∫ s

0

e−δu ψm(vs−u(λ))du

= λ

∫ t

0

e−δs ds+

∫ t

0

ds

∫ t−s

0

e−δu ψm(vt−s−u(λ))du

= λδ−1(1− e−δt) +

∫ t

0

ds

∫ t

s

e−δ(u−s) ψm(vt−u(λ))du

39



= λδ−1(1− e−δt) +

∫ t

0

du

∫ u

0

e−δ(u−s) ψm(vt−u(λ))ds

= λδ−1(1− e−δt) + δ−1

∫ t

0

(1− e−δu)ψm(vt−u(λ))du. (6.13)

Let t ≥ r ≥ u ≥ 0 and let F be a bounded positive Ar−u-measurable function on
D[0,∞). Then

P

[
exp

{
−
∫

(0,u]

∫
D[0,∞)

F (w)Nβ(ds, dw)− λY β
t

}]
= P

[
exp

{
−
∫

(0,u]

∫
D[0,∞)

F (w)Nβ(ds, dw)− λβδ−1(1− e−δt)− λZt
}]

= P

[
exp

{
−
∫

(0,u]

∫
D[0,∞)

F (w)Nβ(ds, dw)− λβδ−1(1− e−δt)

}]
· exp

{
− vt−r(λ)Zr − βδ−1

∫ t

r

ψm(vt−s(λ))(1− e−δs)ds

}
= P

[
exp

{
−
∫

(0,u]

∫
D[0,∞)

F (w)Nβ(ds, dw)− λβδ−1(1− e−δt)

}]
· exp

{
− vt−r(λ)Y β

r + vt−r(λ)βδ−1(1− e−δr)

}
· exp

{
− βδ−1

∫ t−r

0

ψm(vt−r−s(λ))(1− e−δ(r+s))ds

}
= P

[
exp

{
−
∫

(0,u]

∫
D[0,∞)

F (w)Nβ(ds, dw)− λβδ−1(1− e−δt)

}]
· exp

{
− vt−r(λ)Y β

r + λβδ−1 e−δ(t−r)(1− e−δr)

}
· exp

{
βδ−1(1− e−δr)

∫ t−r

0

e−δs ψm(vt−r−s(λ))ds

}
· exp

{
− βδ−1

∫ t−r

0

ψm(vt−r−s(λ))(1− e−δ(r+s))ds

}
= P

[
exp

{
−
∫

(0,u]

∫
D[0,∞)

F (w)Nβ(ds, dw)− λβδ−1(1− e−δ(t−r))

}]
· exp

{
− vt−r(λ)Y β

r − βδ−1

∫ t−r

0

ψm(vt−r−s(λ))(1− e−δs)ds

}
= P

[
exp

{
−
∫

(0,u]

∫
D[0,∞)

F (w)Nβ(ds, dw)

− vt−r(λ)Y β
r − β

∫ t−r

0

vs(λ))ds

}]
,

where we used (6.13) for the last equality. That gives the desired result. �

Since the CB- and CBI-processes have Feller transition semigroups, they have càdlàg
realizations. By Proposition A.7 of Li (2011), any realizations of the processes has a
càdlàg modification. In the case of φ′(∞) =∞, let (Xz

t ,G
z
t ), (Y β

t ,G
β
t ) and (Y ν

t ,G
ν
t ) be

defined as in Theorem 6.2, Corollary 6.5 and Corollary 6.6, respectively. In the case of
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φ′(∞) <∞, we define those processes as in Theorem 6.7, Theorem 6.8 and Corollary 6.6,
respectively. In both cases, let Yt = Xz

t + Y β
t + Y ν

t and Gt = σ(G z
t ∪ G β

t ∪ G ν
t ). It is not

hard to show that {(Yt,Gt) : t ≥ 0} is a CBI-process with branching mechanism φ given
by (2.13) and immigration mechanism ψ given by (5.9).

The existence of the excursion law for the branching mechanism φ(z) = bz + cz2

was first proved by Pitman and Yor (1982). As a special case of the so-called Kuznetsov
measure, the existence of the law for measure-valued branching processes was derived
from a general result on Markov processes in Li (2003, 2011), where it was also shown
that the law only charges sample paths starting with zero. In the setting of measure-valued
processes, El Karoui and Roelly (1991) used (6.3) to construct the excursion law; see also
Duquesne and Labbé (2014). The construction of the CB- or CBI-process based on a
excursion law was first given by Pitman and Yor (1982). This type of constructions have
also been used in the measure-valued setting by a number of authors; see, e.g., Dawson
and Li (2003), El Karoui and Roelly (1991), Li (1996, 2003, 2011) and Li and Shiga
(1995).
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7 Martingale problem formulations

In this section we give several formulations of the CBI-process in terms of martingale
problems. Let (φ, ψ) be given by (2.13) and (5.9), respectively. We assume (5.11) is
satisfied and define ψ′(0) by (5.13). Let C2[0,∞) denote the set of bounded continuous
real functions on [0,∞) with bounded continuous derivatives up to the second order. For
f ∈ C2[0,∞) define

Lf(x) = cxf ′′(x) + x

∫
(0,∞)

[
f(x+ z)− f(x)− zf ′(x)

]
m(dz)

+ (β − bx)f ′(x) +

∫
(0,∞)

[
f(x+ z)− f(x)

]
ν(dz). (7.1)

We shall identify the operator L as the generator of the CBI-process.

Proposition 7.1 Let (Pt)t≥0 be the transition semigroup defined by (2.19) and (5.10).
Then for any t ≥ 0 and λ ≥ 0 we have∫

[0,∞)

e−λy Pt(x, dy) = e−xλ +

∫ t

0

ds

∫
[0,∞)

[yφ(λ)− ψ(λ)] e−yλ Ps(x, dy). (7.2)

Proof. Recall that v′t(λ) = (∂/∂λ)vt(λ). By differentiating both sides of (5.10) we get∫
[0,∞)

y e−yλ Pt(x, dy) =

∫
[0,∞)

e−yλ Pt(x, dy)

[
xv′t(λ) +

∫ t

0

ψ′(vs(λ))v′s(λ)ds

]
.

From this and (3.7) it follows that

∂

∂t

∫
[0,∞)

e−yλ Pt(x, dy) = −
[
x
∂

∂t
vt(λ) + ψ(vt(λ))

] ∫
[0,∞)

e−yλ Pt(x, dy)

=

[
xφ(λ)v′t(λ)− ψ(λ)

] ∫
[0,∞)

e−yλ Pt(x, dy)

−
∫ t

0

ψ′(vs(λ))
∂

∂s
vs(λ)ds

∫
[0,∞)

e−yλ Pt(x, dy)

=

[
xφ(λ)v′t(λ)− ψ(λ)

] ∫
[0,∞)

e−yλ Pt(x, dy)

+φ(λ)

∫ t

0

ψ′(vs(λ))v′s(λ)ds

∫
[0,∞)

e−yλ Pt(x, dy)

=

∫
[0,∞)

[yφ(λ)− ψ(λ)] e−yλ Pt(x, dy).

That gives (7.2). �

Suppose that (Ω,G ,Gt,P) is a filtered probability space satisfying the usual hypothe-
ses and {y(t) : t ≥ 0} is a càdlàg process in [0,∞) that is adapted to (Gt)t≥0 and sat-
isfies P[y(0)] < ∞. Let C1,2([0,∞)2) be the set of bounded continuous real functions
(t, x) 7→ G(t, x) on [0,∞)2 with bounded continuous derivatives up to the first order rel-
ative to t ≥ 0 and up to the second order relative to x ≥ 0. Let us consider the following
properties:
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(1) For every T ≥ 0 and λ ≥ 0,

exp

{
− vT−t(λ)y(t)−

∫ T−t

0

ψ(vs(λ))ds

}
, 0 ≤ t ≤ T,

is a martingale.

(2) For every λ ≥ 0,

Ht(λ) := exp

{
− λy(t) +

∫ t

0

[ψ(λ)− y(s)φ(λ)]ds

}
, t ≥ 0,

is a local martingale.

(3) The process {y(t) : t ≥ 0} has no negative jumps and the optional random measure

N0(ds, dz) :=
∑
s>0

1{∆y(s) 6=0}δ(s,∆y(s))(ds, dz),

where ∆y(s) = y(s)−y(s−), has predictable compensator N̂0(ds, dz) = dsν(dz)+
y(s−)dsm(dz). Let Ñ0(ds, dz) = N0(ds, dz)− N̂0(ds, dz). We have

y(t) = y(0) +M c(t) +Md(t)− b
∫ t

0

y(s−)ds+ ψ′(0)t,

where {M c(t) : t ≥ 0} is a continuous local martingale with quadratic variation
2cy(t−)dt and

Md(t) =

∫ t

0

∫
(0,∞)

zÑ0(ds, dz), t ≥ 0,

is a purely discontinuous local martingale.

(4) For every f ∈ C2[0,∞) we have

f(y(t)) = f(y(0)) +

∫ t

0

Lf(y(s))ds+ local mart. (7.3)

(5) For any G ∈ C1,2([0,∞)2) we have

G(t, y(t)) = G(0, y(0)) +

∫ t

0

[
G′t(s, y(s)) + LG(s, y(s))

]
ds+ local mart. (7.4)

where L acts on the function x 7→ G(s, x).

Theorem 7.2 The above properties (1), (2), (3), (4) and (5) are equivalent to each other.
Those properties hold if and only if {(y(t),Gt) : t ≥ 0} is a CBI-process with branching
mechanism φ and immigration mechanism ψ.
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Proof. Clearly, (1) holds if and only if {y(t) : t ≥ 0} is a Markov process relative to
(Gt)t≥0 with transition semigroup (Pt)t≥0 defined by (5.10). Then we only need to prove
the equivalence of the five properties.

(1)⇒(2): Suppose that (1) holds. Then {y(t) : t ≥ 0} is a CBI-process with transition
semigroup (Pt)t≥0 given by (5.10). By (7.2) and the Markov property it is easy to see that

Yt(λ) := e−λy(t) +

∫ t

0

[ψ(λ)− y(s)φ(λ)] e−λy(s) ds (7.5)

is a martingale. By integration by parts applied to

Zt(λ) := e−λy(t) and Wt(λ) := exp

{∫ t

0

[ψ(λ)− y(s)φ(λ)]ds

}
(7.6)

we obtain

dHt(λ) = e−λy(t−) dWt(λ) +Wt(λ)d e−λy(t) = Wt(λ)dYt(λ).

Then {Ht(λ)} is a local martingale.

(2)⇒(3): For any λ ≥ 0 let Zt(λ) and Wt(λ) be defined by (7.6). We have Zt(λ) =
Ht(λ)Wt(λ)−1 and so

dZt(λ) = Wt(λ)−1dHt(λ)− Zt−(λ)[ψ(λ)− φ(λ)y(t−)]dt (7.7)

by integration by parts. Then the strictly positive process t 7→ Zt(λ) is a special semi-
martingale; see, e.g., Dellacherie and Meyer (1982, p.213). By Itô’s formula we find
t 7→ y(t) is a semi-martingale. Now define the optional random measure N0(ds, dz) on
[0,∞)× R by

N0(ds, dz) =
∑
s>0

1{∆y(s)6=0}δ(s,∆y(s))(ds, dz),

where ∆y(s) = y(s) − y(s−). Let N̂0(ds, dz) denote the predictable compensator of
N0(ds, dz) and let Ñ0(ds, dz) denote the compensated random measure; see, e.g., Del-
lacherie and Meyer (1982, p.375). It follows that

y(t) = y(0) + U(t) +M c(t) +Md(t), (7.8)

where t 7→ U(t) is a right-continuous adapted process with locally bounded variations,
t 7→M c(t) is a continuous local martingale and

t 7→Md(t) :=

∫ t

0

∫
R
zÑ0(ds, dz)

is a purely discontinuous local martingale; see, e.g., Dellacherie and Meyer (1982, p.353
and p.376) or Jacod and Shiryaev (2003, pp.84–85). Let {C(t)} denote the quadratic
variation process of {M c(t)}. By Itô’s formula,

Zt(λ) = Z0(λ)− λ
∫ t

0

Zs−(λ)dy(s) +
1

2
λ2

∫ t

0

Zs−(λ)dC(s)
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+

∫ t

0

∫
R
Zs−(λ)

(
e−zλ−1 + zλ

)
N0(ds, dz)

= Z0(λ)− λ
∫ t

0

Zs−(λ)dU(s) +
1

2
λ2

∫ t

0

Zs−(λ)dC(s)

+

∫ t

0

∫
R
Zs−(λ)

(
e−zλ−1 + zλ

)
N̂0(ds, dz) + local mart. (7.9)

In view of (7.7) and (7.9) we get

[y(s−)φ(λ)− ψ(λ)]ds = −λdU(s) +
1

2
λ2dC(s) +

∫
R

(
e−zλ−1 + zλ

)
N̂0(ds, dz)

by the uniqueness of canonical decompositions of special semi-martingales; see, e.g.,
Dellacherie and Meyer (1982, p.213). By substituting the representations (2.13) and (5.9)
for φ and ψ into the above equation and comparing both sides we find

dC(s) = 2cy(s−)ds, dU(s) = [ψ′(0)− by(s−)]ds

and

N̂0(ds, dz) = dsν(dz) + y(s−)dsm(dz).

Then the process t 7→ y(t) has no negative jumps.

(3)⇒(4): This follows by Itô’s formula.

(4)⇒(5): For t ≥ 0 and k ≥ 1 we have

G(t, y(t)) = G(0, y(0)) +
∞∑
j=0

[
G(t ∧ j/k, y(t ∧ (j + 1)/k))

−G(t ∧ j/k, y(t ∧ j/k))
]

+
∞∑
j=0

[
G(t ∧ (j + 1)/k, y(t ∧ (j + 1)/k))

−G(t ∧ j/k, y(t ∧ (j + 1)/k))
]
,

where the summations only consist of finitely many nontrivial terms. By applying (4)
term by term we obtain

G(t, y(t)) = G(0, y(0)) +
∞∑
j=0

∫ t∧(j+1)/k

t∧j/k

{
[β − by(s)]G′x(t ∧ j/k, y(s))

+ cy(s)G′′xx(t ∧ j/k, y(s)) + y(s)

∫
(0,∞)

[
G(t ∧ j/k, y(s) + z)

−G(t ∧ j/k, y(s))− zG′x(t ∧ j/k, y(s))
]
m(dz)

+

∫
(0,∞)

[
G(t ∧ j/k, y(s) + z)−G(t ∧ j/k, y(s))

]
ν(dz)

}
ds

+
∞∑
j=0

∫ t∧(j+1)/k

t∧j/k
G′t(s, y(t ∧ (j + 1)/k))ds+Mk(t),
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where {Mk(t)} is a local martingale. Since {y(t)} is a càdlàg process, letting k →∞ in
the equation above gives

G(t, y(t)) = G(0, y(0)) +

∫ t

0

{
G′t(s, y(s)) + [β − by(s)]G′x(s, y(s))

+ cy(s)G′′xx(s, y(s)) + y(s)

∫
(0,∞)

[
G(s, y(s) + z)

−G(s, y(s))− zG′x(s, y(s))
]
m(dz)

+

∫
(0,∞)

[
G(s, y(s) + z)−G(s, y(s))

]
ν(dz)

}
ds+M(t),

where {M(t)} is a local martingale. Then we have (7.4).

(5)⇒(1): For fixed T ≥ 0 and λ ≥ 0 we define the function

GT (t, x) = exp

{
− vT−t(λ)x−

∫ T−t

0

ψ(vs(λ))ds

}
, 0 ≤ t ≤ T, x ≥ 0,

which can be extended to a function in C1,2([0,∞)2). Using (3.6) we see

d

dt
GT (t, x) + LGT (t, x) = 0, 0 ≤ t ≤ T, x ≥ 0,

Then (7.4) implies that t 7→ G(t∧T, y(t∧T )) is a local martingale, and hence a martingale
by the boundedness. �

Corollary 7.3 Let {(y(t),Gt) : t ≥ 0} be a càdlàg realization of the CBI-process satis-
fying P[y(0)] <∞. Then for every T ≥ 0 there is a constant CT ≥ 0 such that

P
[

sup
0≤t≤T

y(t)
]
≤ CT

{
P[y(0)] + ψ′(0) +

√
P[y(0)] +

√
ψ′(0)

}
.

Proof. By the above property (3) and Doob’s martingale inequality we have

P
[

sup
0≤t≤T

|y(t)− y(0)|
]

≤ Tψ′(0) + P

[
|b|
∫ T

0

y(s)ds

]
+ P

[
sup

0≤t≤T
|M c

t |
]

+P

[ ∫ T

0

∫
(1,∞)

zN0(ds, dz)

]
+ P

[ ∫ T

0

∫
(1,∞)

zN̂0(ds, dz)

]
+P

[
sup

0≤t≤T

∣∣∣∣ ∫
(0,1]

∫ 1

0

zÑ0(ds, dz)

∣∣∣∣]
≤ Tψ′(0) + P

[
|b|
∫ T

0

y(s)ds

]
+ 2

{
P

[
c

∫ T

0

y(s)ds

]}1/2

+ 2T

∫
(1,∞)

zν(dz) + 2P

[ ∫ T

0

y(s)ds

∫
(1,∞)

zm(dz)

]
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+ 2

{
P

[
T

∫
(0,1]

z2ν(dz) +

∫ T

0

y(s)ds

∫
(0,1]

z2m(dz)

]}1/2

.

Then the desired inequality follows by simple estimates based on (5.12). �

Corollary 7.4 Let {(y(t),Gt) : t ≥ 0} be a càdlàg realization of the CBI-process sat-
isfying P[y(0)] < ∞. Then the above properties (3), (4) and (5) hold with the local
martingales being martingales.

Proof. Since the arguments are similar, we only give those for (4). Let f ∈ C2[0,∞) and
let

M(t) = f(y(t))− f(y(0))−
∫ t

0

Lf(y(s))ds, t ≥ 0.

By property (4) we know {M(t)} is a local martingale. Let {τn} be a localization se-
quence of stopping times for {M(t)}. For any t ≥ r ≥ 0 and any bounded Gr-measurable
random variable F , we have

P

{[
f(y(t ∧ τn))− f(y(0))−

∫ t∧τn

0

Lf(y(s))ds

]
F

}
= P

{[
f(y(r ∧ τn))− f(y(0))−

∫ r∧τn

0

Lf(y(s))ds

]
F

}
.

In view of (7.1), there is a constant C ≥ 0 so that |Lf(x)| ≤ C(1 + x). By Corollary 7.3
we can let n → ∞ and use dominated convergence in the above equality to see {M(t)}
is a martingale. �

Note that property (4) implies that the generator of the CBI-process is the closure of
the operator L in the sense of Ethier and Kurtz (1986). This explicit form of the gener-
ator was first given in Kawazu and Watanabe (1971). The results of Theorem 7.2 were
presented for measure-valued processes in El Karoui and Roelly (1991) and Li (2011).
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8 Stochastic equations for CBI-processes

In this section we establish some stochastic equations for the CBI-processes. Suppose that
(φ, ψ) are branching and immigration mechanisms given respectively by (2.13) and (5.9)
with ν(du) satisfying condition (5.11). Let (Pt)t≥0 be the transition semigroup defined
by (2.19) and (5.10). In this and the next section, for any b ≥ a ≥ 0 we understand∫ b

a

=

∫
(a,b]

and
∫ ∞
a

=

∫
(a,∞)

.

Let {B(t)} be a standard Brownian motion and {M(ds, dz, du)} a Poisson time-space
random measure on (0,∞)3 with intensity dsm(dz)du. Let {η(t)} be an increasing Lévy
process with η(0) = 0 and with Laplace exponent ψ(z) = − logP exp{−zη(1)}. We
assume that {B(t)}, {M(ds, dz, du)} and {η(t)} are defined on a complete probability
space and are independent of each other. Consider the stochastic integral equation

y(t) = y(0) +

∫ t

0

√
2cy(s−)dB(s)− b

∫ t

0

y(s−)ds

+

∫ t

0

∫ ∞
0

∫ y(s−)

0

zM̃(ds, dz, du) + η(t), (8.1)

where M̃(ds, dz, du) = M(ds, dz, du)− dsm(dz)du denotes the compensated measure.
We understand the forth term on the right-hand side of (8.1) as an integral over the set
{(s, z, u) : 0 < s ≤ t, 0 < z < ∞, 0 < u ≤ y(s−)} and give similar interpretations
for other stochastic integrals in this section. The reader is referred to Ikeda and Watanabe
(1989) and Situ (2005) for the basic theory of stochastic equations.

Theorem 8.1 A positive càdlàg process {y(t) : t ≥ 0} is a CBI-process with branching
and immigration mechanisms (φ, ψ) given respectively by (2.13) and (5.9) if and only if
it is a weak solution to (8.1).

Proof. Suppose that the positive càdlàg process {y(t)} is a weak solution to (8.1). By
Itô’s formula one can see {y(t)} solves the martingale problem (7.3). By Theorem 7.2
we infer that {y(t)} is a CBI-process with branching and immigration mechanisms given
respectively by (2.13) and (5.9). Conversely, suppose that {y(t)} is a càdlàg realization
of the CBI-process with branching and immigration mechanisms given respectively by
(2.13) and (5.9). By Theorem 7.2 the process has no negative jumps and the random
measure

N0(ds, dz) :=
∑
s>0

1{∆y(s)>0}δ(s,∆y(s))(ds, dz)

has predictable compensator

N̂0(ds, dz) = y(s−)dsm(dz) + dsν(dz).

48



Moreover, we have

y(t) = y(0) + t

[
β +

∫ ∞
0

uν(du)

]
−
∫ t

0

by(s−)ds

+M c(t) +

∫ t

0

∫ ∞
0

zÑ0(ds, dz),

where Ñ0(ds, dz) = N0(ds, dz)− N̂0(ds, dz) and t 7→ M c(t) is a continuous local mar-
tingale with quadratic variation 2cy(t−)dt. By Theorem III.7.1′ in Ikeda and Watanabe
(1989, p.90), on an extension of the original probability space there is a standard Brown-
ian motion {B(t)} so that

M c(t) =

∫ t

0

√
2cy(s−)dB(s).

By Theorem III.7.4 in Ikeda and Watanabe (1989, p.93), on a further extension of the
probability space we can define independent Poisson random measures M(ds, dz, du)
and N(ds, dz) with intensities dsm(dz)du and dsν(dz), respectively, so that∫ t

0

∫ ∞
0

zÑ0(ds, dz) =

∫ t

0

∫ ∞
0

∫ y(s−)

0

zM̃(ds, dz, du) +

∫ t

0

∫ ∞
0

zÑ(ds, dz).

Then {y(t)} is a weak solution to (8.1). �

Theorem 8.2 For any initial value y(0) = x ≥ 0, there is a pathwise unique positive
strong solution to (8.1).

Proof. By Theorem 8.1 there is a weak solution to (8.1). Then we only need to prove the
pathwise uniqueness of the solution; see, e.g., Situ (2005, p.76 and p.104). Suppose that
{x(t) : t ≥ 0} and {y(t) : t ≥ 0} are two positive solutions of (8.1) with deterministic
initial states. By Theorem 8.1, both of them are CBI-processes. We may assume x(0)
and y(0) are deterministic upon taking a conditional probability. In view of (5.12), the
processes have locally bounded first moments. Let ζ(t) = x(t)− y(t) for t ≥ 0. For each
integer n ≥ 0 define an = exp{−n(n+ 1)/2}. Then an → 0 decreasingly as n→∞ and∫ an−1

an

z−1dz = n, n ≥ 1.

Let x 7→ gn(x) be a positive continuous function supported by (an, an−1) so that∫ an−1

an

gn(x)dx = 1

and gn(x) ≤ 2(nx)−1 for every x > 0. For n ≥ 0 and z ∈ R let

fn(z) =

∫ |z|
0

dy

∫ y

0

gn(x)dx.
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Then fn(z)→ |z| increasingly as n→∞. Moreover, we have |f ′n(z)| ≤ 1 and

0 ≤ |z|f ′′n(z) = |z|gn(|z|) ≤ 2/n. (8.2)

For z, ζ ∈ R it is easy to see that

|fn(ζ + z)− fn(ζ)− zf ′n(ζ)| ≤ |fn(ζ + z)− fn(ζ)|+ |zf ′n(ζ)| ≤ 2|z|.

By Taylors expansion, when zζ ≥ 0, there is η between ζ and ζ + z so that

|ζ||fn(ζ + z)− fn(ζ)− zf ′n(ζ)| ≤ |ζ||f ′′n(η)|z2/2 ≤ |η||f ′′n(η)|z2/2 ≤ z2/n.

where we used (8.2) for the last inequality. It follows that, when zζ ≥ 0,

|ζ||fn(ζ + z)− fn(ζ)− zf ′n(ζ)| ≤ (2|zζ|) ∧ (z2/n) ≤ (1 + 2|ζ|)[|z| ∧ (z2/n)]. (8.3)

From (8.1) we have

ζ(t) = ζ(0)− b
∫ t

0

ζ(s−)ds+
√

2c

∫ t

0

(√
x(s)−

√
y(s)

)
dB(s)

+

∫ t

0

∫ ∞
0

∫ x(s−)

y(s−)

z1{ζ(s−)>0}M̃(ds, dz, du)

−
∫ t

0

∫ ∞
0

∫ y(s−)

x(s−)

z1{ζ(s−)<0}M̃(ds, dz, du).

By this and Itô’s formula,

fn(ζ(t)) = fn(ζ(0))− b
∫ t

0

f ′n(ζ(s))ζ(s)ds+ c

∫ t

0

f ′′n(ζ(s))
[√

x(s)−
√
y(s)

]2
ds

+

∫ t

0

ζ(s)1{ζ(s)>0}ds

∫ ∞
0

[fn(ζ(s) + z)− fn(ζ(s))− zf ′n(ζ(s))]m(dz)

−
∫ t

0

ζ(s)1{ζ(s)<0}ds

∫ ∞
0

[fn(ζ(s)− z)− fn(ζ(s)) + zf ′n(ζ(s))]m(dz)

+ mart.

Taking the expectation in both sides of the above and using (8.2) and (8.3) we see

P[fn(ζ(t))] ≤ fn(ζ(0)) + |b|
∫ t

0

P[|ζ(s)|]ds+ εn(t), (8.4)

where

εn(t) = 2cn−1t+

∫ t

0

(1 + 2P[|ζ(s)|])ds
∫ ∞

0

[z ∧ (n−1z2)]m(dz).

Clearly, we have limn→∞ εn(t) = 0. Then letting n→∞ in (8.4) we get

P[|x(t)− y(t)|] ≤ |x(0)− y(0)|+ |b|
∫ t

0

P[|x(s)− y(s)|]ds.

50



If x(0) = y(0), we have P[|x(t)− y(t)|] = 0 by Gronwall’s inequality, and so P{x(t) =
y(t)} = 1 for t ≥ 0. Then P{x(t) = y(t) for t ≥ 0} = 1 by the right continuity of the
processes. That gives the pathwise uniqueness for (8.1). �

We can give a formulation of the CBI-process in terms another stochastic integral
equation weakly equivalent to (8.1). Let {M(ds, dz, du)} and {η(s)} be as in (8.1). Let
{W (ds, du)} be a Gaussian time-space white noise on (0,∞)2 with intensity dsdu. We
assume {W (ds, du)}, {M(ds, dz, du)} and {η(s)} are defined on a complete probability
space and are independent of each other. Consider the stochastic integral equation

y(t) = y(0) +
√

2c

∫ t

0

∫ y(s−)

0

W (ds, du)− b
∫ t

0

y(s−)ds

+

∫ t

0

∫ ∞
0

∫ y(s−)

0

zM̃(ds, dz, du) + η(t). (8.5)

The reader may refer to Li (2011, Section 7.3) and Walsh (1986, Chapter 2) for discus-
sions of stochastic integration with respect to Gaussian time-space white noises.

Theorem 8.3 A positive càdlàg process {y(t) : t ≥ 0} is a CBI-process with branching
and immigration mechanisms (φ, ψ) given respectively by (2.13) and (5.9) if and only if
it is a weak solution to (8.5).

Proof. Suppose that {y(t)} is a CBI-process with branching and immigration mechanisms
given respectively by (2.13) and (5.9). By Theorem 8.1, the process is a weak solution to
(8.1). By El Karoui and Méléard (1990, Theorem III.6), on an extension of the probability
space we can define a Gaussian time-space white noise W (ds, du) with intensity dsdu so
that ∫ t

0

√
y(s−)dB(s) =

∫ t

0

∫ y(s−)

0

W (ds, du).

Then {y(t)} is a weak solution to (8.5). Conversely, suppose that {y(t)} is a weak so-
lution to (8.5). By Itô’s formula one can see {y(t)} solves the martingale problem (7.3).
By Theorem 7.2 we infer that {y(t)} is a CBI-process with branching and immigration
mechanisms given respectively by (2.13) and (5.9). �

Theorem 8.4 Suppose that {y1(t) : t ≥ 0} and {y2(t) : t ≥ 0} are two positive solutions
to (8.5) with P{y1(0) ≤ y2(0)} = 1. Then we have P{y1(t) ≤ y2(t) for all t ≥ 0} = 1.

Proof. Let ζ(t) = y1(t)− y2(t) for t ≥ 0. For n ≥ 0 let fn be the function defined as in
the proof of Theorem 8.2. Let hn(z) = fn(z ∨ 0) for z ∈ R. Then hn(z)→ z+ := z ∨ 0
increasingly as n→∞. From (8.5) it follows that

ζ(t) = ζ(0)− b
∫ t

0

ζ(s−)ds+
√

2c

∫ t

0

∫ y1(s−)

y2(s−)

1{ζ(s−)>0}W (ds, du)
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−
√

2c

∫ t

0

∫ y2(s−)

y1(s−)

1{ζ(s−)<0}W (ds, du)

+

∫ t

0

∫ ∞
0

∫ y1(s−)

y2(s−)

1{ζ(s−)>0}zM̃(ds, dz, du)

−
∫ t

0

∫ ∞
0

∫ y2(s−)

y1(s−)

1{ζ(s−)<0}zM̃(ds, dz, du).

Since hn(z) = 0 for z ≤ 0, by Itô’s formula we have

hn(ζ(t)) = − b
∫ t

0

h′n(ζ(s−))ζ(s−)ds+ c

∫ t

0

h′′n(ζ(s−))|ζ(s−)|ds

+

∫ t

0

ζ(s−)1{ζ(s−)>0}ds

∫ ∞
0

[
hn(ζ(s−) + z)− hn(ζ(s−))

− zh′n(ζ(s−))
]
m(dz)−

∫ t

0

ζ(s−)1{ζ(s−)<0}ds

∫ ∞
0

[
hn(ζ(s−)− z)

−hn(ζ(s−)) + zh′n(ζ(s−))
]
m(dz) + local mart.

= − b
∫ t

0

h′n(ζ(s−))ζ(s−)+ds+ c

∫ t

0

h′′n(ζ(s−))ζ(s−)+ds

+

∫ t

0

ζ(s−)+ds

∫ ∞
0

[
hn(ζ(s−) + z)− hn(ζ(s−))

− zh′n(ζ(s−))
]
m(dz) + local mart.

For any k ≥ 1 define τk = inf{t ≥ 0 : ζ(t)+ ≥ k}. Taking the expectation in the above
equality at time t ∧ τk and using (8.2) and (8.3) we have

P[hn(ζ(t ∧ τk))] ≤ |b|P
[ ∫ t∧τk

0

ζ(s−)+ds

]
+ εn(t),

where

εn(t) = 2cn−1t+ P

[ ∫ t∧τk

0

(1 + 2ζ(s−)+)ds

] ∫ ∞
0

(z ∧ n−1z2)m(dz).

Then we let n→∞ to obtain

P[ζ(t ∧ τk)+] ≤ |b|P
[ ∫ t∧τk

0

ζ(s−)+ds

]
≤ |b|

∫ t

0

P[ζ(s ∧ τk)+]ds.

By Gronwall’s inequality, for each t ≥ 0 we have

P[(y1(t ∧ τk)− y2(t ∧ τk))+] = P[ζ(t ∧ τk)+] = 0.

By letting k → ∞ and using Fatou’s lemma we see P[(y1(t) − y2(t))+] = 0 for t ≥ 0,
and so P{y1(t) ≤ y2(t) for all t ≥ 0} = 1 by the right continuity of the processes. �

Theorem 8.5 For any initial value y(0) = x ≥ 0, there is a pathwise unique positive
strong solution to (8.5).
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Proof. By Theorem 8.3 there is a weak solution {y(t)} to (8.5). The pathwise uniqueness
of the solution follows from Theorem 8.4. Then {y(t)} is a strong solution to (8.5). See,
e.g., Situ (2005, p.76 and p.104). �

From (8.1) or (8.5) we see that the immigration of the CBI-process {y(t)} is repre-
sented by the increasing Lévy process {η(t)}. By the Lévy–Itô decomposition, there is a
Poisson time-space random measure {N(ds, dz)} with intensity dsν(dz) such that

η(t) = βt+

∫ t

0

∫ ∞
0

zN(ds, dz), t ≥ 0.

Then the immigration of {y(t)} involves two parts: the continuous part determined by
the drift coefficient β and the discontinuous part given by the Poisson random measure
{N(ds, dz)}.

Now let us consider a special CBI-process. Let c, q ≥ 0, b ∈ R and 1 < α < 2 be
given constants. Let {B(t)} be a standard Brownian motion. Let {z(t)} be a spectrally
positive α-stable Lévy process with Lévy measure

γ(dz) := (α− 1)Γ(2− α)−1z−1−αdz, z > 0

and {η(t)} an increasing Lévy process with η(0) = 0 and with Laplace exponent ψ. We
assume that {B(t)}, {z(t)} and {η(t)} are defined on a complete probability space and
are independent of each other. Consider the stochastic differential equation

dy(t) =
√

2cy(t−)dB(t) + α
√
αqy(t−)dz(t)− by(t−)dt+ dη(t), (8.6)

Theorem 8.6 A positive càdlàg process {y(t) : t ≥ 0} is a CBI-process with branching
mechanism φ(z) = bz + cz2 + qzα and immigration mechanism ψ given by (5.9) if and
only if it is a weak solution to (8.6).

Proof. Suppose that {y(t)} is a weak solution to (8.6). By Itô’s formula one can see
that {y(t)} solves the martingale problem (7.3) associated with the generator L defined
by (7.1) with m(dz) = αqγ(dz). Then {y(t)} is a CBI-process with branching mecha-
nism φ(z) = bz + cz2 + qzα and immigration mechanism ψ given by (5.9). Conversely,
suppose that {y(t)} is a CBI-process with branching mechanism φ(z) = bz + cz2 +
qzα and immigration mechanism ψ given by (5.9). Then {y(t)} is a weak solution to
(8.1) with {M(ds, dz, du)} being a Poisson random measure on (0,∞)3 with intensity
αqdsγ(dz)du. Let us assume q > 0, for otherwise the proof is easier. Define the random
measure {N0(ds, dz)} on (0,∞)2 by

N0((0, t]×B) =

∫ t

0

∫ ∞
0

∫ y(s−)

0

1{y(s−)>0}1B

( z
α
√
αqy(s−)

)
M(ds, dz, du)

+

∫ t

0

∫ ∞
0

∫ 1/αq

0

1{y(s−)=0}1B(z)M(ds, dz, du).

It is easy to compute that {N0(ds, dz)} has predictable compensator

N̂0((0, t]×B) =

∫ t

0

∫ ∞
0

1{y(s−)>0}1B

(
z

α
√
αqy(s−)

)
αqy(s−)(α− 1)dsdz

Γ(2− α)z1+α
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+

∫ t

0

∫ ∞
0

1{y(s−)=0}1B(z)
(α− 1)dsdz

Γ(2− α)z1+α

=

∫ t

0

∫ ∞
0

1B(z)
(α− 1)dsdz

Γ(2− α)z1+α
.

Thus {N0(ds, dz)} is a Poisson random measure with intensity dsγ(dz); see, e.g., Theo-
rem III.7.4 in Ikeda and Watanabe (1989, p.93). Now define the Lévy processes

z(t) =

∫ t

0

∫ ∞
0

zÑ0(ds, dz) and η(t) = βt+

∫ t

0

∫ ∞
0

zN(ds, dz),

where Ñ0(ds, dz) = N0(ds, dz)− N̂0(ds, dz). It is easy to see that∫ t

0

α
√
αqy(s−)dz(s) =

∫ t

0

∫ ∞
0

α
√
αqy(s−) zÑ0(ds, dz)

=

∫ t

0

∫ ∞
0

∫ y(s−)

0

zM̃(ds, dz, du).

Then {y(t)} is a weak solution to (8.6). �

Theorem 8.7 For any initial value y(0) = x ≥ 0, there is a pathwise unique positive
strong solution to (8.6).

Proof. By Theorem 8.6 there is a weak solution {y(t)} to (8.6), so it suffices to prove the
pathwise uniqueness of the solution. We first recall that the one-sided α-stable process
{z(t)} can be represented as

z(t) =

∫ t

0

∫ ∞
0

zM̃(ds, dz),

where M(ds, dz) is a Poisson random measure on (0,∞)2 with intensity dsγ(dz). Let

z1(t) =

∫ t

0

∫ 1

0

zM̃(ds, dz) and z2(t) =

∫ t

0

∫ ∞
1

zM(ds, dz).

Since t 7→ z2(t) has at most finitely many jumps in each bounded interval, we only need
to prove the pathwise uniqueness of

dy(t) =
√

2cy(t−)dB(t) + α
√
αqy(t−)dz1(t)− by(t−)dt

−α−1(α− 1)Γ(2− α)−1 α
√
αqy(t−)dt+ dη(t), (8.7)

Suppose that {x(t)} and {y(t)} are two positive solutions to (8.7) with deterministic
initial values. Let ζθ(t) = θ

√
x(t)− θ

√
y(t) for 0 < θ ≤ 2 and t ≥ 0. Then we have

dζ1(t) =
√

2cζ2(t−)dB(t) + α
√
αqζα(t−)dz1(t)− bζ1(t−)dt

−α−1(α− 1)Γ(2− α)−1 α
√
αqζα(t−)dt.
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For n ≥ 0 let fn be the function defined as in the proof of Theorem 8.2. By Itô’s formula,

fn(ζ1(t)) = fn(ζ1(0)) + c

∫ t

0

f ′′n(ζ1(s−))ζ1(s−)2ds− b
∫ t

0

f ′n(ζ1(s−))ζ1(s−)ds

−α−1(α− 1)Γ(2− α)−1 α
√
αq

∫ t

0

f ′n(ζ1(s−))ζα(s−)ds

+

∫ t

0

ds

∫ 1

0

[
fn(ζ1(s−) + α

√
αqζα(s−)z)− fn(ζ1(s−))

− α
√
αqζα(s−)zf ′n(ζ1(s−))

]
γ(dz) + local mart. (8.8)

For any k ≥ 1 + x(0) ∨ y(0) let τk = inf{s ≥ 0 : x(s) ≥ k or y(s) ≥ k}. For 0 ≤ t ≤ τk
we have |ζ1(t−)| ≤ k, |ζα(t−)| ≤ α

√
k and

|ζ1(t)| ≤ |ζ1(t−)|+ |ζ1(t)− ζ1(t−)| ≤ k + α
√
αqk.

By Taylor’s expansion, there exists 0 < ξ < z so that

[fn(ζ1(s−) + α
√
αqζα(s−)z)− fn(ζ1(s−))− α

√
αqζα(s−)zf ′n(ζ1(s−))]

= 2−1(αq)2/αf ′′n(ζ1(s−) + α
√
αqζα(s−)ξ)ζα(s−)2z2

≤ 2−1(αq)2/α α
√
kf ′′n(ζ1(s−) + α

√
αqζα(s−)ξ)|ζ1(s−) + α

√
αqζα(s−)ξ|z2

≤ n−1(αq)2/α α
√
kz2,

where we have used (8.2) and the fact ζ1(s−)ζα(s−) ≥ 0. Taking the expectation in both
sides of (8.8) gives

P[fn(ζ1(t ∧ τk))] ≤ P[fn(ζ1(0))] + |b|
∫ t

0

P[|ζ1(s ∧ τk)|]ds+ 2cn−1kt

+n−1(αq)2/α α
√
k

∫ t

0

ds

∫ 1

0

z2γ(dz).

Now, if x(0) = y(0), we can let n→∞ in the inequality above to get

P[|x(t ∧ τk)− y(t ∧ τk)|] ≤ |b|
∫ t

0

P[|x(s ∧ τk)− y(s ∧ τk)|]ds.

Then P[|x(t∧ τk)−y(t∧ τk)|] = 0 for t ≥ 0 by Gronwall’s inequality. By letting k →∞
and using Fatou’s lemma we obtain the pathwise uniqueness for (8.6). �

Example 8.1 The stochastic integral equation (8.5) can be thought as a continuous time-
space counterpart of the definition (5.1) of the GWI-process. In fact, assuming µ =
E(ξ1,1) <∞, from (5.1) we have

y(n)− y(n− 1) =

y(n−1)∑
i=1

(ξn,i − µ)− (1− µ)y(n− 1) + ηn. (8.9)
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It follows that

y(n)− y(0) =
n∑
k=1

y(k−1)∑
i=1

(ξk,i − µ)− (1− µ)
n∑
k=1

y(k − 1) +
n∑
k=1

ηk. (8.10)

The exact continuous time-state counterpart of (8.10) would be the stochastic integral
equation

y(t) = y(0) +

∫ t

0

∫ ∞
0

∫ y(s−)

0

ξM̃(ds, dξ, du)−
∫ t

0

by(s)ds+ η(t), (8.11)

which is a typical special form of (8.5); see Bertoin and Le Gall (2006) and Dawson
and Li (2006). Here the ξ’s selected by the Poisson random measure M(ds, dξ, du) are
distributed in a i.i.d. fashion and the compensation of the measure corresponds to the
centralization in (8.10). The increasing Lévy process t 7→ η(t) in (8.11) corresponds to the
increasing random walk n 7→

∑n
k=1 ηk in (8.10). The additional term in (8.5) involving

the stochastic integral with respect to the Gaussian white noise is just a continuous time-
space parallel of that with respect to the compensated Poisson random measure.

Example 8.2 The stochastic differential equation (8.6) captures the structure of the CBI-
process in a typical special case. Let 1 < α ≤ 2. Under the condition µ := E(ξ1,1) <∞,
from (8.9) we have

y(n)− y(n− 1) = α
√
y(n− 1)

y(n−1)∑
i=1

ξn,i − µ
α
√
y(n− 1)

− (1− µ)y(n− 1) + ηn.

Observe that the partial sum on the right-hand side corresponds to a one-sided α-stable
type central limit theorem. Then a continuous time-state counterpart of the above equation
would be

dy(t) = α
√
αqy(t−)dz(t)− by(t)dt+ βdt, t ≥ 0, (8.12)

where {z(t) : t ≥ 0} is a standard Brownian motion if α = 2 and a spectrally positive
α-stable Lévy process with Lévy measure (α− 1)Γ(2−α)−1z−1−αdz if 1 < α < 2. This
is a typical special form of (8.6).

Example 8.3 When α = 2 and β = 0, the CB-process defined by (8.12) is a diffusion
process, which is known as Feller’s branching diffusion. This process was first studied by
Feller (1951).

Example 8.4 In the special case of α = 2, the CBI-process defined by (8.12) is known in
mathematical finance as the Cox–Ingersoll–Ross model (CIR-model), which was used by
Cox et al. (1985) to describe the evolution of interest rates. The asymptotic behavior of
the estimators of the parameters in the CIR-model was studied by Overbeck and Rydén
(1997). In the general case, the solution to (8.12) is called a α-stable Cox–Ingersoll–Ross
model (α-stable CIR-model); see, e.g., Jiao et al. (2017) and Li and Ma (2015).
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As a simple application of the stochastic equation (8.1) or (8.5), we can give a sim-
ple derivation of the joint Laplace transform of the CBI-process and its positive integral
functional. The next theorem extends the results in Section 4.

Theorem 8.8 Let Y = (Ω,F ,Ft, y(t),Px) be a Hunt realization of the CBI-process.
Then for t, λ, θ ≥ 0 we have

Px exp

{
− λy(t)− θ

∫ t

0

y(s)ds

}
= exp

{
− xv(t)−

∫ t

0

ψ(v(s))ds

}
,

where t 7→ v(t) = v(t, λ, θ) is the unique positive solution to (4.14).

Proof. We can construct the process {y(t) : t ≥ 0} as the solution to (8.1) or (8.5) with
y(0) = x ≥ 0. Let

z(t) =

∫ t

0

y(s)ds, t ≥ 0.

Consider a function G = G(t, y, z) on [0,∞)3 with bounded continuous derivatives up to
the first order relative to t ≥ 0 and z ≥ 0 and up to the second order relative to x ≥ 0. By
Itô’s formula,

G(t, y(t), z(t)) = G(0, y(0), 0) + local mart. +

∫ t

0

{
G′t(s, y(s), z(s))

+ y(s)G′z(s, y(s), z(s)) + [β − by(s)]G′y(s, y(s), z(s))

+ cy(s)G′′yy(s, y(s), z(s)) + y(s)

∫ ∞
0

[
G(s, y(s) + z, z(s))

−G(s, y(s), z(s))− zG′y(s, y(s), z(s))
]
m(dz)

}
ds

+

∫ t

0

ds

∫ ∞
0

[
G(s, y(s) + z, z(s))−G(s, y(s), z(s))

]
ν(dz).

We can apply the above formula to the function

GT (t, y, z) = exp

{
− v(T − t)x− θz −

∫ T−t

0

ψ(v(s))ds

}
.

Using (4.14) we see t 7→ GT (t ∧ T, y(t ∧ T ), z(t ∧ T )) is a local martingale, and hence
a martingale by the boundedness. From the relation Px[GT (t, y(t), z(t))] = GT (0, x, 0)
with T = t we get the desired result. �

The existence and uniqueness of strong solution to (8.1) were first established in Daw-
son and Li (2006). The moment condition (5.11) was removed in Fu and Li (2010). A
stochastic flow of discontinuous CB-processes with critical branching mechanism was
constructed in Bertoin and Le Gall (2006) by using weak solutions of a special case of
(8.1). The existence and uniqueness of strong solution to (8.6) were proved in Fu and Li
(2010) and those for (8.5) were given in Dawson and Li (2012) and Li and Ma (2008). The
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results of Bertoin and Le Gall (2006) were extended to flows of CBI-processes in Daw-
son and Li (2012) and Li (2014) using strong solutions. Although the study of branching
processes has a long history, the stochastic equations (8.1), (8.5) and (8.6) were not estab-
lished until the works mentioned above.

A natural generalization of the CBI-process is the so-called affine Markov process; see
Duffie et al. (2003) and the references therein. Those authors defined the regularity prop-
erty of affine processes and gave a number of characterizations of those processes under
the regularity assumption. By a result of Kawazu and Watanabe (1971), a stochastically
continuous CBI-process is automatically regular. Under the first moment assumption, the
regularity of affine processes was proved in Dawson and Li (2006). The regularity prob-
lem was settled in Keller-Ressel et al. (2011), where it was proved that any stochastically
continuous affine process is regular. This problem is related to Hilbert’s fifth problem; see
Keller-Ressel et al. (2011) for details.
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9 Local and global maximal jumps

In this section, we use stochastic equations of the CB- and CBI-processes to derive sev-
eral characterizations of the distributions of their local and global maximal jumps. Let us
consider a branching mechanism φ given by (2.13). Let {B(t)} be a standard Brownian
motion and {M(ds, dz, du)} a Poisson time-space random measure on (0,∞)3 with in-
tensity dsm(dz)du. By Theorem 8.2, for any x ≥ 0, there is a pathwise unique positive
strong solution to

x(t) = x+

∫ t

0

√
2cx(s−)dB(s)− b

∫ t

0

x(s−)ds

+

∫ t

0

∫ ∞
0

∫ x(s−)

0

zM̃(ds, dz, du). (9.1)

By Theorem 8.1, the solution {x(t) : t ≥ 0} is a CB-process with branching mechanism
φ. For t ≥ 0 and r > 0 let

Nr(t) =

∫ t

0

∫ ∞
r

∫ x(s−)

0

M(ds, dz, du),

which denotes the number of jumps with sizes in (r,∞) of the trajectory t 7→ x(t) on the
interval (0, t]. By (3.5) we have

P[Nr(t)] = m(r,∞)P

[ ∫ t

0

x(s)ds

]
= xb−1(1− e−bt)m(r,∞),

where b−1(1 − e−bt) = t for b = 0 by convention. In particular, we have P{Nr(t) <
∞} = 1. For r > 0 we can define another branching mechanism by

φr(z) = brz + cz2 +

∫ r

0

(e−zu−1 + zu)m(du), (9.2)

where

br = b+

∫ ∞
r

um(du).

For θ ≥ 0 let t 7→ u(t, θ) be the unique positive solution to (4.17). Let t 7→ ur(t, θ) be the
unique positive solution to

∂

∂t
u(t, θ) = θ − φr(u(t, θ)), u(0, θ) = 0. (9.3)

The following theorem gives a characterization of the distribution of the local maximal
jump of the CB-process:

Theorem 9.1 Let ∆x(t) = x(t)− x(t−) for t ≥ 0. Then for any r > 0 we have

Px

{
max
0<s≤t

∆x(s) ≤ r

}
= exp{−xur(t)},

where ur(t) = ur(t,m(r,∞)).
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Proof. Let Mr(ds, dz, du) and M r(ds, dz, du) denote the restrictions of M(ds, dz, du)
to (0,∞) × (0, r] × (0,∞) and (0,∞) × (r,∞) × (0,∞), respectively. We can rewrite
(9.1) into

x(t) = x+

∫ t

0

√
2cx(s−)dB(s) +

∫ t

0

∫ r

0

∫ x(s−)

0

zM̃r(ds, dz, du)

−
∫ t

0

brx(s−)ds+

∫ t

0

∫ ∞
r

∫ x(s−)

0

zM r(ds, dz, du),

where the last term collects the jumps with sizes in (r,∞) of {x(t)}. Let {xr(t)} be the
unique positive strong solution to

xr(t) = x−
∫ t

0

brxr(s−)ds+

∫ t

0

√
2cxr(s−)dB(s)

+

∫ t

0

∫ r

0

∫ xr(s−)

0

zM̃r(ds, dz, du).

Then {xr(t)} is a CB-process with branching mechanism φr. Let τr = inf{s ≥ 0 :
∆x(s) > r}. We have xr(s) = x(s) for 0 ≤ s < τr and{

max
0<s≤t

∆x(s) ≤ r

}
=

{∫ t

0

∫ ∞
r

∫ x(s−)

0

M r(ds, dz, du) = 0

}
=

{∫ t

0

∫ ∞
r

∫ xr(s−)

0

M r(ds, dz, du) = 0

}
.

Since the strong solution {xr(t)} is progressively measurable with respect to the filtra-
tion generated by {B(t)} and {Mr(ds, dz, du)}, it is independent of {M r(ds, dz, du)}.
Then {M r(ds, dz, du)} is still a Poisson random measure conditionally upon {xr(t)}. It
follows that

Px

{
max
0<s≤t

∆x(s) ≤ r

}
= Px

[
exp

{
−m(r,∞)

∫ t

0

xr(s)ds

}]
.

Then the desired result follows by Corollary 4.4. �

Corollary 9.2 Suppose that the measure m(du) has unbounded support. Then we have,
as r →∞,

Px

{
max
0<s≤t

∆x(s) > r

}
∼ xb−1(1− e−bt)m(r,∞).

Proof. Recall that t 7→ u(t, θ) is defined by (4.17) and t 7→ ur(t, θ) is defined by (9.3). It
is easy to see that u(t, 0) = ur(t, 0) = 0. Moreover, by (4.17) we have

∂

∂t

∂

∂θ
u(t, 0) = 1− b ∂

∂θ
u(t, 0),

∂

∂θ
u(0, 0) = 0.
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We can solve the above equation to get

∂

∂θ
u(t, 0) = b−1(1− e−bt), (9.4)

where b−1(1− e−bt) = t for b = 0 by convention. Similarly we have

∂

∂θ
ur(t, 0) = b−1

r (1− e−brt). (9.5)

By Theorem 9.1 it follows that

Px

{
max
0<s≤t

∆x(s) > r

}
= 1− exp{−xur(t,m(r,∞))},

For r > q > 0, we have obviously φ ≤ φr ≤ φq. By Corollary 4.6 we see

uq(t,m(r,∞)) ≤ ur(t,m(r,∞)) ≤ u(t,m(r,∞)).

It follows that

1− exp{−xuq(t,m(r,∞))} ≤ Px

{
max
0<s≤t

∆x(s) > r

}
≤ 1− exp{−xu(t,m(r,∞))}.

By (9.4) and (9.5), as r →∞ we have

1− exp{−xu(t,m(r,∞))} ∼ xu(t,m(r,∞))

∼ xb−1(1− e−bt)m(r,∞),

and

1− exp{−xuq(t,m(r,∞))} ∼ xuq(t,m(r,∞))

∼ xb−1
q (1− e−bqt)m(r,∞).

The proof is completed as we notice limq→∞ bq = b. �

We can also give some characterizations of the global maximal jump of the CB-
process. Let φ−1

r (θ) := inf{z ≥ 0 : φr(z) > θ} for θ ≥ 0. It is easy to see that
φ−1
r (m(r,∞)) → 0 as r → ∞ if and only if b ≥ 0. Let φ′(∞) be given by (3.2). By

Theorems 4.8 and 9.1 we have:

Corollary 9.3 Suppose that φ′(∞) > 0. Then for any r > 0 with m(r,∞) > 0 we have

Px

{
sup
s>0

∆x(s) ≤ r
}

= exp{−xφ−1
r (m(r,∞))}.

Corollary 9.4 Suppose that b > 0 and the measure m(du) has unbounded support. Then
as r →∞ we have

Px

{
sup
s>0

∆x(s) > r
}
∼ xb−1m(r,∞).
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The results on local maximal jumps obtained above can be generalized to the case of a
CBI-process. Let (φ, ψ) be the branching and immigration mechanisms given respectively
by (2.13) and (5.9) with ν(du) satisfying (5.11). Let {y(t) : t ≥ 0} be the CBI-process
defined by (8.1) with y(0) = x ≥ 0. For r > 0 let

ψr(z) = βz +

∫ r

0

(1− e−zu)ν(du).

Based on Theorem 8.8, the following theorem can be proved by modifying the arguments
in the proof of Theorem 9.1:

Theorem 9.5 Let ∆y(t) = y(t)− y(t−) for t ≥ 0. Then for any r > 0 we have

Px

{
max
0<s≤t

∆y(s) ≤ r

}
= exp

{
− xur(t)− ν(r,∞)t−

∫ t

0

ψr(ur(s))ds

}
,

where ur(t) = ur(t,m(r,∞)).

The results given in this section were adopted from He and Li (2016). We refer the
reader to Bernis and Scotti (2020) and Jiao et al. (2017) for more careful analysis of the
jumps of CBI-processes. In particular, the distributions of the numbers of large jumps
in intervals were characterized in Jiao et al. (2017). The analysis is important for the
study in mathematical finance as it allows one to describe in a unified way several recent
observations on the bond markets such as the persistency of low interest rates together
with the presence of large jumps.
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10 A coupling of CBI-processes

In this section, we give some characterizations of a coupling of CBI-processes constructed
by the stochastic equation (8.5). Using this coupling we prove the strong Feller property
and the exponential ergodicity of the CBI-process under suitable conditions. We shall
follow the arguments of Li and Ma (2015). Suppose that (φ, ψ) are the branching and
immigration mechanisms given respectively by (2.13) and (5.9) with ν(du) satisfying
(5.11). Let (Pt)t≥0 be the transition semigroup of the corresponding CBI-process defined
by (2.19) and (5.10).

Theorem 10.1 If {x(t) : t ≥ 0} and {y(t) : t ≥ 0} are positive solutions to (8.5)
with P{x(0) ≤ y(0)} = 1, then {y(t) − x(t) : t ≥ 0} is a CB-process with branching
mechanism φ.

Proof. By Theorem 8.4 we have P{x(t) ≤ y(t) for all t ≥ 0} = 1. Let z(t) = y(t)−x(t).
From (8.5) we have

z(t) = z(0) +
√

2c

∫ t

0

∫ y(s−)

x(s−)

W (ds, du)− b
∫ t

0

z(s−)ds

+

∫ t

0

∫ ∞
0

∫ y(s−)

x(s−)

zM̃(ds, dz, du)

= z(0) +
√

2c

∫ t

0

∫ z(s−)

0

W (ds, x(s−) + du)− b
∫ t

0

z(s−)ds

+

∫ t

0

∫ ∞
0

∫ z(s−)

0

zM̃(ds, dz, x(s−) + du),

where W (ds, x(s−) + du) is a Gaussian time-space white noise with intensity dsdu and
M(ds, dz, x(s−)+du) is a Poisson time-space random measure with intensity dsm(dz)du.
That shows {z(t)} is a weak solution to (8.5) with η(t) ≡ 0. Then it is a CB-process with
branching mechanism φ. �

For x ≥ 0 and y ≥ 0, let {x(t) : t ≥ 0} and {y(t) : t ≥ 0} be the positive strong
solutions to (8.5) with x(0) = x and y(0) = y. This construction gives a natural coupling
of the CBI-processes. Let τ(x, y) = inf{t ≥ 0 : x(t) = y(t)} be the coalescence time of
the coupling. The distribution of this stopping time is given in the following theorem.

Theorem 10.2 Suppose that Condition 3.5 holds. Then for any t ≥ 0 we have

P{τ(x, y) ≤ t} = P{y(t) = x(t)} = exp{−|x− y|v̄t}, (10.1)

where t 7→ v̄t is the unique solution to (3.19) with singular initial condition v̄0+ =∞.

Proof. It suffices to consider the case of y ≥ x ≥ 0. By Theorem 10.1 the difference
{y(t)− x(t) : t ≥ 0} is a CB-process with branching mechanism φ. By Theorem 3.4 the
probability P{τ(x, y) ≤ t} = P{y(t) = x(t)} is given by (10.1). �
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Theorem 10.3 Suppose that Condition 3.5 holds. Then for t > 0 and x, y ≥ 0 we have

‖Pt(x, ·)− Pt(y, ·)‖var ≤ 2(1− e−v̄t|x−y|) ≤ 2v̄t|x− y|, (10.2)

where ‖ · ‖var denotes the total variation norm.

Proof. Let {x(t) : t ≥ 0} and {y(t) : t ≥ 0} be given as above. Since {y(t) − x(t) :
t ≥ 0} is a CB-process with branching mechanism φ, for any bounded Borel function f
on [0,∞), we have

|Ptf(x)− Ptf(y)| =
∣∣P[f(x(t))]−P[f(y(t))]

∣∣
≤ P

[
|f(x(t))− f(y(t))|1{y(t) 6=x(t)}

]
≤ P

[
(|f(x(t))|+ |f(y(t))|)1{y(t)6=x(t)}

]
≤ 2‖f‖P{y(t)− x(t) 6= 0}
= 2‖f‖(1− e−v̄t|x−y|).

where the last equality follows by Theorem 10.2. Then we get (10.2) by taking the supre-
mum over f with ‖f‖ ≤ 1. �

By Theorem 10.3, for each t > 0 the operator Pt maps any bounded Borel function
on [0,∞) into a bounded continuous function, that is, the transition semigroup (Pt)t≥0

satisfies the strong Feller property.

Theorem 10.4 Suppose that b > 0. Then the transition semigroup (Pt)t≥0 has a unique
stationary distribution η given by

Lη(λ) = exp

{
−
∫ ∞

0

ψ(vs(λ))ds

}
= exp

{
−
∫ λ

0

ψ(z)

φ(z)
dz

}
, (10.3)

and Pt(x, ·)→ η weakly on [0,∞) as t→∞ for every x ≥ 0. Moreover, we have∫
[0,∞)

yη(dy) = b−1ψ′(0), (10.4)

where ψ′(0) is given by (5.13).

Proof. Since b > 0, we have φ(z) ≥ 0 for all z ≥ 0, so t 7→ vt(λ) is decreasing. By
Corollary 3.2 we have limt→∞ vt(λ) = 0. From (3.6) it follows that∫ t

0

ψ(vs(λ))ds =

∫ λ

vt(λ)

ψ(z)

φ(z)
dz.

In view of (5.10), we have

lim
t→∞

∫
[0,∞)

e−λy Pt(x, dy) = exp

{
−
∫ ∞

0

ψ(vs(λ))ds

}
= exp

{
−
∫ λ

0

ψ(z)

φ(z)
dz

}
.

By Theorem 1.2 there is a probability measure η on [0,∞) defined by (10.3). It is easy to
show that η is the unique stationary distribution for (Pt)t≥0. The expression (10.4) for its
first moment follows by differentiating both sides of (10.3) at λ = 0. �
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Theorem 10.5 Suppose that b > 0 and Condition 3.5 holds. Then for any x ≥ 0 and
t ≥ r > 0 we have

‖Pt(x, ·)− η(·)‖var ≤ 2[x+ b−1ψ′(0)]v̄r eb(r−t), (10.5)

where η is given by (10.3).

Proof. Since η is a stationary distribution for (Pt)t≥0, by Theorem 10.3 one can see

‖Pt(x, ·)− η(·)‖var =

∥∥∥∥∫
[0,∞)

[Pt(x, ·)− Pt(y, ·)]η(dy)

∥∥∥∥
var

≤
∫

[0,∞)

‖Pt(x, ·)− Pt(y, ·)‖varη(dy)

≤ 2v̄t

∫
[0,∞)

|x− y|η(dy)

≤ 2v̄t

∫
[0,∞)

(x+ y)η(dy)

= 2[x+ b−1ψ′(0)]v̄t,

where the last equality follows by (10.4). The semigroup property of (vt)t≥0 implies
v̄t = vt−r(v̄r) for any t ≥ r > 0. By (3.4) we see v̄t = vt−r(v̄r) ≤ eb(r−t) v̄r. Then (10.5)
holds. �

The result of Theorem 10.1 was used to construct flows of CBI-processes in Dawson
and Li (2012). Clearly, the right-hand side of (10.5) decays exponentially fast as t→∞.
This property is called the exponential ergodicity of the transition semigroup (Pt)t≥0. It
has played an important role in the study of asymptotics of the estimators for the α-stable
CIR-model in Li and Ma (2015).
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