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Abstract. We prove a central limit theorem for the critical super Brown-
ian motion, which leads to a Gaussian random field. In the transient case
the limiting field is the same as that obtained by Dawson (1977). In the
recurrent case it is a spatially uniform field. We also give a central limit the-
orem for the weighted occupation time of the super Brownian motion with
underlying dimension number d ≤ 3, completing the results of Iscoe (1986).
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1. Introduction
Limit theorems constitute an important part of the branching process theory. It

is always interesting to find conditions under which a non-degenerate limit law exists.
Since Galton-Watson processes are unstable, people have derived limit theorems for
them through devices such as modifying factors, conditioning, immigration, etc. A
unified treatment of the limit theory of Galton-Watson processes is given in Athreya and
Ney (1972). Some of the above mentioned techniques have also been used in the measure-
valued setting to get limit theorems for Dawson-Watanabe superprocesses. See e.g.
Evans and Perkins (1990) and Krone (1995) for some limit theorems of the conditioned
superprocesses. Indeed, the superprocess provides a richer source for limit theorems.
A well-known result of Dawson (1977) is that, if the underlying motion is a transient
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symmetric stable process, the critical continuous superprocess started with the Lebesgue
measure converges to a non-trivial steady state. It was also shown in Dawson (1977)
that that the steady random measure has an interesting spatial central limit theorem
which leads to a Gaussian random field. Some central limit theorems for the weighted
occupation time of the super stable process were proved in Iscoe (1986). Clearly, these
results have no counterparts in Galton-Watson processes. In the recurrent underlying
motion case, the superprocess exhibits local extinction and there is no central limit
theorem on the lines of Dawson (1977) and Iscoe (1986).

In this paper we prove a central limit theorem for the super Brownian motion which
covers both the transient and recurrent underlying motions. We show that the renor-
malized super Brownian motion converges to a limiting Gaussian random field if it is
properly started. In the transient case, the covariance kernel of the Gaussian field is
given by the potential kernel of the underlying motion as in Dawson (1977). In the
recurrent case, the Gaussian field is spatially uniform. We also give a central limit the-
orem for the weighted occupation time of the super Brownian motion with underlying
dimension number d ≤ 3, completing the results of Iscoe (1986).

2. Limit theorem for the super Brownian motion
Let (Pt)t≥0 denote the semigroup of a standard Brownian motion in Rd. We fix a

strictly positive, twice continuously differentiable function ρ on Rd with ρ(x) = e−|x|

for |x| > 1, where | · | denotes the Euclidean norm. Let Cρ(Rd) be the space of all
continuous functions on Rd bounded by const · ρ. Dually, Mρ(Rd) denotes the space of
Borel measures µ on Rd such that µ(f) :=

∫
fdµ < ∞ for all f ∈ Cρ(Rd). Suppose that

Mρ(Rd) is endowed with the topology defined by the convention: µk → µ if and only if
µk(f) → µ(f) for every f ∈ Cρ(Rd). The superscripts “+” are used to denote subsets
of positive members of function spaces; e.g. Cρ(Rd)+. Let (Vt)t≥0 be the semigroup of
nonlinear operators on Cρ(Rd)+ defined by the evolution equation

Vtf(x) +
1
2

∫ t

0

ds

∫

Rd

[Vsf(y)]2Pt−s(x, dy) = Ptf(x). (2.1)

By a critical continuous super Brownian motion we mean a diffusion process X =
(W,G,Gt, Xt,Qµ) with state space Mρ(Rd) such that

Qµ exp {−Xt(f)} = exp {−µ(Vtf)} , t ≥ 0, f ∈ Cρ(Rd)+. (2.2)

Let Sd−1 = {x : x ∈ Rd, |x| = 1} be the unit sphere and λd−1 be the surface area on
Sd−1 for d ≥ 2. We introduce the following condition:

[A] Let α > 0 and let h = h(x) be a locally bounded positive Borel function on Rd.
When d = 1, assume that

lim
x→∞

|x|−2αh(x) = a, lim
x→−∞

|x|−2αh(x) = b,
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where a ≥ 0 and b ≥ 0 are constants with a + b > 0. When d ≥ 2, assume that

lim
r→∞

r−2αh(rx) = γ(x)

uniformly on x ∈ Sd−1, where γ is a continuous function on Sd−1 with λd−1(γ) > 0.

Let S(Rd) be the space of rapidly decreasing, infinitely differentiable functions on
Rd whose all partial derivatives are also rapidly decreasing, and let S ′(Rd) be the dual
space of S(Rd). The central limit theorem consists in finding the constants ad(t) > 0
such that

X̃t(f) = ad(t)−1 [Xt(f)− λ(hPtf)] , f ∈ S ′(Rd), (2.3)

converges in distribution as t →∞. For a measure µ ∈ Mρ(Rd) and a non-negative Borel
function h = h(x) on Rd, let µh denote the measure such that µh(dx) = h(x)µ(dx). Let
λ be the Lebesgue measure on Rd.

Theorem 2.1. Suppose that [A] is satisfied with α > 1/2 for d = 1 and α > 0 for
d ≥ 2. For t > 0 let

a1(t)2 = tα+1/2, a2(t)2 = tα log t and ad(t)2 = tα for d ≥ 3.

Suppose that X0 = λh. Then the distribution of X̃t converges as t → ∞ to that of a
centered Gaussian variable X̃ in S ′(Rd). If we set

σ1 =
Γ (α + 1/2)

2π
(a + b)

∫ 1

0

(2− u)αu−1/2du,

σ2 =
2αΓ (α + 1)

8π2
λ1(γ),

σd =
2αΓ (α + d/2)

2πd/2
λd−1(γ) for d ≥ 3,

then for d ≤ 2 the covariance of Z is given by Cov (Z(f), Z(g)) = σdλ(f)λ(g), and
for d ≥ 3 it is given by Cov (Z(f), Z(g)) = σdλ(fGg), where G denotes the potential
operator of the Brownian motion.

The following result was proved in Li-Shiga (1995): Suppose that h satisfies [A]. Then

Pth(x) ≤ const · (1 + |x|2α)tα, (2.4)

and as t →∞,

Pth(x) =
2αΓ (α + d/2)

2πd/2
λd−1(γ)tα + o(tα). (2.5)

(We understand that λ0(γ) = a + b.)



4

Lemma 2.1. Let f ∈ S(Rd)+ and let

Ad(t, f) =
∫ t

0

ds

∫

Rd

[Psf(x)]2Pt−sh(x)dx.

Then as t →∞,

Ad(t, f) =σdλ(f)2ad(t)2 + o(ad(t)2) for d ≤ 2

=σdλ(fGf)ad(t)2 + o(ad(t)2) for d ≥ 3.

Proof. Note that the Brownian transition density gt(x, y) = gt(x − y) satisfies the fol-
lowing relation:

gs(x, y)gt(x, z) = gst/(s+t) (x, (ty + sz)/(s + t)) gs+t(y, z). (2.6)

Using this one finds that

Ad(t, f) =
∫ t

0

ds

∫

R2d

Pt−s/2h((y + z)/2)g2s(y, z)f(y)f(z)dydz.

Changing the variables and using dominated convergence we have

lim
t→∞

1
tα+1/2

A1(t, f)

= lim
t→∞

√
t

tα

∫ 1

0

dr

∫

R2
Pt(1−r/2)h

(
y + z

2

)
g2rt(y, z)f(y)f(z)dydz

= lim
t→∞

1
2
√

π

∫ 1

0

dr

∫

R2

1
tα
√

r
Pt(1−r/2)h

(
y + z

2

)
exp

{
− |y − z|2

4rt

}
f(y)f(z)dydz

=
2αΓ (α + 1/2)

4π
(a + b)λ(f)2

∫ 1

0

r−1/2(1 + r/2)αdr,

where we have used (2.4) and (2.5) in the last equality. Similarly, setting s = t1−r we
have

lim
t→∞

1
tα log t

A2(t, f)

= lim
t→∞

1
tα log t

∫ t

1

ds

∫

R4
Pt−s/2h

(
y + z

2

)
g2s(y, z)f(y)f(z)dydz

= lim
t→∞

1
4π

∫ 1

0

dr

∫

R4
t−αPt[1−1/2tr ]h

(
y + z

2

)
exp

{
− |y − z|2

4t1−r

}
f(y)f(z)dydz

=
2αΓ (α + 1)

8π2
λ1(γ)λ(f)2.
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Note that ‖Psf‖ ≤ (1 ∧ s−d/2) · const. By (2.4),

t−α

∫

Rd

[Psf(x)]2Pt−sh(x)dx ≤ t−α

∫

Rd

f(x)Pth(x)dx · (1 ∧ s−d/2) · const

≤
∫

Rd

f(x)(1 + |x|2α)dx · (1 ∧ s−d/2) · const.

Since [Psf ]2 is rapidly decreasing, using the dominated convergence two times we have

lim
t→∞

t−αAd(t, f)

=
∫ ∞

0

ds

∫

Rd

[Psf(x)]2 lim
t→∞

t−αPt−sh(x)dx

=
2αΓ (α + d/2)

2π−d/2
λd−1(γ)

∫ ∞

0

ds

∫

Rd

[Psf(x)]2dx

for d ≥ 3. The lemma is proved. ¤
Proof of Theorems 2.1. For f ∈ S(Rd)+ let ft = ad(t)−1f . From (2.1) and (2.2) it
follows that

Qλh
exp

{
−X̃t(f)

}
= exp

{
1
2

∫ t

0

ds

∫

Rd

[Vsft(x)]2Pt−sh(x)dx

}
, (2.7)

where

[Vsft]2 = [Psft]2 − Psft

∫ s

0

Ps−r[(Vrft)2]dr +
1
4

( ∫ s

0

Ps−r[(Vrft)2]dr

)2

. (2.8)

By (2.1) we have Vrft ≤ Prft, and hence
∫ s

0

Ps−r[(Vrft)2]dr ≤
∫ s

0

Ps−r[(Prft)2]dr ≤ ad(t)−1Psft

∫ s

0

‖Prf‖dr. (2.9)

Under the hypotheses of the theorem we have

ad(t)−1

∫ s

0

‖Prf‖dr ≤ ad(t)−1

∫ t

0

(1 ∧ r−d/2)dr → 0

as t →∞. Combining (2.7) – (2.9) and Lemma 2.1 gives

lim
t→∞

Qλh
exp

{
−X̃t(f)

}
= exp

{
1
2

Cd(f)2
}

,

where Cd(f)2 = σdλ(f)2 for d ≤ 2 and = σdλ(fGf) for d ≥ 3. Then the assertions
follow as the limit theorems in Iscoe (1986). ¤
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3. Limit theorem for the weighted occupation time
In this section we give a central limit theorem for the weighted occupation time

process of the super Brownian motion with underlying dimension number d ≤ 3. This
completes the results of Iscoe (1986). The weighted occupation time process {Yt : t ≥ 0}
is defined as

Yt(f) =
∫ t

0

Xs(f)ds, f ∈ Cρ(Rd). (3.1)

By Iscoe (1986), the distribution of Yt(f) is determined by

Qµ exp {−Yt(f)} = exp {−µ(Utf} , (3.2)

where Utf is the solution to

Utf(x) +
1
2

∫ t

0

ds

∫

Rd

[Usf(y)]2Pt−s(x, dy) =
∫ t

0

Psf(x)ds. (3.3)

For d ≤ 3 and t > 0 let bd(t) > 0 be defined by bd(t)2 = tα+3−d/2 and let

Ỹt(f) = bd(t)−1

∫ t

0

[Xs(f)− λ(hPsf)] ds, f ∈ S ′(Rd). (3.4)

Theorem 3.1. Suppose that [A] is satisfied with α > 1/2 for d = 1, α > 0 for d = 2,
and α > 1/2 for d = 3. Let X0 = λh. Then the distribution of Ỹt converges as t → ∞
to that of a centered Gaussian variable Ỹ in S ′(Rd). Let

κd =
2αΓ (α + d/2)λd−1(γ)

21+d/2πd

∫ 1

0

s2−d/2ds

∫ 1

0

dr

∫ 1

0

(
1− s +

ru

r + u

)α du

(r + u)d/2
.

Then the covariance of Z is given by Cov (Z(f), Z(g)) = κdλ(f)λ(g).

Lemma 3.1. Let f ∈ S(Rd)+ and let

Bd(t, f) =
∫ t

0

ds

∫

Rd

[ ∫ s

0

Prf(x)ds

]2

Pt−sh(x)dx.

If d ≤ 3, then as t →∞,

Bd(t, f) = κdλ(f)2bd(t)2 + o(bd(t)2).

Proof. Using the relation (2.6) one checks that

Bd(t, f) =
∫ t

0

ds

∫ s

0

dr

∫ s

0

du

∫

Rd

Pt−sh(x)Prf(x)Puf(x)dx

=
∫ t

0

ds

∫ s

0

dr

∫ s

0

du

∫

R2d

Pw(t,s,r,u)h(
uy + rz

r + u
)

gr+u(y, z)f(y)f(z)dydz,
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where w(t, s, r, u) = t− s + ru(r + u)−1. Changing the variables we have

Bd(t, f) =t3
∫ 1

0

s2ds

∫ 1

0

dr

∫ 1

0

du

∫

R2d

Ptw(1,s,r,u)h(
uy + rz

r + u
)

gts(r+u)(y, z)f(y)f(z)dydz

=
t3

(2πt)d/2

∫ 1

0

s2−d/2ds

∫ 1

0

dr

∫ 1

0

du

(r + u)d/2

∫

R2d

Ptw(1,s,r,u)h

(
uy + rz

r + u

)

f(y)f(z) exp
{
− |y − z|2

2ts(r + u)

}
dydz.

For s, r and u from (0, 1) we have 1− s < 1− s + ru(r + u)−1 < 1. Then for d ≤ 3 we
have

0 <

∫ 1

0

s2−d/2ds

∫ 1

0

dr

∫ 1

0

(
1− s +

ru

r + u

)α du

(r + u)d/2
< ∞.

By dominated convergence we get the result. ¤
Proof of Theorems 3.1. For f ∈ S(Rd)+ let ft = bd(t)−1f . Observe that by (3.3) we
have ∫ s

0

Ps−r[(Urft)2]dr ≤
∫ s

0

Ps−r

[( ∫ r

0

Puftdu

)2]
dr

≤
∫ s

0

Ps−r

[ ∫ r

0

Pr−uftdu

]
dr

∫ t

0

‖Pr−uft‖du

≤const ·
∫ s

0

dr

∫ r

0

Ps−uftdu · bd(t)−1

∫ t

0

1 ∧ ud/2du

≤const ·
∫ s

0

Puftdu · tbd(t)−1

∫ t

0

1 ∧ ud/2du.

Under the hypotheses of the theorem we have

tbd(t)−1

∫ t

0

(1 ∧ u−d/2)du → 0

as t →∞. Then the assertions follow by similar arguments as Theorem 2.1. ¤
There are similar central limit theorems for the weighted occupation time process with

underlying dimension number d ≥ 4. The modifying factors should be b4(t)2 = tα+1 log t
and bd(t)2 = tα+1 for d ≥ 5. Indeed, as in the proof of Lemma 3.1 one checks that

Bd(t, f) =t

∫ 1

0

ds

∫ st

0

dr

∫ st

0

du

∫

R2d

Pw(t,st,r,u)h(
uy + rz

r + u
)

gr+u(y, z)f(y)f(z)dydz.
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Set g(z) = f(z)(1 + |z|2α). By (2.4) we have immediately

t−α

∫

R2d

Pw(t,st,r,u)h

(
uy + rz

r + u

)
gr+u(y, z)f(y)f(z)dydz ≤ const · λ(fPr+ug)

For d ≥ 5 we have
∫ ∞

0

dr

∫ ∞

0

λ(fPr+ug)du = λ(GfGg) < ∞.

Then by dominated convergence, as t →∞,

Bd(t, f) =
2αΓ (α + d/2)λd−1(γ)

2πd/2(1 + α)
λ(fGf)2bd(t) + o(bd(t)2).

The calculations for d = 4 seems more involved and is left to the interested reader.
Unfortunately, it seems that the above calculations do not lead to the results of Iscoe
(1986), who proved central limit theorems for d ≥ 3 and α = 0.
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