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1. Introduction

The method of differential equations plays an important role in the study of super-
processes. Iscoe (1988) characterized some charging probabilities of a super Brownian
motion in terms of some partial differential equations with singular boundary condi-
tions. We refer the reader to Dynkin (1994) for systematic study of the interplay of
superprocesses and partial differential equations. In this note we show that some condi-
tional laws of superprocesses can also be characterized in terms of solutions to the initial
value problem of some differential equations. For concreteness, we shall concentrate to
the special case of a super absorbing barrier Brownian motion.

Let H = (0,∞) and let IR+ = [0,∞). Let M(H) be the space of finite Borel
measures on H endowed with the weak convergence topology. For a domain D ⊂ IRd

let C2(D)+ the space of bounded, positive, twice continuously differentiable functions
on D. Let C2

0 (D)+ denote the subset of C2(D)+ consisting of functions that vanish at
the boundary of D. By a critical continuous super absorbing barrier Brownian motion
we mean a diffusion process X = (W,G,Gt, Xt,Qµ) with state space M(H) such that

Qµ exp {−Xt(f)} = exp {−µ(Vtf)} , t ≥ 0, f ∈ C2
0 (H)+, (1.1)
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where µ(f) =
∫

fdµ and Vtf(x) denotes the mild solution to
{

∂
∂tu(t, x) = 1

2
∂2

∂x2 u(t, x)− 1
2 u(t, x)2 t ≥ 0, x > 0,

u(t, 0+) = 0, u(0, x) = f(x), t ≥ 0, x > 0.
(1.2)

We define the process {Rt : t ≥ 0} by

Rt = sup {r > 0 : Xs((0, r]) > 0 for some 0 ≤ s ≤ t} , t ≥ 0. (1.3)

The main results of this note are the following two theorems.

Theorem 1.1. Take a > 0 and 0 < t ≤ τ . Suppose that supp(µ) ⊂ [0, a]. Then for
f ∈ C2

0 (H) we have

Qµ

{
e−Xt(f); Rτ ≤ a

}
= exp

{−µ(V a
t [f + V a

τ−t0])
}

, (1.4)

where V a
t f(x) is the unique solution to





∂
∂tu(t, x) = 1

2
∂2

∂x2 u(t, x)− 1
2 u(t, x)2 t ≥ 0, 0 < x < a,

u(0, x) = f(x), 0 < x < a,

u(t, 0+) = 0, u(t, a−) = ∞, t > 0,

u(t, x) → u(x) (t →∞), 0 < x < a,

(1.5)

and u(x) is the unique solution to
{

u′′(x) = u(x)2, 0 < x < a,

u(0+) = 0, u(a−) = ∞.
(1.6)

Theorem 1.2. Take a > 0 and 0 < t ≤ τ . Suppose that supp(µ) ⊂ [0, a]. Then for
f ∈ C2

0 (H) we have

Qµ

{
e−Xt(f)|Rτ ≤ a

}
= exp

{−µ(V a
t [f + V a

τ−t0]− V a
τ 0)

}
, (1.7)

where V a
t f(x) is defined by (1.5).

2. Proofs of the theorems
In this section, we give the proofs of the two theorems, which are based on discussions

of parabolic and elliptic equations with singular boundary conditions. Some parts of
our proofs follow the lines set out in Iscoe (1988); see also Li and Shiga (1995).

Lemma 2.1 (Iscoe, 1986). For t ≥ 0 and f, g ∈ C2
0 (H)+,

Qµ exp
{
−Xt(f)−

∫ t

0

Xs(g)ds

}
= exp {−µ(Ut(f, g))} , (2.1)

where Ut(f, g) = Ut(f, g;x) is the unique solution to
{

∂
∂tu(t, x) = 1

2
∂2

∂x2 u(t, x)− 1
2 u(t, x)2 + g(x), t ≥ 0, x > 0,

u(t, 0+) = 0, u(0, x) = f(x), t > 0, x > 0.
(2.2)
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Lemma 2.2. Fix a < b and g ∈ C2([a, b])+. If u(t, x) satisfies

∂

∂t
u(t, x) =

1
2

∂2

∂x2
u(t, x)− 1

2
u(t, x)2 + g(x), t ≥ 0, a ≤ x ≤ b, (2.3)

then it satisfies the integral equation

u(t, x) =
∫ b

a

u(0, y)gab
t (x, y)dy −

∫ t

0

ds

∫ b

a

[
1
2

u(s, y)2 − g(y)
]
gab

t−s(x, y)dy

+
1
2

∫ t

0

u(s, a)
∂

∂y
gab

t−s(x, a)ds− 1
2

∫ t

0

u(s, b)
∂

∂y
gab

t−s(x, b)ds,

(2.4)

where gab
t (x, y) is the transition density of an absorbing barrier Brownian motion in

(a, b). Conversely if u(·, ·) ∈ C([0,∞)×[a, b])+ satisfies (2.4), then it belongs C2([0,∞)×
[a, b])+ and satisfies (2.3).

Proof. Suppose that u(·, ·) satisfies (2.3). Let (B(t),Px) be a standard one-dimensional
Brownian motion, and let τ = inf{t > 0 : B(t) = a or b}. By (2.3) and Itô’s formula,
for 0 ≤ s ≤ t we have

u(t− s ∧ τ, B(s ∧ τ))− u(t, x) =
∫ s∧τ

0

[
1
2

u(t− r,B(r))2 − g(B(r))
]
dr + mart.

It follows that

u(t, x) = Pxu(t− t ∧ τ,B(t ∧ τ))−Px

∫ t

0

1{r≤τ}

[
1
2

u(t− r,B(r))2 − g(B(r))
]
dr.

Then (2.4) holds as we notice the well-known facts

Px{B(τ) = a and τ ∈ ds} =
1
2

∂

∂y
gab

s (x, a)ds,

Px{B(τ) = b and τ ∈ ds} = − 1
2

∂

∂y
gab

s (x, b)ds.

Clearly (2.3) follows from (2.4) by differentiating under the integral. ¤
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Lemma 2.3. Fix a > 0. Let {fn} ⊂ C2
0 (IR+)+ be an increasing sequence such that

fn ↑ ∞ for x ≥ a and fn(x) ↑ f(x) for x ∈ [0, a), where f ∈ C2
0 ([0, b])+ for each

0 < b < a. Let {gn} ⊂ C2
0 (IR+)+ be an increasing sequence such that gn ↑ ∞ for x ≥ a

and gn(x) = 0 for x ∈ [0, a). Suppose un(t, x) is the solution to (2.2) with (f, g) being
replaced by (fn, gn). Then un(t, x) ↑ u(t, x) uniformly on [0, l]× [0, b] for each l > 0 and
0 < b < a, where u(t, x) is a solution to




∂
∂tu(t, x) = 1

2
∂2

∂x2 u(t, x)− 1
2 u(t, x)2 t ≥ 0, 0 < x < a,

u(0, x) = f(x), 0 < x < a,

u(t, 0+) = 0, u(t, a−) = ∞, t > 0.

(2.5)

Proof. By Lemma 2.1 we have

Qδx exp
{
−Xt(fn)−

∫ t

0

Xs(gn)ds

}
= exp {−un(t, x)} . (2.6)

Then un(t, x) increases to a limit u(t, x) as n →∞ and

Qδx

{
e−Xt(f);Rt ≤ a

}
= exp{−u(t, x)}. (2.7)

It is well-known that there is a continuous orthogonal martingale measure M(dx, ds)
with covariation measure Xs(dx)ds such that Qδx -almost surely

Xt(h) = Pth(x) +
∫

H

∫ t

0

Pt−sh(x)M(dx, ds)

for t ≥ 0 and h ∈ B(H). On the other hand, note that

Qδx

{[∫

H

∫ t

0

Pt−sh(x)M(dx,ds)
]2}

=
∫ t

0

ds

∫

H

[Pt−sh(x)]2 Ps(x, dx),

which goes to zero as t → 0. For h = 1(a,a+1), we have limt↓0 Pth(a) = 1/2. Then
Xt(a, a + 1) → 1/2 in probability under Qδa as t → 0. It follows that, Qδa-almost
surely,

∫ t

0
Xs(a, a + 1)ds > 0 for any t > 0. By (2.6) we have un(t, a) ↑ ∞ as n ↑ ∞.

But u(t, a−) ≥ un(t, a), so u(t, a−) = ∞.
Applying Lemma 2.2 to un(t, x) we have

un(t, x) =
∫ b

0

fn(y)g0b
t (x, y)dy − 1

2

∫ t

0

ds

∫ b

0

un(s, y)2g0b
t−s(x, y)dy

− 1
2

∫ t

0

un(s, b)
∂

∂y
g0b

t−s(x, b)ds

for 0 ≤ x ≤ b < a. Letting n →∞ and using the monotone convergence theorem,

u(t, x) =
∫ b

0

f(y)g0b
t (x, y)dy − 1

2

∫ t

0

ds

∫ b

0

u(s, y)2g0b
t−s(x, y)dy

− 1
2

∫ t

0

u(s, b)
∂

∂y
g0b

t−s(x, b)ds.

(2.8)

Then u(t, x) satisfies (2.5) by Lemma 2.2. ¤
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Lemma 2.4. Let u(t, x) be the solution to (2.5) provided by Lemma 2.3. Then we have
u(t, x) ↑ u(x) as t →∞, where u(x) is the unique solution to





u′′(x) = u(x)2, 0 < x < a,

u(0) = 0, u(a−) = ∞,

u(x) = ∞, x ≥ a.

(2.9)

Proof. We first assume f ≡ 0. By (2.6) we have that u(t, x) is increasing in t ≥ 0, so
the limit u(x) = limt↑∞ u(t, x) exists. By (2.8) we obtain

u(x) = − 1
2

∫ ∞

0

ds

∫ b

0

u(y)2g0b
s (x, y)dy − u(b)

2

∫ ∞

0

∂

∂y
g0b

s (x, b)ds

for 0 ≤ x ≤ b < a. Then it is easy to check that u(x) satisfies (2.9).
Suppose that u(x) and v(x) are two solutions to (2.9). For 0 < θ < 1, set vθ(x) =

θ2v(θx). We claim that

wθ(x) := u(x)− vθ(x) ≥ 0, t > 0, 0 ≤ x < a. (2.10)

If this not true, say

wθ(x0) = u(x0)− vθ(x0) = max
0≤x<a

wθ(x) < 0.

Then we have

0 ≤ w′′θ (x0) = u′′(x0)− v′′θ (x0) = u(x0)2 − vθ(x0)2,

yielding a contradiction. Letting θ → 1 in (2.10) we get u(x) ≥ v(x). By the same
argument we also have v(x) ≥ u(x), proving the uniqueness of the solution to (2.9).

Now let u(t, x) be given by Lemma 2.3 with non-degenerate f ≥ 0. It is well-known
that Xt(f) → 0 almost surely as t →∞. Then by (2.7)

lim
t→∞

e−u(t,x) = lim
t→∞

Qδx

{
e−Xt(f); Rt ≤ a

}

= lim
t→∞

Qδx {Rt ≤ a} = e−u(x),
(2.11)

as desired. ¤
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Lemma 2.5. The singular boundary value problem (1.5) has a unique solution u(t, x).

Proof. That (1.5) does have such a solution follows by Lemmas 2.3 and 2.4. Suppose
v(t, x) is another solution to (1.5). Then we have limt↑∞ v(t, x) = u(x), where u(x) is
the unique solution to (1.6). For 0 < θ < 1, set vθ(t, x) = θ2v(θ2t, θx). Then vθ(t, x)
satisfies the first equation in (1.5). We declare that

wθ(t, x) := u(t, x)− vθ(t, x) ≥ 0, t ≥ 0, 0 ≤ x < a. (2.12)

If this is not true, since

lim
t↑∞

wθ(t, x) = u(x)− θ2u(θx) ≥ 0, 0 ≤ x < b,

it follows that wθ(t, x) has a minimum point (t0, x0). Then w(t0, x0) < 0 and

∂

∂t
wθ(t0, x0) = 0,

∂2

∂x2
wθ(t0, x0) ≥ 0. (2.13)

By the definition of wθ(t, x) we have

∂2

∂x2
wθ(t0, x0) = u(t0, x0)2 − vθ(t0, x0)2.

Then (2.12) and (2.13) are in contradiction. Letting θ → 1 in (2.12) we get u(t, x) ≥
v(t, x). The desired uniqueness then follows as in the proof of Lemma 2.4. ¤

Proof of Theorems 1.1 and 1.2. Choose the sequence {gn} as in Lemma 2.3. Using the
Markov property and Lemma 2.1 and 2.3, we have

Qµ

{
e−Xt(f); Rτ ≤ a

}

= lim
n↑∞

Qµ exp
{
−Xt(f)−

∫ τ

0

Xs(gn)ds

}

= lim
n↑∞

Qµ exp
{
−Xt(f + Uτ−t(0, gn))−

∫ t

0

Xs(gn)ds

}

= lim
n↑∞

exp
{
−

∫

H

Ut(f + Uτ−t(0, gn), gn; x)µ(dx)
}

,

where Ut(0, gn) and Ut(f + Uτ−t(0, gn), gn) are defined by (2.2). Now Lemmas 2.3 and
2.4 yield (1.4). In particular, letting t = τ and f ≡ 0 in (1.4) we have

Qµ {Rτ ≤ a} = exp {−µ(V a
τ 0)} .

Then (1.7) follows. ¤
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