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Abstract

The main purpose of the article is to provide a simpler and more
elementary alternative derivation of the large deviation principle for
multi-dimensional compound Poisson processes defined on [0,∞). The
result was originally obtained in [12], whose purpose was to establish
a large deviation principle which may be used directly in the study
of queuing systems and networks. Our new proof may be divided
into two steps. In the first step, we obtain the large deviation prin-
ciple for the processes relative to the vague topology from the finite
dimensional Cramér’s theorem by a projective limit argument. The
result of this step is close to the one of Lynch and Sethuraman in
[14], who considered one-dimensional processes defined on a finite in-
terval. The second step is to extend the large deviation principle to
the uniform-weak topology introduced in [12]. We do this by prov-
ing the exponential tightness of the processes under the uniform-weak
topology and then applying the inverse contraction principle (see[2]).
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1 Introduction

The theory of large deviations has found wide applications in queuing systems
and queuing networks (see [1, 2, 3, 4, 5, 6] and references there). According to
the opinion of R. Dobrushin, there are mainly two research directions which
can be considered as goals of the area. The first one is the investigation
of the so-called “bottle neck” problems. Typically, this is to establish the
fact that, under the condition of large delay of a message in the network,
the message spent most of its time at a single node in the network. The
second direction is to find explicit solutions of the large deviation problems
for specific queuing systems. Those solutions can be used then instead of
an exact analytical result. As it is well-known, there is no exact analytical
results for more or less general networks. Even for the tandem queuing
systems, the simplest one, there are only very cumbersome exact solutions
in some particular cases. Therefore, more restricted but explicit results on
the level of the large deviations would have practical interests.

Before the discussion, let us recall the definition of the large deviation
principle (for example, see [2]). Let X be a topological space. Of course,
X must possesses ‘good’ properties, for example, it is usually a polish space
or a Banach space. However, we shall neglect this in the definition. Let
{Pn, n = 1, 2, . . .} be a sequence of probability measures on the σ-algebra of
the Borel subsets of this space that converges to a δ-measure concentrated
at a point x0 ∈ X , that is

Pn ⇒ δx0 .

Let
I : X → [0,∞]

be a non-negative function possibly taking the infinite value.
One says that the large deviations principle holds for the sequence {Pn}

with the rate function I if

lim inf
n→∞

1

n
ln Pn(B) ≥ − inf

x∈B◦
I(x)

and

lim sup
n→∞

1

n
ln Pn(B) ≤ − inf

x∈B
I(x)

for each Borel set B ⊆ X . Here and in the sequel, B denotes the closure of
the set B and B◦ denotes its interior.
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The well-known Cramér’s theorem described below is a typical example
of the large deviations principle. Let X = R and let Pn be the distribution
of the average Sn/n, where Sn =

∑n
i=1 ξi is the sum of the independent

identically distributed random variables {ξi}. If E|ξ1| < ∞ than Pn ⇒ Eξ1.
Assume the exponential decay of the distribution tail of ξi, namely, there
exist constants θ− < 0 < θ+ such that

ϕ(θ) = Eeθξ1 < ∞ (1)

for θ ∈ (θ−, θ+). The Cramér theorem states that the large deviation princi-
ple for the Pn is satisfied with the rate function

I(x) = sup
θ
{xθ − ln ϕ(θ)}.

We refer the reader to [2, 7, 8, 9] for details.
In queuing theory we need to consider large deviation principles for stochas-

tic processes. Let us illustrate this by considering the classical queuing sys-
tem having only one server and one input flow of messages to the server.
Every message has a length. The server translates the messages with rate
one, hence a message is treated by the server in a period of time equal to its
length. The server works according to the first coming – first service (FCFS)
discipline. It is assumed that there exists an infinite buffer where messages
wait for their services if the server is occupied at their arrivals. The input
flow can be described by a marked point process (ηn, ξn), where (ηn) is a
random configuration of points on R, which is interpreted as the times of
message arrivals, and ξn is a mark assigned to the point ηn, which represents
the length of the arrived message. In the following we assume that the input
flow is a Poisson one, that is τn = ηn+1− ηn has the exponential distribution
Pr(τn > x) = exp{−λx} for a constant λ > 0; the random vectors (ηn, ξn) are
independent and identically distributed; and the sequences (ηn) and (ξn) are
independent. We assume further that λϕ′(0) < 1, so the system has a steady
state. Let us consider a system in its steady state. The processes of interests
are the length ν(t) of a queue and the time delay ω(t) of a message in the
system if it arrives to the system at the moment t. The processes ν(t) and
ω(t) are determined by the input flow in a unique way. The large deviation
principle for those process is not an easy problem. Observe that both ν(t)
and ω(t) are Markov processes if the distribution of ξ1 is exponential (see,
however, [10] and [11]).
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It is natural to think that a designer of the queuing systems needs to
estimate the probabilities

Pr(ν(t) > b) and Pr(ω(t) > a)

at a fixed moment t. Because the system is studied in the steady state we
can take t = 0. It is possible to express the functionals ν(0) and ω(0) in
terms of the process (ηn, ξn). For example,

ω(0) = sup
t≥0
{ζ(t)− t},

where ζ(t) is a compound Poisson process in terms of (ηn, ξn) as

ζ(t) =
∑

i: 0≤ηi<t

ξi.

Therefore, it is enough to have the large deviation principle for the process
ζ(t). This program was realized in [12].

Before the work of [12], many works have been devoted to the principles
of large deviations for processes with independent increments and other sim-
ilar classes of processes (for example, see [13], [14], [15], [16]). However, none
of them can be applied directly to the above problems. The first difficulty
is connected with the usually imposed hypothesis that the exponential mo-
ment of jumps Eeθξ of the compound Poisson process are finite for all θ. This
excludes the important special case where ξ has an exponential distribution,
which corresponds to the most important exponential service time queuing
system. Including the case where Eeθξ is finite for only small enough θ es-
sentially complicates the study of the large deviations. In the case when all
exponential moments exist a large increment of the process can arise only
as a result of a cumulative contribution of many small jumps, while in the
case of exponential distribution such a increment can also arise as a result of
one big jump. It turns out that the formula for the rate function, which is
well-known for the case of the processes with all finite exponential moments,
requires an essential modification in the case of infinite moments.

The interesting large deviation principle for compound Poisson processes
of Lynch and Sethuraman [14] includes the case of infinite exponential mo-
ments. But they only considered scalar-valued processes defined on a finite
interval. In the study of queuing systems, we need to consider vector-valued
processes defined on the half-line. (Observe that ω(0) is a functional of the
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process on the half-line.) Although the large deviation principles on finite in-
tervals may be extended to their half-line versions using the projective limit
arguments, the resulted projective limit topology on the trajectory space
are too weak for the applications. For example, if we consider the event
(ω(0) > x) for a positive x, then the set of trajectories corresponding to this
event is

A =

{
x(t) : sup

t≥0
{x(t)− t} > x

}
.

However, it turns out that the closure A of the set A in the projective limit
topology includes each of the trajectories

x(t) = at, t ∈ [0,∞),

where a ∈ R1. Indeed, the sequence

xn(t) =

{
at, if t ≤ n,

2(t− n) + an, if T > n

from A converges to x(t) = at in the projective limit. Therefore, applications
of large deviation principles for the projective limit topology only give trivial
estimates.

A new topology, the uniform-weak topology, on the trajectory space was
introduced in [12], which overcomes the shortcomings mentioned above. (We
shall review the definition of this topology in the next section.) In [12] a
large deviation principle was established for vector-valued compound Poisson
processes on [0,∞) relative to the uniform-weak topology. An application of
this large deviation principle to the simplest network, the tandem system,
was given in [5]. It was shown there that the bottle neck effect holds in the
tandem system on the level of large fluctuations of the delay. In [6] the large
deviations for the two dimensional functional (ν(0), ω(0)) was obtained. The
large deviation principle for a two dimensional compound Poisson process
with dependent components was involved in this investigation.

Since the proof of the large deviation principle in [12] was sophisticated
and based on a general large deviation principle on abstract vector spaces,
we think it is of interest to provide a simpler and more elementary alterna-
tive derivation of the result from the viewpoint of applications. This is the
main purpose of the present paper. Since only compound Poisson processes
with non-decreasing paths are used in the study of queuing systems, we shall
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restrict to this particular type of processes, which simplifies considerably the
proof. Our proof may be divided into two steps. In the first step, we obtain
the large deviation principle for the compound Poisson process relative to the
vague topology from the finite dimensional Cramér’s theorem by a projective
limit argument. In this step we calculate the rate function. The difference
from [14] is that Lynch and Sethuraman considered one-dimensional pro-
cesses on a finite interval while we consider multi-dimensional processes on
the half line. The second step is to extend the large deviation principle from
the vague topology to the uniform-weak one using the inverse contraction
principle. This step enlarges the class of Borel sets keeping the same the rate
function.

2 Large deviation principle for compound

Poisson processes on [0,∞)

Now we specialize the three objects introduced in the definition of a large
deviation principle: the topological space X , the sequence of measures {Pn}
and the rate function I.

We start with the space X . Let X be the space of functions x : (−∞,∞) →
Rr with the following three properties:

1) For any x ∈ X and any t < 0 we have x(t) = 0.
2) All the functions x ∈ X are non-decreasingly monotone.
3) The functions x ∈ X are right-continuous at each point t ∈ R, i.e.,

x(t) = x(t + 0) = lim
u↓t

x(u).

4) The limits

v(x) = lim
t→∞

x(t)

1 + t

exist and are finite.
The condition 1) is rather formal. It is convenient way to include a jump

of x at 0.
There is a one-to-one correspondence between the functions x ∈ X and

positive Rr-valued measures µx on [0,∞). This correspondence is defined by
the relation

x(t) = µx([0, t]), t ≥ 0.
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Let Φ be the set of all continuous Rr-valued functions φ(t), t ∈ R, with
compact support, i.e. it vanishes out of a finite interval [−Tφ, Tφ]. For φ ∈ Φ
and x ∈ X we let

Jφ(x) = 〈φ,x〉 =

∫ ∞

0

φ(t)x(t) dt.

Here and in the following ab is the inner product of vectors a, b ∈ Rr. It is
clear that, for any fixed function φ ∈ Φ, this defines a linear functional Jφ

on the space X . To each function φ ∈ Φ we associate a function

φ̂(t) =

∫ ∞

t

φ(u) du. (2)

The function φ̂ is continuously differentiable and vanishes for large enough
t ≥ 0. Then

Jφ(x) =

∫ ∞

0

φ̂(t)µx(dt). (3)

For any number T ≥ 0 we define the shift operator ST by

ST φ(t) = φ(t− T ), t ∈ R1, φ ∈ Φ.

The topology on X is defined by the system of pseudometrics

ρφ(x,y) = sup
t≥0

{
1

1 + t
|JSnφ(x− y)|

}
, φ ∈ Φ.

That is, a sequence {xN ∈ X , N = 1, 2, . . .} converges to x ∈ X if and only
if

lim
N→∞

ρφ(x,xN) = 0 for all φ ∈ Φ. (4)

We shall call this topology the uniformly-weak topology .
Next we describe the probability measures {Pn}. Let us recall a de-

scription of a compound Poisson process ζ(t). Suppose that π be a positive
measure on the space Rr such that∫

Rr

|y|π(dy) < ∞. (5)

A probability measure P π on Borel subsets of the space X is the distribution
of a compound Poisson process ζ(t) with jump measure π if for any function
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φ ∈ Φ the characteristic function is

Eei〈φ,ζ〉 =

∫
X

exp {iJφ(x)}Pπ(dx) = exp

{∫ ∞

0

∫
Rr

(exp{iyφ̂(t)} − 1)π(dy)dt

}
(6)

(see the notation (2)). Heuristically this means that we are considering a
time-homogeneous Poisson process such that the probability for a jump with
size y ∈ A to happen in the time interval dt is equal to π(A)dt if π(A) < ∞.
It follows from the definition (6) that

v(x) = m,

with the P π-probability 1, where

m =

∫
Rr

yπ(dy)

is the mean value of π. For the considered case of non-decreasing paths the
measure π is concentrated in Rr

+.
Let Fn : X → X be the transformation

x(t) → xn(t) =
1

n
x(nt). (7)

It is easy to check that the conditions 1) – 4) included in the definition of the
space X are valid for the function xn(t) if they are valid for x(t). Let P π

n be
the measure on X induced by the transformation Fn from the measure P π.
It is easy to understand that P π

n defines again a compound Poisson process
ζn(t) with the jump measure

πn(A) = nπ(nA).

Obviously we have

ζn(t) =
ζ(nt)

n
. (8)

Now let us define the rate function I. Suppose that for some a > 0 we
have ∫

Rr

(ea|y| − 1)π(dy) < ∞. (9)

This inequality implies the condition (5). Let

q(θ) =

∫
Rr

(eθy − 1)π(dy), θ ∈ Rr, (10)
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and let Θπ be the set of points θ ∈ Rr for which q(θ) < ∞. It is easy to
check that q(θ) is a convex function of θ ∈ Rr and so Θπ is a convex set.

Let
Λa(x) = sup

θ∈Θπ

{θx− q(θ)}, x ∈ Rr. (11)

The function Λa(x) is called the Legendre transformation of the function q. It
is a convex function of x with values in [0,∞]. (Observe that θx−q(θ) = 0 if
θ = 0.) Let Θ◦

π be a set of all inner points of the set Θπ, which is non-empty
because of the condition (9). It is clear that q(θ) is smooth in the domain Θ◦

π.
If for some x ∈ Rr there exists θx ∈ Θ◦

π such that the value of the gradient

∇q(θx) = x,

then
Λa(x) = θxx− q(θx)

(see [17], §26). It is clear that ∇q(0) = m and so

Λa(m) = 0. (12)

For an absolutely continuous function xa ∈ X , i.e.,

xa(t) =

∫ ∞

0

ẋa(u)du,

we set

Ia(xa) =

∫ ∞

0

Λa(ẋa(u))du. (13)

(The integral is meaningful because Λa ≥ 0.)
Let

Λs(x) = sup
θ∈Θπ

θx. (14)

Then we have

Λs(x) = lim
γ→∞

1

γ
Λa(γx), x ∈ Rr.

In order to see this, let U ⊂ Rr be the ball centered at 0 with radius 1. If
θ /∈ Θπ then θx− q(θ) = −∞. Therefore

lim sup
γ→∞

1

γ
Λa(γx)

≤ lim sup
γ→∞

[
sup
θ∈Θπ

{
θx− 1

γ
θ

∫
U

yπ(dy)

}
− 1

γ

∫
Uc

π(dy)

]
= Λs(x).
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On the other hand, for any fixed θ ∈ Θπ and x we have

γ−1(θγx− q(θ)) → θx

as γ →∞. Therefore

lim inf
γ→∞

1

γ
Λa(γx) ≥ θx, (15)

as desired. We note also that Λs(x) is a convex non-negative function of
x ∈ Rr (see [17], §13). It is linear on the ray {λx, 0 ≤ λ < ∞} for any
x ∈ Rr. If r = 1, then

Λs(x) =


x sup{θ : θ ∈ Θπ}, if x > 0,

0 if x = 0,

∞, if x < 0.

(16)

We introduce the system P of all finite partitions Π = {−∞ < t0 < t1 <
· · · < tn < ∞}, n = 1, 2, . . .. Let xs is singular, i.e. a function such that the
corresponding measure µxs is singular with respect to the Lebesgue measure.
We define

IΠ
s (xs) =

n∑
k=1

Λs(xs(tk)− xs(tk−1))

then
Is(xs) = sup

Π∈P

{
IΠ
s (xs)

}
. (17)

Any function x ∈ X can be represented in a unique way as

x = xa + xs,

where xa is an absolutely continuous function, and xs is singular. The rate
function I is the sum

I(x) = Ia(xa) + Is(xs). (18)

We shall say that a partition Π′ = {−∞ < t′0 < t′1 < . . . < t′n′ < ∞}
is a subpartition of the partition Π if each point t′i coincides with one of the
points tk. It follows from non-negativity and subadditivity of the function
Λs that, if Π′ is a subpartition of Π, then

IΠ′

s (xs) ≤ IΠ
s (xs).

Hence we can also interpret Is(xs) as the limit of IΠ
s (xs) with respect to the

partial ordering of the set P defined by the subpartitions.
The main theorem of this paper is the following
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Theorem 1 ([12]) If condition (9) is true then the sequence of the proba-
bility measures {P π

n , n = 1, 2, . . .} satisfies the large deviations principle with
the rate function I defined in (18), (13), and (17).

3 Proof of the theorem

As mentioned before, our proof may be divided into two steps. In the first
step, we obtain the large deviation principle for the process relative to the
vague topology from the finite dimensional Cramér’s theorem by a projective
limit argument. The second step is to extend the large deviation principle
from the vague topology to the uniform-weak one using the inverse contrac-
tion principle.

3.1 Large deviation principle for the compound Pois-
son process under vague topology

Recall that P π
n denotes the distribution on X of the processes ζn (see (8)).

Given a partition Π = {−∞ < t0 < t1 < · · · < tm < ∞} let

IΠ(x) =
m∑

i=1

(ti − ti−1)Λa([x(ti)− x(ti−1)]/(ti − ti−1)). (19)

In the next proposition we define the rate function on X by

I(x) = sup
Π∈P

IΠ(x). (20)

The one-dimensional version of the following large deviation principle was
proved by Lynch and Sethuraman [14].

Proposition 2 The sequence {P π
n } satisfies the large deviation principle

with rate function defined by (20) and (19).

Proof. The random vector ζn(t) − ζn(s) has the same distribution as
1
n

∑n
k=1 ζk(t − s), where ζk(u) k = 1, ..., n, is a sequence of independent

identically distributed processes having the distribution coinciding with ζ(u).
By Cramér’s theorem, the sequence ζn(t)− ζn(s) satisfies the large devi-

ation principle with regular rate function

(t− s)Λa(x/(t− s)) = sup
θ∈Θπ

{θx− (t− s)q(θ)}, x ∈ Rr.
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Let Π = {−∞ < t0 < ... < tm < ∞} be a partition. By the independent
increments property, the distributions of (x(t1)−x(t0), . . . , x(tm)−x(tm−1))
under P π

n , n = 1, 2, . . ., satisfies the large deviation principle with regular
rate function

JΠ(x1, . . . , xm) :=
m∑

i=1

(ti − ti−1)Λa(xi/(ti − ti−1)).

Note that the map Rrm → Rrm defined by (x(t1)−x(t1), ...,x(tm)−x(tm−1)) 7→
(x(t1), ...,x(tm)) is continuous. By the contraction principle (see [2, Theo-
rem 4.2.1]), the distributions of (x(t1), . . . , x(tm)) under P π

n , n = 1, 2, . . .,
satisfies the large deviation principle with regular rate function IΠ defined by
(19). Since the pointwise convergence in X implies the vague convergence,
the desired large deviation principle follows by a projective limit argument
(see e.g. [18] or [2, Theorem 4.7.1]). �

Proposition 3 Let I be defined by (20) and (19). Then for any x ∈ X we
have

I(x) = sup
f∈B[0,∞)

{ ∫ ∞

0

f(t)µx(dt)−
∫ ∞

0

q(f(t))dt

}
, (21)

where B[0,∞) is the set of bounded Borel functions on [0,∞) taking its values
in Θπ. The equality remains true when B[0,∞) is replaced by C[0,∞) or
D[0,∞), where C[0,∞) = { continuous functions in B[0,∞)} and D[0,∞)
= { piecewise constant functions in B[0,∞)}.

Proof. For any Π ∈ P let DΠ
0 [0,∞) be the subset of D[0,∞) consisting of

functions which have bounded supports and are constant on each partition
interval of Π. From (19) it is not hard to see that

IΠ(x) = sup
f∈DΠ

0 [0,∞)

{ ∫ ∞

0

[f(t)ẋΠ(t)− q(f(t))]dt

}
, (22)

where

xΠ(t) =

{
x(ti−1) + x(ti)−x(ti−1)

ti−ti−1
(t− ti−1), if ti−1 ≤ t ≤ ti,

x(tm) + mt, if t > tm.

It follows from (20) that

I(x) = sup
f∈D[0,∞)

sup
Π∈P

{ ∫ ∞

0

[f(t)ẋΠ(t)− q(f(t))]dt

}
. (23)

12



For any f ∈ D[0,∞) with bounded support we have f ∈ DΠ
0 [0,∞) for some

Π ∈ P , so ∫ ∞

0

f(t)µx(dt) =

∫ ∞

0

f(t)ẋΠ(t)dt. (24)

In view of (23) and (24) we have

I(x) ≥ sup
f∈D[0,∞)

{ ∫ ∞

0

f(t)µx(dt)−
∫ ∞

0

q(f(t))dt

}
. (25)

Using a monotone class argument one sees that D[0,∞) is dense in B[0,∞)
by pointwise convergence. Therefore, (25) yields

I(x) ≥ sup
f∈B[0,∞)

{ ∫ ∞

0

f(t)µx(dt)−
∫ ∞

0

q(f(t))dt

}
. (26)

On the other hand, by (20) for any η < I(x) there is Π ∈ P satisfying
η < IΠ(x). By (22), we can find f ∈ DΠ

0 [0,∞) such that

η <

∫ ∞

0

[f(t)ẋΠ(t)− q(f(t))]dt =

∫ ∞

0

f(t)µxΠ(dt)−
∫ ∞

0

q(f(t))dt.

It follows that

I(x) ≤ sup
f∈D[0,∞)

{ ∫ ∞

0

f(t)µx(dt)−
∫ ∞

0

q(f(t))dt

}
.

Since each f ∈ D[0,∞) can be approximated by a sequence {fn} ⊆ C[0,∞),
the inequality also holds when D[0,∞) is replaced by C[0,∞). These and
(26) yield the desired equalities. �

Proposition 4 For any x = xa + xs ∈ X we have

I(x) = Ia(xa) + Ĩs(xs). (27)

where

Ĩs(xs) = sup
f∈B[0,∞)

{ ∫ ∞

0

f(t)µxs(dt)

}
. (28)
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Proof. By Proposition 3 we at least have

I(x) ≤ Ia(xa) + Ĩs(xs). (29)

Moreover, there is a sequence {fn} ⊆ B[0,∞) such that∫ ∞

0

fn(t)µxa(dt)−
∫ ∞

0

q(fn(t))dt → Ia(xa)

as n →∞. Similarly, by (28) there is {gn} ⊆ B[0,∞) such that∫ ∞

0

gn(t)µxs(dt) → Ĩs(xs)

as n → ∞. Let F ⊂ [0,∞) be of zero Lebesgue measure and µxs(F ) =
µxs [0,∞). Define the sequence {hn} ⊆ B by

hn(t) = fn(t)1F c(t) + gn(t)1F (t).

It is easy to see that∫ ∞

0

hn(t)µx(dt)−
∫ ∞

0

q(hn(t))dt → I(xa) + Ĩs(xs).

Then (27) follows from (21) and (29). �
It is simply to check that

Is(xs) = Ĩs(xs).

Now we have obtained the desired large deviation principle under the
vague topology.

3.2 Inverse contraction principle

Suppose that {Pn} is a sequence of the probability measures on a topological
space Y such that Pn ⇒ δx for x ∈ Y . We say {Pn} is exponentially tight if
for any ε > 0 there is a compact set K ⊂ Y such that Pn(Kc) ≤ εn.

To extend the large deviation principle to the uniform-weak topology we
appeal to the following
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Theorem 5 ([2, Corollary 4.2.10]) Let a set X be equipped with two Haus-
dorff topologies τ1 and τ2, where τ2 is coarser than τ1. Assume that a sequence
of probability measures {Pn} satisfies the large deviation principle with rate
function I : X → [0,∞] under the topology τ2. If {Pn} is exponentially tight
with respect to the topology τ1, then the large deviation principle holds for
{Pn} with the same rate function I relative to τ1.

Since the uniform-weak topology is finer than the vague topology, in
order to finish the proof of Theorem 1 we need only to show that {P π

n }
(see the section 2) is exponentially tight in the uniform-weak topology. In
the following two subsections, we shall give a description of a class of compact
subsets of X and use it to prove the exponential tightness.

3.2.1 Compact sets

In this subsections, we describe a class of compact subsets of X .

Lemma 6 If xn → x in X in the uniform weak topology, then we have

lim
n→∞

〈xn, φ〉 = 〈x, φ〉, φ ∈ Φ, (30)

and
lim

n→∞
v(xn) = v(x). (31)

Under the additional condition

lim
t→∞

sup
n

∣∣∣∣xn(t)

1 + t
− v(xn)

∣∣∣∣ = 0, (32)

in order that xn → x in the uniform weak topology it is necessary and suffi-
cient that (30) and (31) hold.

Proof. First observe that for any φ ∈ Φ and x ∈ X we have

lim
k→∞

∣∣∣∣〈x, Skφ〉
1 + k

− v(x)

∫ ∞

−∞
φ(t)dt

∣∣∣∣ = 0. (33)

Suppose that xn → x in X in the uniform weak topology. The relation (30)
follows from (4) in an evident way. By (33), we have

lim
k→∞

1

1 + k
〈xn − x, Skφ〉 = (v(xn)− v(x))

∫ ∞

−∞
φ(t)dt.
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From this and the definition of ρφ it follows that

ρφ(xn,x) ≥
∣∣∣∣(v(xn)− v(x))

∫ ∞

−∞
φ(t) dt

∣∣∣∣ .

Since limn→∞ ρφ(xn,x) = 0 for all φ ∈ Φ, we get (31).
Now we assume that the conditions (30), (31) and (32) are satisfied.

Observe that∣∣∣∣〈xn, Skφ〉
1 + k

− v(xn)

∫ ∞

−∞
φ(t)dt

∣∣∣∣ =

∣∣∣∣ ∫ ∞

−∞
φ(t)

(
xn(t + k)

1 + k
− v(xn)

)
dt

∣∣∣∣
≤=

∫ ∞

−∞
|φ(t)|

∣∣∣∣xn(t + k)

1 + t + k
− v(xn)

∣∣∣∣dt +

∫ ∞

−∞
|φ(t)| |xn(t + k)t|

(1 + k)|1 + t + k|
dt. (34)

Both terms on the right hand side of (34) goes to zero uniformly in n =
1, 2, . . . as k →∞. Then we have proved that

lim
k→∞

sup
n

∣∣∣∣〈xn, Skφ〉
1 + k

− v(xn)

∫ ∞

−∞
φ(t)dt

∣∣∣∣ = 0. (35)

It follows from (33) and (35) that for any ε > 0 there exists a value N =
N(ε, φ) such that∣∣∣∣〈xn − x, Skφ〉

1 + k

∣∣∣∣ ≤ ε + |v(xn)− v(x)|
∫ ∞

−∞
|φ(t)|dt

for all n ≥ 1 and k ≥ N . The condition (31) enables us to state

sup
k≥N

∣∣∣∣〈xn − x, Skφ〉
1 + k

∣∣∣∣ ≤ 2ε

for large enough n ≥ 0. Then we see that the conditions (30), (31) and (32)
imply the convergence xn → x in the uniform weak topology. �

Lemma 7 Let C and D be right continuous, nonnegative functions on [0,∞).
Suppose that C is increasing, D is decreasing and D(t) → 0 as t → ∞. Let
K = K(C, D) be the set of functions x ∈ X such that x(t) ≤ C(t) and∣∣∣∣ x(t)

1 + t
− v(x)

∣∣∣∣ ≤ D(t) (36)

for all t ∈ [0,∞). Then K is a metrizable, compact subset of X .
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Proof. Let d be a metric on X that agrees with the vague topology and
let

ρ(x,y) = d(x,y) + |v(x)− v(y)|, x,y ∈ K.

By Lemma 6 one may see that ρ is a metric on K that agrees with the uniform
weak topology, that is, K is a metrizable space. Consequently, we need only
to show that K is closed and sequentially compact. Consider a sequence
{xn} ⊆ K such that xn → x in the uniform weak topology in X . By Lemma
6 we have v(xn) → v(x) and xn → x vaguely. Then xn(t) → x(t) for all
continuity points t ≥ 0 of x. It follows that x(t) ≤ C(t), first for continuity
points of x and then for all t ≥ 0 by the right continuity. Similarly we get
(36). Therefore, K is a closed subset of X .

Now let {xn} ⊆ K. Then the sequence {xn(t)} is bounded for each t ≥ 0.
By the definition of K we have |v(xn)| ≤ C(0) + D(0). It follows that the
sequence {v(xn)} is also bounded. Using a diagonal procedure we can find
a subsequence {nk} such that v(xnk

) → some v ∈ [0,∞) and xnk
→ some

x ∈ X vaguely as k →∞. Then (36) holds clearly. Therefore, x ∈ X and K
is sequentially compact. �

3.2.2 Exponential tightness

We prove in this subsection the exponential tightness for the processes ζn (see
(8)) having the probability distribution {P π

n }, from which the main theorem
follows.

Proposition 8 For any ε > 0 there exists a compact K(ε) ⊂ X such that
for any n the probability

P π
n (x /∈ K(ε)) = Pr (ζn /∈ K(ε)) ≤ εn.

Proof follows from the following lemmas. �

Lemma 9 For any ε > 0 there exists a right continuous, nonnegative, in-
creasing function Cε on [0,∞) such that

Pr
{
ζn(t) > Cε(t) for some t ≥ 0

}
≤ εn/2 (37)

for all n = 1, 2, . . ..
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Proof. Let η > 0 be the constant such that η ≤ a (see (9)). By Cheby-
shev’s inequality, for l > 0 we have

Pr{ζ(nt) > nl} ≤ exp{ntq(η, . . . , η)− nηl}. (38)

For any K ≥ 0 there is a value α = α(K) so large that q(η, . . . , η)−αη ≤ −K.
Letting l = αt in (38) we see that

Pr{ζn(t) > αt} ≤ exp{−nKt}.

Consequently,
∞∑

k=1

Pr{ζn(k) > αk} ≤ exp{−nK}
1− exp{−nK}

. (39)

But the path of ζn(t) : t ≥ 0 is non-decreasing, so ζn(t) > α(t + 1) for some
t ≥ 0 implies ζn(k) > αk for some integer k ≥ 1. By (39) it follows that

Pr
{
ζn(t) > α(K)(t + 1) for some t ≥ 0

}
≤ exp{−nK}

1− exp{−nK}
. (40)

For any ε > 0 we choose the value K = K(ε) ≥ 0 such that e−K ≤
min{1/2, ε/4} and let Cε(t) = α(K)(t + 1). Then we get (37) from (40).
�

Lemma 10 For any integers n, p ≥ 1 we have

∞∑
k=p

e−n
√

k ≤ 2

n
(
√

p− 1 + 1)e−n
√

p−1. (41)

Proof The inequality follows as we observe

∞∑
k=p

e−n
√

k ≤
∫ ∞

p−1

e−n
√

xdx = 2

∫ ∞

√
p−1

ye−nydy

and compute the value on the right side. �

Lemma 11 For any ε > 0 there exists a decreasing sequence {lk} such that
lk → 0 as k →∞ and

Pr

{∣∣∣∣ζn(k)

1 + k
−m

∣∣∣∣ > lk for some integer k ≥ 0

}
≤ εn

4

for all n = 1, 2, . . ..
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Proof. Let δ > 0 be a constant such that (9) holds whenever a ≤ δ. Let
{ζ i

n(t)} denote the i-th component of the process {ζn(t)}. By Chebyshev’s
inequality, for l ≥ 0 and |η| ≤ δ we have

Pr{ζ i
n(s) > l} ≤ exp{nsqi(η)− nηl}, (42)

where qi(η) = q(θ1, . . . , θd) with θi = η and θj = 0 for j 6= i. Recall that
Eζ(t) = mt for t ≥ 0. Let mi denote the i-th component of m. By the
assumption (9) we have

∂qi

∂η
(0) = mi and

∂2qi

∂η2
(0) < ∞.

Consequently, there are constants ai > 0 and δ1 > 0 such that

qi(η)− ηmi ≤ aiη2

whenever |η| ≤ δ1. Then for any l > 0 we can find a constant η = η(l) > 0
such that

qi(η)− ηmi − ηl < 0. (43)

By (42) and (43), for some constant c+
i (l) > 0 we have

Pr{ζ i
n(s) > sl + mis} ≤ exp{−nsc+

i (l)}. (44)

In a similar way, we find the constant c−i (l) > 0 such that

Pr{ζ i
n(s) < −sl + mis)} ≤ exp{−nsc−i (l)}. (45)

Summing up the inequalities (44) and (45) over i = 1, . . . , d we see that for
any l > 0 there exists a constant c(l) > 0 such that

Pr{|ζn(s)− sm| > sl} ≤ 2d exp{−nsc(l)}

for all s ≥ 0. Of course, we have c(l) → 0 as l → 0. Nevertheless we
can choose a monotone sequence {lk} such that kc(lk) ≥

√
k and lk → 0 as

k →∞. It follows that

Pr{|ζn(k)− km| > klk} ≤ 2d exp
{
−n

√
k
}

.

Using the inequality (41) we can find sufficiently large p = p(ε) so that

∞∑
k=p

Pr{|ζn(k)− km| > klk} ≤
εn

8
.
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This implies that

Pr{|ζn(k)− km| ≤ klk for all integers k ≥ p} ≥ 1− εn

8
,

and hence

Pr

{∣∣∣∣ζn(k)

1 + k
−m

∣∣∣∣ ≤ lk +
|m|

1 + k
for all integers k ≥ p

}
≥ 1− εn

8
, (46)

From Lemma 9 we derive that

Pr

{∣∣∣∣ζn(k)

1 + k
−m

∣∣∣∣ ≤ R for all integers 0 ≤ k < p

}
≥ 1− εn

8
. (47)

for large enough constant R = R(ε). Now the desired result follows from
(46) and (47). �

Lemma 12 For any ε > 0 there exists a decreasing sequence {dk} such that
dk → 0 as k →∞ and

Pr

{
|ζn(k + 1)− ζn(k)|

1 + k
≥ dk for some integer k ≥ 0

}
≤ εn

4
. (48)

for all n = 1, 2, . . ..

Proof. Let η ≤ a (see(9)). By Chebyshev’s inequality, for l > 0 we have

Pr{|ζn(k + 1)− ζn(k)| > l} ≤ exp{−nηl + nq(η, . . . , η)}. (49)

We take a constant A > 0 and let

dk =
1

(k + 1)η
[q(η, . . . , η) + A + 2 ln(k + 1)] . (50)

It follows from (49) and (50) that

∞∑
k=0

Pr

{
|ζn(k + 1)− ζn(k)|

1 + k
> dk

}
≤ e−nA

∞∑
k=0

1

(k + 1)2
.

Then for any ε > 0 we can choose A = A(ε) so large that (48) holds for all
n = 1, 2, . . .. �
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Lemma 13 For any ε > 0 there exists a right continuous, nonnegative,
decreasing function Dε on [0,∞) such that Dε(t) → 0 as t →∞ and

Pr

{∣∣∣∣ζn(t)

1 + t
−m

∣∣∣∣ > Dε(t) for some t ≥ 0

}
≤ εn

2
(51)

for all n = 1, 2, . . ..

Proof. Let the sequences {lk} and {dk} be provided by Lemmas 11 and
12, and let Dε(k) = 2lk + dk + |m|/(k + 1). Then {Dε(k)} is decreasing and
Dε(k) → 0 as k → ∞. Let Dε(t) = Dε([t]), where [t] denotes the integer
part of t ≥ 0. Observe that for k ≤ s < k + 1 we have∣∣∣∣ζn(s)

1 + s
−m

∣∣∣∣ ≤ ∣∣∣∣ζn(k)

1 + k
−m

∣∣∣∣ +
|ζn(s)− ζn(k)|

1 + s
+
|ζn(k)|(s− k)

(1 + k)(1 + s)

≤
∣∣∣∣ζn(k)

1 + k
−m

∣∣∣∣ +
|ζn(s)− ζn(k)|

1 + k
+

1

1 + s

∣∣∣∣ζn(k)

1 + k
−m

∣∣∣∣ +
|m|

1 + s

≤ 2

∣∣∣∣ζn(k)

1 + k
−m

∣∣∣∣ +
|ζn(s)− ζn(k)|

1 + k
+

|m|
1 + k

.

Then (51) follows immediately from the Lemmas 11 and 12. �
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