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1. Introduction
Let A be a bounded linear operator on S(IRd) which admits a non-positive defi-

nite self-adjoint extension on L2(IRd). Assume that A generates a strongly continuous
semigroup (Pt)t≥0 of bounded linear operators on S(IRd). Let B be a bounded linear
operator on L2(IRd). From the results of Holley and Stroock (1978) we know that there
is a diffusion process {Zt : t ≥ 0} in S ′(IRd) that solves the Langevin equation:

dZt = A∗Ztdt + dWt, t ≥ 0, (1.1)

where {Wt : t ≥ 0} is a white noise. For any testing function φ ∈ S(IRd) the pro-
cess {Wt(φ) : t ≥ 0} is a one-dimensional Brownian motion with quadratic variation
〈W (φ)〉t = tλ(|Bφ|2), where λ is the Lebesgue measure on IRd. The process {Zt : t ≥ 0}
defined by (1.1) is called a generalized Ornstein-Uhlenbeck diffusion. A nice interpreta-
tion of the generalized Ornstein-Uhlenbeck diffusion was given by Holley and Stroock
(1978), who showed that in the particular case where A = ∆/2 and B = I the process
may arise as the large scale fluctuation limit of a critical branching Brownian particle
system. The limit theorem of Holley and Stroock (1978) covers dimension numbers
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d ≥ 3. The fluctuation limits of interacting particle systems have also been studied by
others; see e.g. Bojdecki and Gorostiza (1986, 1991), Chang and Yau (1992), Dawson
(1981), Dittrich (1987, 1988), Gorostiza (1988, 1996ab), Walsh (1986) and the refer-
ences therein. Three different kinds of fluctuation limit theorems for branching particle
systems have been proved in the literature, that is, large scale fluctuation, high density
fluctuation and small branching fluctuation. All of those have lead to better under-
standing of the particle systems as well as the Langevin type equations. We would
particularly like to mention that Bojdecki and Gorostiza (1986) and Gorostiza (1988)
have considered the fluctuations of branching models with immigration which are related
to the work of this paper.

The main purpose of this paper is to study the fluctuation limits of some subcritical
branching measure-valued immigration diffusion processes formulated by skew convolu-
tion semigroups; see Li (1996ab, 1998) and Li and Shiga (1995). An immigration process
may be constructed by picking up the paths of a measure-valued branching diffusion by
a Poisson random process. The advantage of considering subcritical branching immi-
gration processes is that they are comparatively easier to handle than critical branching
processes without immigration, and this makes it possible to carry out the arguments
in more general settings. In our context, A is the generator of a diffusion process ξ
describing the underlying motion in IRd of the particles, B is a multiplication opera-
tor giving the branching rate, and λ is a general excessive measure for ξ determining
the rate of immigration. We shall see that the high density fluctuation and the small
branching fluctuation for an immigration diffusion process are essentially equivalent and
can be proved for all dimension numbers. The large scale fluctuation in the spatially
homogeneous situation is in fact a special form of the high density fluctuation. As in
Holley and Stroock (1978), the large scale fluctuation limit theorem is only available for
the dimension numbers d ≥ 3. This restriction is a consequence of the scaling property
of the Lebesgue measure, which is evident from our derivation of the limit theorem.

2. Measure-valued branching diffusions

In this section, we catalogue some facts about the measure-valued branching diffu-
sions. Let E be a locally compact metric space. Let C0(E) denote the set of continuous
functions on E that vanish at infinity. Suppose that ξ = (Ω,F ,Ft, ξt,Px) is a Markov
process with strongly continuous Feller transition semigroup (Pt)t≥0 on C0(E). Let A
be the strong generator of (Pt)t≥0 with domain D(A) ⊂ C0(E). We choose a strictly
positive reference function ρ ∈ D(A) satisfying Aρ ∈ Cρ(E), where Cρ(E) denote the
set of functions f ∈ C0(E) satisfying |f | ≤ const ·ρ. Then there is some β ≥ 0 such that
ρ is a β-excessive function for the semigroup (Pt)t≥0. Let Dρ(A) be the set of functions
f ∈ D(A) ∩ Cρ(E) with Af ∈ Cρ(E). Subsets of non-negative elements of the function
spaces are indicated by the superscript ‘+’, e.g. Cρ(E)+. Throughout the paper we fix
a bounded, positive, continuous function c = c(·) on E which is also bounded away from
zero.

Let Mρ(E) be the space of σ-finite measures µ on (E,B(E)) such that µ(f) :=∫
E

fdµ < ∞ for all f ∈ Cρ(E). We equip Mρ(E) with the topology defined by the
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convention: µk → µ if and only if µk(f) → µ(f) for all f ∈ Cρ(E). Then there is a
transition semigroup (Qt)t≥0 on Mρ(E) that is determined by

∫

Mρ(E)

e−ν(f)Qt(µ, dν) = exp {−µ(Vtf)} , f ∈ Cρ(E)+, µ ∈ Mρ(E), (2.1)

where Vtf denotes the unique positive solution of the evolution equation

Vtf(x) +
1
2

∫ t

0

ds

∫

E

c(y)Vsf(y)2Pt−s(x, dy) = Ptf(x), t ≥ 0, x ∈ E. (2.2)

Any Markov process X with transition semigroup (Qt)t≥0 is called a measure-valued
branching diffusion process (Dawson-Watanabe superprocess) with parameters (A, c).
The equation (1.1) defines a semigroup (Vt)t≥0 of nonlinear operators on Cρ(E)+, which
is called the cumulant semigroup of X. Observe that we may rewrite the above equation
into the following differential form:

∂

∂t
Vtf(x) = AVtf(x)− 1

2
c(x)Vtf(x)2,

V0f(x) = f(x), t ≥ 0, x ∈ E.
(2.3)

For any f ∈ D(E)+ the two equations (2.2) and (2.3) are equivalent. The measure-
valued branching diffusion arises as a high-density limit of branching particle systems.
We simply refer the reader to Dawson (1993) and the references therein for the con-
struction and basic properties of the measure-valued branching diffusion.

Lemma 2.1. For t ≥ 0 and f ∈ Cρ(E)+ let

V
(n)
t f = (−1)n−1 ∂n

∂θn
Vt(θf)

∣∣
θ=0

, n = 1, 2, · · · . (2.4)

Then we have V
(1)
t f = Ptf and

V
(n)
t f =

n−1∑

k=1

(
n− 1

k

) ∫ t

0

Pt−s(cV (k)
s fV (n−k)

s f)ds, n ≥ 2.

Proof. These follow immediately by differentiating both sides of the equation (2.2); see
Konno and Shiga (1988). ¤

Let X = (W,G,Gt, Xt,Qµ) be a realization of the measure-valued branching diffusion
process with parameters (A, c). A general expression for the moments of the process is
recalled in the following



4

Lemma 2.2. Fix µ ∈ Mρ(E). For t ≥ 0 and f ∈ Cρ(E) let

M
(n)
t (f) = Qµ {Xt(f)n} , n = 1, 2, · · · . (2.5)

Then we have M
(1)
t (f) = µ(Ptf) and

M
(n)
t (f) =

n−1∑

k=0

(
n− 1

k

)
µ(V (n−k)

t f)M (k)
t (f), n ≥ 2.

In particular,

M
(2)
t (f) = µ(Ptf)2 +

∫ t

0

µPt−s(c(Psf)2)ds.

Proof. For t ≥ 0 and f ∈ Cρ(E)+, differentiating in θ > 0 both sides of the relation

Qµ exp {−θXt(f)} = exp {−µ(Vt(θf))} ,

we get

−QµXt(f) exp {−θXt(f)} = − ∂

∂θ
µ(Vt(θf))Qµ exp {−θXt(f)} .

Continuing differentiating in θ > 0 and letting θ ↓ 0 yields the desired results for
f ∈ Cρ(E)+, which can be extended to all f ∈ Cρ(E) by induction in n ≥ 1; see Konno
and Shiga (1988). ¤

Then we give some estimates for the moments of the measure-valued branching dif-
fusion, which will be used in the subsequent discussions.

Lemma 2.3. Let q > 0 and let f ∈ Dρ(A). Then there exists a constant C(ρ, q, ‖f/ρ‖) >
0 such that for 0 ≤ t ≤ q and µ ∈ Mρ(E) we have

Qµ

{
[Xt(f)− µ(Ptf)]2

} ≤ C(ρ, q, ‖f/ρ‖)µ(ρ)t,

and
Qµ

{
[Xt(f)− µ(Ptf)]4

} ≤ C(ρ, q, ‖f/ρ‖) [
µ(ρ) + µ(ρ)2

]
t2.

Proof. It is well-known that for any f ∈ Dρ(A) the process

Mt(f) := Xt(f)− µ(f)−
∫ t

0

Xs(Af)ds, t ≥ 0, (2.6)

is a Qµ-martingale starting at zero with quadratic variation process

〈M(f)〉t =
∫ t

0

∫

E

c(x)f(x)2Xs(dx)ds, t ≥ 0. (2.7)
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These define a continuous martingale measure {Mt : t ≥ 0} on E with covariant measure
c(x)Xt(dx)dt in the sense of El Karoui and Méléard (1990) and Walsh (1986). Moreover,
for any f ∈ Cρ(E) we have a.s.

Xt(f) = µ(Ptf)−
∫

E

∫ t

0

Pt−sf(x)M(dx, ds), t ≥ 0.

By a moment inequality for continuous martingales we may find a universal constant
C > 0 such that

Qµ

{
[Xt(f)− µ(Ptf)]2

} ≤ CQµ

{ ∫ t

0

Xs(Pt−sf)ds

}
,

and

Qµ

{
[Xt(f)− µ(Ptf)]4

} ≤ CQµ

{[ ∫ t

0

Xs(cPt−sf)ds

]2}
.

Then the results follows by Lemma 2.2 and Hölder’s inequality. ¤
Lemma 2.4. Let q > 0 and let f ∈ Dρ(A). Then there is a constant C(ρ, q, ‖f/ρ‖) > 0
such that for 0 ≤ t ≤ q and µ ∈ Mρ(E) we have

Qµ

{
[Xt(f)− µ(f)]2

} ≤ C(ρ, q, ‖f/ρ‖)(1 + ‖Af/ρ‖2) [
µ(ρ) + µ(ρ)2

]
t,

and

Qµ

{
[Xt(f)− µ(f)]4

} ≤ C(ρ, q, ‖f/ρ‖)(1 + ‖Af/ρ‖4) [
µ(ρ) + µ(ρ)4

]
t2.

Proof. Note that we have ‖Af/ρ‖ < ∞ for any f ∈ Dρ(A). Clearly,

|Ptf(x)− f(x)| ≤
∫ t

0

Ps|Af |(x)ds ≤ ‖Af/ρ‖
∫ t

0

Psρ(x)ds.

Recall that there is some β ≥ 0 such that ρ is a β-excessive function for (Pt)t≥0. Then
the estimates follow from Lemma 2.3 by the elementary cr-inequality. ¤

3. Measure-valued immigration diffusions
A class of measure-valued immigration processes can be formulated by skew convo-

lution semigroup associated with measure-valued branching processes; see Li (1996ab,
1998). Let us consider a special form of the immigration process in our present setting.
Suppose that (Vt)t≥0 is given by (2.2). Let Kρ(P ) denote the totality of all entrance
laws for the semigroup (Pt)t≥0 such that

∫ 1

0
κs(ρ)ds < ∞. For any κ ∈ Kρ(P ) let

St(κ, f) = κt(f)− 1
2

∫ t

0

κt−s(c(Vsf)2)ds, t > 0, f ∈ Cρ(E)+. (3.1)
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By simple modifications of the results of Li (1996b) and Li and Shiga (1995) we see that
the formula ∫

Mρ(E)

e−ν(f)Qκ
t (µ, dν) = exp

{
− µ(Vtf)−

∫ t

0

Sr(κ, f)dr

}
(3.2)

defines a transition semigroup (Qκ
t )t≥0 on Mρ(E). A Markov process with semigroup

(Qκ
t )t≥0 is called a measure-valued immigration process with parameters (A, c, κ). The

immigration process can be constructed by picking up measure-valued paths in a Poisson
process as follows.

Let (Q◦t )t≥0 denote the restriction of the Markov semigroup (Qt)t≥0 to Mρ(E)◦ :=
Mρ(E) \ {0}. Then ∫

Mρ(E)◦

(
1− e−ν(f)

)
Lκt(dν) = St(κ, f) (3.3)

defines an entrance law Lκ = (Lκt)t>0 for (Q◦t )t≥0; see Dynkin (1989) or Li and Shiga
(1995). Let W0+ be the space of continuous paths w : (0,∞) → Mρ(E) such that
w(t) = 0 for all t ≥ τ(w) := inf{s > 0 : w(s) = 0}, furnished with the σ-algebra
generated by the coordinate process. By the theory of Markov processes, there is a
unique σ-finite measure QLκ on W0+ which satisfies the following form of Markov
property: for 0 < t1 < · · · < tn and ν1, · · · , νn ∈ Mρ(E)◦ we have

QLκ{wt1 ∈ dν1, wt2 ∈ dν2, · · · , wtn ∈ dνn}
= Lκt1(dν1)Q◦t2−t1(ν1, dν2) · · ·Q◦tn−tn−1

(νn−1,dνn).
(3.4)

Let N(dw, ds) be a Poisson random measure on W0+×[0,∞) with intensity QLκ(dw)ds.
Define a measure-valued process {Yt : t ≥ 0} by

Yt =
∫

W0+

∫ t

0

wt−sN(dw, ds), t ≥ 0, (3.5)

where wt = 0 for t ≤ 0 by convention. Using (3.4) and (3.5), it is easy to check that
{Yt : t ≥ 0} is a Markov process in Mρ(E) with semigroup (Qκ

t )t≥0. The construction
(3.5) gives the physical interpretation for the measure-valued immigration process. We
refer the reader to Li (1998) for description of the particle pictures of measure-valued
immigration processes.

Lemma 3.1. For any t > 0 and f ∈ Cρ(E) let

S
(n)
t (κ, f) = (−1)n−1 ∂n

∂θn
St(κ, θf)

∣∣
θ=0

, n = 1, 2, · · · . (3.6)

Then we have S
(1)
t (κ, f) = κt(f) and

S
(n)
t (κ, f) =

n−1∑

k=1

(
n− 1

k

) ∫ t

0

κt−s(cV (k)
s fV (n−k)

s f)ds, n ≥ 2,

where V
(k)
s f is defined by (2.4).

Proof. The equalities can be proved by differentiating both sides of (3.1). ¤
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Theorem 3.2. For q > 0 and f ∈ Dρ(A), there is a constant C(ρ, q, κ, ‖f/ρ‖) > 0
such that for all 0 ≤ r < t ≤ q,

E
{(

Yt(f)− Yr(f)−
∫ t

r

κs(f)ds

)4}
≤ C(ρ, q, κ, ‖f/ρ‖)(1 + ‖Af/ρ‖4)(t− r)2.

Consequently, the process {Yt : t ≥ 0} has a continuous modification.

Proof. Replacing f with θf in (3.3), differentiating both sides with respect to θ > 0
and using Lemma 3.1 we get

∫

Mρ(E)◦
ν(f)Lκt(dν) = S

(1)
t (κ, f) = κt(f). (3.7)

Then it is easy to see that

Yt(f)− Yr(f)−
∫ t

r

κs(f)ds =
∫

W0+

∫ t

0

[wt−s(f)− wr−s(f)]Ñ(dw, ds). (3.8)

Define the random signed measure Ñ(dw, ds) := N(dw, ds)−QLκ(dw)ds. By a moment
calculation of Poisson random measures we have

E
{(

Yt(f)− Yr(f)−
∫ t

r

κs(f)ds

)4}

=3
[ ∫ t

0

QLκ

{|wt−s(f)− wr−s(f)|2} ds

]2

+
∫ t

0

QLκ

{|wt−s(f)− wr−s(f)|4} ds

(3.9)

Using the Markov property (3.4) we get
∫ t

0

QLκ

{|wt−s(f)− wr−s(f)|2} ds

=
∫ r

0

ds

∫

Mρ(E)

Qν

{|Xt−r(f)− ν(f)|2} Lκr−s(dν)

+
∫ t

r

ds

∫

Mρ(E)

ν(f)2Lκt−s(dν),

and ∫ t

0

QLκ

{|wt−s(f)− wr−s(f)|4} ds

=
∫ r

0

ds

∫

Mρ(E)

Qν

{|Xt−r(f)− ν(f)|4} Lκr−s(dν)

+
∫ t

r

ds

∫

Mρ(E)

ν(f)4Lκt−s(dν).
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Incorporating those into (3.9) and using Lemmas 2.2 and 2.4 and the cr-inequality we
get

E
{(

Yt(f)− Yr(f)−
∫ t

r

κs(f)ds

)4}

≤C1(ρ, q, ‖f/ρ‖)C2(ρ, q, κ)(1 + ‖Af/ρ‖4)(t− r)2

+ 6
[ ∫ t−r

0

ds

∫

Mρ(E)

ν(f)2Lκs(dν)
]2

+
∫ t−r

0

ds

∫

Mρ(E)

ν(f)4Lκs(dν),

(3.10)

for all 0 ≤ r ≤ t ≤ q, where C(ρ, q, ‖f/ρ‖) > 0 is a constant depending on (ρ, q, ‖f/ρ‖)
and

C2(ρ, q, κ) =
∫ q

0

ds

∫

Mρ(E)

[ν(ρ) + ν(ρ)4]Lκs(dν)

+
[ ∫ q

0

ds

∫

Mρ(E)

[ν(ρ) + ν(ρ)2]Lκs(dν)
]2

.

Using (3.3) and Lemmas 2.1 and 3.1 one can compute that
∫

Mρ(E)◦
ν(f)2Lκt(dν) = S

(2)
t (κ, f) ≤ ‖cf‖κt(f)t,

∫

Mρ(E)◦
ν(f)4Lκt(dν) = S

(4)
t (κ, f) ≤ 3‖cf‖3κt(f)t3.

(3.11)

Combining (3.10) and (3.11) we get the desired estimate. Since there exists a con-
vergence determining sequence {fn} ⊂ Dρ(A) for the topology of Mρ(E), the second
assertion is immediate. ¤

Indeed, it can be proved as in Li and Shiga (1995) that the process {Yt : t ≥ 0}
constructed by (3.5) is a.s. continuous. By the above theorem, (Qκ

t )t≥0 is the semigroup
of a diffusion process in Mρ(E).

4. Fluctuation limits of immigration diffusions
Let ξθ be a diffusion process in the Euclidean space IRd with generator Aθ depending

on a parameter θ > 0. For the sake of concreteness, we assume Aθ = L − bθ, where L
is a differential operator and bθ ∈ C(IRd)+ is bounded away from zero for each θ > 0.
We consider the measure-valued branching diffusion process with parameters (L−bθ, c).
Then the cumulant semigroup (V θ

t )t≥0 is determined by the equation

V θ
t f(x) +

1
2

∫ t

0

ds

∫

E

c(y)V θ
s f(y)2P θ

t−s(x,dy) = P θ
t f(x), t ≥ 0, x ∈ IRd, (4.1)

where (P θ
t )t≥0 is the transition semigroup of ξθ. In this special case, we may fix any

p > d and take ρ(x) = (1 + |x|p)−1. We shall write Mp(IRd) for Mρ(IRd) and write
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Cp(IRd) for Cρ(IRd). Note that the Lebesgue measure λ on IRd is included in Mρ(IRd).
We take an excessive measure γ ∈ Mp(IRd) for the diffusion process with generator L.
Then it is a purely excessive measure for the semigroup (P θ

t )t≥0 generated by Aθ, and
hence γ =

∫∞
0

κθ
sds for some κθ ∈ Kρ(P θ). Now (3.1) becomes

St(κθ, f) = κθ
t (f)− 1

2

∫ t

0

κθ
t−s(c(V

θ
s f)2)ds, t > 0, f ∈ Cp(IRd)+. (4.2)

Let {Y θ
t : t ≥ 0} be the subcritical branching immigration process with parame-

ters (L − bθ, c, θκ
θ) and with Y0 = θγ. Let S(IRd) be the space of infinitely differen-

tiable, rapidly decreasing functions whose all derivatives are also rapidly decreasing.
Let S ′(IRd) denote the dual space of S(IRd). We define the distribution-valued process
{Zθ

t : t ≥ 0} by

Zθ
t (f) =

1√
θ

[
Y θ

t (f)− θγ(f)
]
, t ≥ 0, f ∈ S(IRd). (4.3)

Observe that by (4.1) we have

∫ ∞

0

κθ
r+t(θ

1/2f)dr −
∫ ∞

0

κθ
r(θV

θ
t (f/

√
θ))dr

=
1
2

∫ ∞

0

dr

∫ t

0

κθ
r+t−s(θc[V

θ
s (f/

√
θ)]2)ds

=
1
2

∫ t

0

ds

∫ ∞

t−s

κθ
u(θc[V θ

s (f/
√

θ)]2)du.

On the other hand, by (4.2) it follows that

∫ t

0

κθ
r(θ

1/2f)dr −
∫ t

0

Sr(θκθ, f/
√

θ)dr

=
1
2

∫ t

0

dr

∫ r

0

κθ
r−s(θc[V

θ
s (f/

√
θ)]2)ds

=
1
2

∫ t

0

ds

∫ t−s

0

κθ
u(θc[V θ

s (f/
√

θ)]2)du.

Combining the above two equations we have

γ(θ1/2f)−γ(θV θ
t (f/

√
θ))−

∫ t

0

Sr(θκθ, f/
√

θ)dr

=
1
2

∫ t

0

γ(θc[V θ
s (f/

√
θ)]2)ds.

(4.4)
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By Sharpe (1988; p75), it follows that

E exp{−Zθ
t (f)} = exp

{
1
2

∫ t

0

γ(c(V {θ}
s f)2)ds

}
, (4.5)

and
E [exp{−Zθ

r+t(f)}|Zθ
s : 0 ≤ s ≤ r]

= exp
{
− Zθ

r (V {θ}
t f) +

1
2

∫ t

0

γ(c(V {θ}
s f)2)ds

}
,

(4.6)

where V
{θ}
t f =

√
θV θ

t (f/
√

θ). Now we prove the following

Theorem 4.1. Suppose that bθ → 0 boundedly as θ → ∞. Then the process {Zθ
t :

t ≥ 0} defined by (4.3) converges weakly in C([0,∞),S ′(IRd)) to a diffusion process
{Zt : t ≥ 0} with Z0 = 0 and with semigroup (Rt)t≥0 given by

∫

S′(IRd)

eiν(f)Rt(µ, dν) = exp
{

iµ(Ptf)− 1
2

∫ t

0

γ(c(Psf)2)ds

}
, (4.7)

where (Pt)t≥0 is the semigroup of linear operators on C(IRd) generated by L.

Proof. Let {Xt : t ≥ 0} be a measure-valued branching process with parameters (L −
bθ, c) and with X0 = θγ. Let {Yt : t ≥ 0} be an immigration process parameters
(L − bθ, c, θκ

θ) and with Y0 = 0. Assume that {Xt : t ≥ 0} and {Yt : t ≥ 0} are
independent. Then {Y θ

t : t ≥ 0} is equivalent to the process {Xt + Yt : t ≥ 0}. Observe
that for any f ∈ S(IRd) we have

E
{
[Zθ

t (f)− Zθ
r (f)]4

}
= θ−2E

{
[Y θ

t (f)− Y θ
r (f)]4

}
. (4.8)

Recall that γ =
∫∞
0

κθ
sds. By the cr-inequality one sees that, up to a constant multipli-

cation, the value in (4.8) is upper bounded by

Qθγ

{
[Xt(f)−Xr(f)− θγ(Ptf − Prf)]4

}
+ Qθκθ

0

{[
Yt(f)− Yr(f)−

∫ t

r

θκθ
s(f)ds

]4}
.

Applying Lemma 2.3 and Theorem 3.2 we reach the estimate

E
{
[Zθ

t (f)− Zθ
r (f)]4

} ≤ C(ρ, q, κ, ‖f/ρ‖)(1 + ‖Aθf/ρ‖4)(t− r)2.

By Kolmogorov’s criterion, {Zθ
t (f) : t ≥ 0} is a tight family in C([0,∞), IR), hence

{Zθ
t : t ≥ 0} is tight in C([0,∞),S ′(IRd)) by the result of Mitoma (1983). Let {Zt : t ≥

0} be a limit point of {Zθ
t : t ≥ 0}. For 0 ≤ t1 < · · · < tn and f1, · · · , fn ∈ S(IRd) let

h
{θ}
j = fj + V

{θ}
tj+1−tj

(fj+1 + · · ·+ V
{θ}
tn−tn−1

fn).
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Using (4.6) inductively we get

E exp
{
−

n∑

j=1

Zθ
tj

(fj)
}

= exp
{

1
2

n∑

j=1

∫ tj−tj−1

0

γ(c(V {θ}
s h

{θ}
j )2)ds

}
. (4.9)

It is well-known that (4.1) is equivalent to the equation

V θ
t f(x) +

1
2

∫ t

0

ds

∫

E

[c(y)V θ
s f(y)2 − bθ(y)V θ

s f(y)]Pt−s(x, dy) = Ptf(x), t ≥ 0, x ∈ E.

Based on this it can be proved inductively that

h
{θ}
j → hj := fj + Ptj+1−tj (fj+1 + · · ·+ Ptn−tn−1fn)

boundedly as θ →∞. Returning to (4.9),

lim
θ→∞

E exp
{
−

n∑

j=1

Zθ
tj

(fj)
}

= exp
{

1
2

n∑

j=2

∫ tj−tj−1

0

γ(c(Pshj)2)ds

}
. (4.10)

Therefore, {Zt : t ≥ 0} is a Markov process in S ′(IRd) with Z0 = 0 and with transition
semigroup (Rt)t≥0, and the finite-dimensional distributions of {Zθ

t : t ≥ 0} converge
to those of {Zt : t ≥ 0}. By the tightness proved above, {Zθ

t : t ≥ 0} converges to
{Zt : t ≥ 0} weakly in C([0,∞),S ′(IRd)). ¤

Observe that if {Zt : t ≥ 0} is given by the above theorem, then {Zt + µPt : t ≥ 0}
is a Markov process with transition semigroup (Rt)t≥0 starting at µ ∈ S ′(IRd). By
Bojdecki and Gorostiza (1991; p1139), {Zt : t ≥ 0} is a generalized Ornstein-Uhlenbeck
diffusion which solves the following Langevin equation:

dZt = L∗Ztdt + dWt, (4.11)

where L∗ is the adjoint of L and {Wt : t ≥ 0} is a distribution-valued martingale with
independent increments given by

E exp {i[Wt(f)−Wr(f)]} = exp
{−(t− r)γ(cf2)/2

}
, t ≥ r ≥ 0. (4.12)

Therefore, {Wt : t ≥ 0} is a white noise (Wiener process) with intensity c(x)γ(dx)dt in
the sense of Walsh (1986).

The generalized Ornstein-Uhlenbeck diffusion process can also be obtained by consid-
ering fluctuation limit of the immigration diffusion process with small branching rate.
Let {Y (θ)

t : t ≥ 0} be an immigration process with parameters (L − bθ, θc, κ
θ) and
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with Y0 = γ. Obviously, the degenerate case bθ = θ = 0 corresponds to the constant
deterministic process with value γ. We define the fluctuation process {Z(θ)

t : t ≥ 0} by

Z
(θ)
t =

1√
θ

[
Y

(θ)
t − γ

]
, t ≥ 0, f ∈ S(IRd). (4.13)

By a similar argument as for the process {Zθ
t : t ≥ 0} we get

E exp{−Z
(θ)
t (f)} = exp

{
1
2

∫ t

0

γ(cθ[V (θ)
s (f/

√
θ)]2)ds

}
, (4.14)

and

E [exp{−Z
(θ)
r+t(f)}|Z(θ)

s : s ≤ r]

= exp
{
− Z(θ)

r (
√

θV
(θ)
t (f/

√
θ) +

1
2

∫ t

0

γ(cθ([V (θ)
s (f/

√
θ)]2)ds

}
,

(4.15)

where (V (θ)
t )t≥0 is the unique solution to (2.2) with c(y) replaced by θc(y). It is not

difficult to check that
√

θV
(θ)
t (f/

√
θ) and V θ

t (
√

θf)/
√

θ solve the same equation, so they
are equal. Now the proof of Theorem 4.1 implies that, if bθ → 0 as θ → 0, then {Z(θ)

t :
t ≥ 0} converges as θ → 0 to the generalized Ornstein-Uhlenbeck process {Zt : t ≥ 0}
with semigroup (Rt)t≥0. A similar phenomenon for measure-valued branching diffusions
without immigration has been studied by Gorostiza (1996b).

Let us now discuss the large scale fluctuation limit of the measure-valued process as
in Holley and Stroock (1978). We consider the measure-valued branching process with
parameters (∆/2− bθ, c) for constants bθ > 0 and c > 0. Let (V θ

t )t≥0 be the cumulant
semigroup defined by

∂

∂t
V θ

t f(x) =
1
2

∆V θ
t f(x)− bθV

θ
t f(x)− 1

2
cV θ

t f(x)2,

V θ
0 f(x) = f(x), t ≥ 0, x ∈ IRd,

(4.16)

Recall that λ denotes the Lebesgue measure on IRd. Then κθ
t := bθe−bθtλ defines an

entrance law κθ ∈ K(P θ) and λ =
∫∞
0

κθ
sds. It is clear that St(κθ, f) = bθλ(V θ

t f). Let
{Y [θ]

t : t ≥ 0} be an immigration process with parameters (∆/2 − bθ, c, κ
θ) and with

Y0 = λ. For f ∈ C0(IRd) let kθf(x) = f(x/θ)/θ2 and let k−1
θ f(x) = θ2f(θx). We define

the operators Kθ on Mp(IRd) by Kθµ(f) = µ(kθf). Then we have Kθλ = θd−2λ. Let

Z
[θ]
t (f) =

1
θ(d−2)/2

[
KθY

[θ]
θ2t(f)− θd−2λ(f)

]
, t ≥ 0, f ∈ S(IRd). (4.17)
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Theorem 4.2. Suppose that d ≥ 3 and θ2bθ → 0 boundedly as θ →∞. Then the process
{Z [θ]

t : t ≥ 0} defined by (4.17) converges weakly in C([0,∞),S ′(IRd)) to the Ornstein-
Uhlenbeck diffusion process {Zt : t ≥ 0} with Z0 = 0 and with semigroup (Rt)t≥0 defined
by (4.7), where (Pt)t≥0 is the semigroup of a standard Brownian motion.

Proof. By (4.16) it is not hard to check that u(t, x) := k−1
θ V θ

θ2t(kθf) is the solution to

∂

∂t
u(t, x) =

1
2

∆u(t, x)− θ2bθu(t, x)− 1
2

cu(t, x)2,

u(0, x) = f(x), t ≥ 0, x ∈ IRd.

By this scaling property, we see that {KθY
[θ]
θ2t : t ≥ 0} is a immigration process with

parameters (∆/2 − θ2bθ, c, θ
d−2ηθ) and with Y0 = θd−2λ, where ηθ is an entrance law

for the process with generator ∆/2 − θ2bθ and
∫∞
0

ηθ
sds = λ. Then the result follows

from Theorem 4.1. ¤
We conclude this section by remarking that both the high density and the small

branching fluctuation limits considered above can be generalized to the case where L is
a differential operator in a domain of IRd.
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